Statistics for Biology and Health

Series Editors

M. Gail, K. Krickeberg, J. Samet, A. Tsiatis, W. Wong

Statistics for Biology and Health

Bacchieri/Cioppa: Fundamentals of Clinical Research
Borchers/Buckland/Zucchini: Estimating Animal Abundance: Closed Populations
Burzykowski/Molenberghs/Buyse: The Evaluation of Surrogate Endpoints
Cook/Lawless: The Statistical Analysis of Recurrent Events
Everitt/Rabe-Hesketh: Analyzing Medical Data Using S-PLUS
Ewens/Grant: Statistical Methods in Bioinformatics: An Introduction, $2^{\text {nd }}$ ed.
Gentleman/Carey/Huber/Irizarry/Dudoit: Bioinformatics and Computational Biology Solutions Using R and Bioconductor
Hougaard: Analysis of Multivariate Survival Data
Keyfitz/Caswell: Applied Mathematical Demography, $3^{\text {rd }}$ ed.
Klein/Moeschberger: Survival Analysis: Techniques for Censored and Truncated Data, $2^{\text {nd }}$ ed.
Kleinbaum/Klein: Survival Analysis: A Self-Learning Text, $2^{\text {nd }}$ ed.
Kleinbaum/Klein: Logistic Regression: A Self-Learning Text, $2^{\text {nd }}$ ed.
Lange: Mathematical and Statistical Methods for Genetic Analysis, $2^{\text {nd }}$ ed.
Manton/Singer/Suzman: Forecasting the Health of Elderly Populations
Martinussen/Scheike: Dynamic Regression Models for Survival Data
Moyé: Multiple Analyses in Clinical Trials: Fundamentals for Investigators
Nielsen: Statistical Methods in Molecular Evolution
O'Quigley: Proportional Hazards Regression
Parmigiani/Garrett/Irizarry/Zeger: The Analysis of Gene Expression Data: Methods and Software
Proschan/LanWittes: Statistical Monitoring of Clinical Trials: A Unified Approach
Siegmund/ Yakir: The Statistics of Gene Mapping
Simon/Korn/McShane/Radmacher/Wright/Zhao: Design and Analysis of DNA Microarray Investigations
Sorensen/Gianola: Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics
Stallard/Manton/Cohen: Forecasting Product Liability Claims: Epidemiology and Modeling in the Manville Asbestos Case
Sun: The Statistical Analysis of Interval-censored Failure Time Data
Therneau/Grambsch: Modeling Survival Data: Extending the Cox Model
Ting: Dose Finding in Drug Development
VittinghofflGlidden/Shiboski/McCulloch: Regression Methods in Biostatistics:
Linear, Logistic, Survival, and Repeated Measures Models
WulMa/Casella: Statistical Genetics of Quantitative Traits: Linkage, Maps, and QTL
Zhang/Singer: Recursive Partitioning in the Health Sciences
Zuur/Ieno/Smith: Analyzing Ecological Data

Rongling Wu
Chang-Xing Ma
George Casella

Statistical Genetics of Quantitative Traits

Linkage, Maps, and QTL

Springer

Rongling Wu
Department of Statistics
University of Florida
Gainesville, FL 32611
rwu@stat.ufl.edu

Chang-Xing Ma
George Casella
Department of Biostatistics Department of Statistics State University of New York University of Florida at Buffalo
Buffalo, NY 14214
cxma@buffalo.edu

Series Editors
M. Gail
National Cancer Institute
Rockville, MD 20892

Rockville, MD 20892
USA

Tsiatis
Department of Statistics
North Carolina State University
Raleigh, NC 27695
USA

K. Krickeberg	J. Sarnet Le Chatelet
F-63270 Manglieu	Department of Epidemiology School of Public Health
France	Johns Hopkins University
	615 Wolfe Street
	Baltimore, MD 21205-2103
	USA

W. Wong
Department of Statistics
Stanford University
Stanford, CA 94305-4065
USA

ISBN 978-0-387-20334-8 e-ISBN 978-0-387-68154-2
Library of Congress Control Number: 2006938665
© 2007 Springer Science + Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper.

987654321

springer.com

To my parents, wife, and son
RW

To my parents and Yuehua, David, and Eric CM

To my family, and Lulu, too GC

Preface

Most traits in nature and of importance to agriculture are quantitatively inherited. These traits are difficult to study due to the complex nature of their inheritance. However, recent developments of genomic technologies provide a revolutionary means for unraveling the secrets of genetic variation in quantitative traits. Genomic technologies allow the molecular characterization of polymorphic markers throughout the entire genome that are then used to identify and map the genes or quantitative trait loci (QTLs) underlying a quantitative trait based on linkage analysis.

Statistical analysis is a crucial tool for analyzing genome data, which are now becoming increasingly available for a variety of species, and for giving precise explanations regarding genetic variation in quantitative traits occurring among species, populations, families, and individuals. In 1989, Lander and Botstein published a hallmark methodological paper for interval mapping that enables geneticists to detect and estimate individual QTL that control the phenotype of a trait. Today, interval mapping is an important statistical tool for studying the genetics of quantitative traits at the molecular level, and has led to the discovery of thousands of QTLs responsible for a variety of traits in plants, animals, and humans. In a recent study published in Science, Li, Zhou, and Sang (2006, 311, 1936-1939) were able to characterize the molecular basis of the reduction of grain shattering - a fundamental selection process for rice domestication - at the detected QTL by interval mapping. Among many other examples of the success of interval mapping are the positional cloning of QTLs responsible for fruit size and shape in tomato (Frary et al. 2000, Science 289, 85-88) and for branch, florescence, and grain architecture in maize (Doebley et al. 1997, Nature 386, 485-488; Gallavotti et al. 2004, Nature 432, 630-635; Wang et al. 2005, Nature 436, 714-719).

To make it suitable for various practical applications, interval mapping has been extensively modified and extended during the past 15 years. A host of useful statistical methods for QTL mapping have been produced through the collective efforts of statistical geneticists. However, these methods generally have various objectives and utilities and are sporadically distributed in a massive amount of literature. A single volume synthesizing statistical developments for genetic mapping may be helpful for many researchers, especially those with a keen interest in building a bridge between
genetics and statistics, to acquaint themselves with this expanding area as quickly as possible.

This book intends to provide geneticists with the tools needed to understand and model the genetic variation for quantitative traits based on genomic data collected in mapping research and equip statisticians with the uniqueness and ideas in relation to the exploration of genetic secrets using their computational skills. This book also intends to attract researchers toward multidisciplinary research and to introduce them to new paradigms in genomic science. In this book, the statistical and computational theories applied to genetic mapping are developed hand in hand and a number of examples displaying the implications of statistical genomics are introduced.

This book contains 14 chapters, broadly divided into three parts. Part 1, including Chapters 1 and 2, provides introductory genetics and statistics at the level appropriate for understanding general genetic concepts and statistical models for genetic mapping. Part 2, composed of Chapters 3-7, attempts to provide a thorough and comprehensive coverage of linkage analysis with molecular markers. Models and methods for linkage analysis and map construction are systematically introduced for different designs, such as the backcross $/ \mathrm{F}_{2}$ (Chapter 3), outbred crosses (Chapter 4), recombinant inbred lines (Chapter 5) and structured pedigrees (Chapter 7), and for special marker types including distorted and misclassified markers (Chapter 6) and dominant markers (Chapters 4 and 7). Part 3, composed of Chapters 8-14, covers statistical models and algorithms of QTL mapping. The topics include simple marker-phenotype association analyses (Chapter 8), the statistical structure of interval mapping (Chapter 9), regression- (Chapter 10) and maximum likelihood-based analysis of interval mapping (Chapter 11), threshold and confidence interval determination (Chapter 12), composite interval mapping using multiple markers as cofactors (Chapter 13), and interval mapping for outbred mapping populations (Chapter 14). In the Appendices, we provide general statistical theories directly related to the genetic mapping approaches introduced and R programs for some of the examples used in the book. A webpage (http://www.buffalo.edu/~cxma/book/) was constructed for this book, which includes a complete list of programs and algorithms written in MatLab or R for all the examples.

Writing a book in such a rapidly developing and changing field is a pain but, more precisely speaking, full of excitement. In the summer of 1997, Wu delivered a series of lectures on statistical methods for QTL mapping to graduate students and faculty at Nanjing Forestry University, China. In the spring semester of 2002, Wu taught a statistical genetics course at the master's level at the University of Florida and then was joined for coteaching by Casella in the spring of 2003 and Ma in the spring of 2005. This course is now taught by Wu at the University of Florida and by Ma at the State University of New York at Buffalo on the regular basis. We all gave many lectures or short courses related to statistical genetics at other places and times. At each place and time, we were heavily impressed by the enthusiasm of students and other audiences to learn this fascinating area. All these encouraged us to write a book that can cover basic methods for statistical genetics research. The concepts, models and algorithms related to genetic mapping have been published in a variety of statistics and genetics journals by a large number of authors, but part of the material
contained in this book comes from our collaborative research program in the past five years. In particular, we apologize for those authors whose work was not mentioned in this book because of limited space.

During the writing of this book, many of our colleagues and friends both at the University of Florida and outside provided valuable help from different perspective. Wu is warmly grateful to his postdoctoral advisor, Dr. Zhao-Bang Zeng at North Carolina State University, for tremendous guidance and for leading him to the field of statistical genetics. Dr. Bruce Walsh at the University of Arizona provided insightful reviews of the book manuscript in different stages. Several anonymous reviewers gave constructive comments that significantly improve the presentation of the book. Students or postdocs who attended our lectures and classes or are working with us on statistical genetics in different places have provided many insightful suggestions to improve our presentation of the book. The following students or postdocs in our group, former or current, deserve special thanks: Yuehua Cui, Wei Hou, Hongying Li, Min Lin, Tian Liu, Fei Long, Xiang-Yang Lou, Qing Lu, Damaris Santana, Zhaojie Wang, Zuoheng Wang, Jiasheng Wu, Song Wu, Jie Yang, John Yap, Li Zhang, Wei Zhao, and Yun Zhu. The data used for examples in the book were kindly supplied by Dr. James Cheverud at Washington University (mouse), Dr. Junyi Gai at Nanjing Agricultural University (soybean), Rory Todhunter at Cornell University (dog), Drs. Stan Wullschleger and Tongming Yin at Oak Ridge National Laboratory (poplar), and Dr. Jun Zhu at Zhejiang University (rice).

We are grateful to the Department of Statistics and the Institute of Food and Agricultural Sciences at the University of Florida for writing this book and performing our research program. Finally, we are greatly indebted to our respective families for their continuous support of our research activities over the years. This work is partially supported by NSF grant 0540745.

Gainesville, FL
Buffalo, NY
December 2006
Rongling Wu
Chang-Xing Ma
George Casella

Contents

1 Basic Genetics 1
1.1 Introduction 1
1.2 Genes and Chromosomes 1
1.3 Meiosis 2
1.4 Mendel's Laws 3
1.4.1 Mendel's First Law 3
1.4.2 Mendel's Second Law 4
1.5 Linkage and Mapping 5
1.6 Interference 8
1.7 Quantitative Genetics 8
1.7.1 Population Properties of Genes 8
1.7.2 A General Quantitative Genetic Model 9
1.7.3 Genetic Models for the Backcross and F_{2} Design 10
1.7.4 Epistatic Model 12
1.7.5 Heritability and Its Estimation 12
1.7.6 Genetic Architecture 14
1.7.7 The Estimation of Gene Number 15
1.8 Molecular Genetics 16
1.9 SNP 18
1.10 Exercises 20
1.11 Note 20
1.11.1 Modeling Unequal Genetic Effects by the Gamma Function 21
1.11.2 Modeling Unequal Genetic Effects by a Geometric Series 22
2 Basic Statistics 25
2.1 Introduction 25
2.1.1 Populations and Models 25
2.1.2 Samples 27
2.2 Likelihood Estimation 27
2.3 Hypothesis Testing 31
2.3.1 The Pearson Chi-Squared Test 31
2.3.2 Likelihood Ratio Tests 33
2.3.3 Simulation-Based Approach 37
2.3.4 Bayesian Estimation 38
2.4 Exercises 40
3 Linkage Analysis and Map Construction 43
3.1 Introduction 43
3.2 Experimental Design 44
3.3 Mendelian Segregation 45
3.3.1 Testing Marker Segregation Patterns 45
3.4 Segregation Patterns in a Full-Sib Family 46
3.5 Two-Point Analysis 49
3.5.1 Double Backcross 50
3.5.2 Double Intercross- F_{2} 52
3.6 Three-Point Analysis 56
3.7 Multilocus Likelihood and Locus Ordering 58
3.8 Estimation with Many Loci 61
3.9 Mixture Likelihoods and Order Probabilities 62
3.10 Map Functions 63
3.10.1 Mather's Formula 64
3.10.2 The Morgan Map Function 65
3.10.3 The Haldane Map Function 65
3.10.4 The Kosambi Map Function 66
3.11 Exercises 69
3.12 Notes: Algorithms and Software for Map Construction 71
4 A General Model for Linkage Analysis in Controlled Crosses 77
4.1 Introduction 77
4.2 Fully Informative Markers: A Diplotype Model 78
4.2.1 Two-Point Analysis 78
4.2.2 A More General Formulation 81
4.2.3 Three-Point Analysis 82
4.2.4 A More General Formulation 86
4.3 Fully Informative Markers: A Genotype Model 88
4.3.1 Parental Diplotypes 88
4.4 Joint modeling of the Linkage, Parental Diplotype, and Gene Order 91
4.5 Partially Informative Markers 96
4.5.1 Joint modeling of the Linkage and Parental Diplotype 96
4.5.2 Joint modeling of the Linkage, Parental Diplotype, and Gene Order 98
4.6 Exercises 99
4.6.1 One dominant marker 100
4.6.2 One dominant marker and one F_{2} codominant marker 100
4.7 Notes 101
4.7.1 Linkage Analysis 101
4.7.2 The Diplotype Probability 102
4.7.3 Gene Order 105
4.7.4 M-Point Analysis 106
5 Linkage Analysis with Recombinant Inbred Lines 107
5.1 Introduction 107
5.2 RILs by Selfing 107
5.2.1 Two-Point Analysis 107
5.2.2 Three-Point Analysis 111
5.3 RILs by Sibling Mating 117
5.3.1 Two-point Analysis 117
5.3.2 Three-point Analysis 118
5.4 Bias Reduction 118
5.4.1 RILs by Selfing 118
5.4.2 RILs by Sibling Mating 119
5.5 Multiway RILs 120
5.6 Exercises 120
5.7 Note 122
6 Linkage Analysis for Distorted and Misclassified Markers 123
6.1 Introduction 123
6.2 Gametic Differential Viability 123
6.2.1 One-Gene Model 123
6.2.2 Two-Gene Model 127
6.2.3 Simulation 130
6.3 Zygotic Differential Viability 132
6.3.1 One-Gene Model 132
6.3.2 Two-Gene Model 133
6.3.3 Simulation 134
6.4 Misclassification 134
6.4.1 One-gene Model 134
6.4.2 Two-Gene Model 138
6.5 Simulation 141
6.6 Exercises 142
7 Special Considerations in Linkage Analysis 145
7.1 Introduction 145
7.2 Linkage Analysis with a Complicated Pedigree 145
7.2.1 A Nuclear Family 145
7.2.2 Multipoint Estimation of Identical-By-Descent Sharing 149
7.2.3 A Complex Pedigree 150
7.3 Information Analysis of Dominant Markers 160
7.3.1 Introduction 160
7.3.2 Segregation Analysis 161
7.3.3 Linkage Analysis 165
7.4 Exercises 168
8 Marker Analysis of Phenotypes 171
8.1 Introduction 171
8.2 QTL Regression Model 172
8.3 Analysis at the Marker 174
8.3.1 Two-Sample t Test 174
8.3.2 Analysis of Variance 176
8.3.3 Genetic Analysis 179
8.4 Moving Away from the Marker 181
8.4.1 Likelihood 181
8.5 Power Calculation 184
8.6 Marker Interaction Analysis 188
8.6.1 ANOVA 188
8.6.2 Genetic Analysis 192
8.7 Whole-Genome Marker Analysis 195
8.8 Exercises 198
9 The Structure of QTL Mapping 203
9.1 Introduction 203
9.2 The Mixture Model 204
9.2.1 Formulation 204
9.2.2 Structure, Setting, and Estimation 206
9.3 Population Genetic Structure of the Mixture Model 207
9.3.1 Backcross/F ${ }_{2}$ 207
9.3.2 Outbred Crosses 208
9.3.3 Recombinant Inbred Lines 208
9.3.4 Natural Populations 208
9.4 Quantitative Genetic Structure of the Mixture Model 208
9.4.1 Additive-Dominance Model 209
9.4.2 Additive-Dominance-Epistasis Model 210
9.4.3 Multiplicative-Epistatic Model 211
9.4.4 Mechanistic Model 212
9.5 Experimental Setting of the Mixture Model 213
9.6 Estimation in the Mixture Model 214
9.7 Computational Algorithms for the Mixture Model 216
9.7.1 EM Algorithm 216
9.7.2 Monte Carlo EM 216
9.7.3 Stochastic EM 217
9.7.4 An EM Algorithm/Newton-Raphson Hybrid 217
9.7.5 Some Cautions 218
9.7.6 Bayesian Methods 218
9.7.7 Estimating the Number of Components in a Mixture Model 220
9.8 Exercises 221
10 Interval Mapping with Regression Analysis 223
10.1 Introduction 223
10.2 Linear Regression Model 224
10.3 Interval Mapping in the Backcross 224
10.3.1 Conditional Probabilities 224
10.3.2 Conditional Regression Model 226
10.3.3 Estimation and Test 228
10.4 Interval Mapping in an F_{2} 230
10.5 Remarks 233
10.6 Exercises 234
11 Interval Mapping by Maximum Likelihood Approach 237
11.1 Introduction 237
11.2 QTL Interval Mapping in a Backcross 238
11.2.1 The Likelihood 238
11.2.2 Maximizing the Likelihood 240
11.3 Hypothesis Testing 246
11.3.1 Model for Incorporating Double Recombination 252
11.3.2 Model for Incorporating Interference 252
11.4 QTL Interval Mapping in an F_{2} 254
11.4.1 No Double Recombination 254
11.4.2 Independence 257
11.4.3 Interference 260
11.4.4 Testing Hypotheses 262
11.5 Factors That Affect QTL Detection 262
11.6 Procedures for QTL Mapping 263
11.6.1 The Number of QTLs 263
11.6.2 Locations of Individual QTLs 266
11.7 Exercises 267
12 Threshold and Precision Analysis 269
12.1 Introduction 269
12.2 Threshold Determination 270
12.2.1 Background 270
12.2.2 Analytical Approximations 271
12.2.3 Simulation Studies 275
12.2.4 Permutation Tests 275
12.2.5 A Quick Approach 276
12.2.6 A Score Statistic 277
12.3 Precision of Parameter Estimation 279
12.3.1 Asymptotic Variance-Covariance Matrix 279
12.3.2 Simulation Studies 282
12.4 Confidence Intervals for the QTL Location 283
12.5 Exercises 285
13 Composite QTL Mapping 287
13.1 Introduction 287
13.2 Composite Interval Mapping for a Backcross 288
13.2.1 The Likelihood 288
13.2.2 Maximizing the Likelihood 289
13.2.3 Hypothesis Testing 290
13.3 Composite Interval Mapping for an F_{2} 291
13.4 A Statistical Justification of Composite Interval Mapping 293
13.4.1 Conditional Marker (Co)variances 293
13.4.2 Conditional QTL Variance 295
13.4.3 Marker Selection 298
13.5 Comparisons Between Composite Interval Mapping and Interval Mapping 298
13.6 Multiple Interval Mapping 301
13.7 Exercises 302
14 QTL Mapping in Outbred Pedigrees 303
14.1 Introduction 303
14.2 A Fixed-Effect Model for a Full-Sib Family 304
14.2.1 Introduction 304
14.2.2 A Mixture Model for a Parental Diplotype 304
14.2.3 Quantitative Genetic Model 308
14.2.4 Likelihood Analysis 309
14.2.5 Fitting Marker Phenotypes 312
14.2.6 Hypothesis Tests 313
14.2.7 The Influence of Linkage Phases 316
14.3 Random-Effect Mapping Model for a Complicated Pedigree 317
14.3.1 Introduction 317
14.3.2 Statistical Model 319
14.3.3 IBD at a QTL 320
14.3.4 The Likelihood 321
14.3.5 Hypothesis Testing 323
14.4 Exercises 325
A General Statistical Results and Algorithms 331
A. 1 Likelihood Asymptotics 331
A. 2 General Form of the EM Algorithm 332
B $\quad R$ Programs 335
B. 1 Chapter 2 335
B. 2 Chapter 8 337
C References 343
Author Index 355
Subject Index 361

Basic Genetics

1.1 Introduction

There have been enormous advances in the science of genetics. A huge amount of information regarding the precise molecular mechanisms of genetic transmission from parent to offspring is becoming increasingly available. In this chapter, we briefly review basic terminology and principles of genetics from Mendelian, population, quantitative and molecular perspectives at a level appropriate for understanding the research methods to be described in this book. Much of the description for classic Mendelian genetics is adapted from Bailey's (1961) book. To learn more about modern genetics, please look into the more general genetics textbooks that are listed at the end of this chapter.

1.2 Genes and Chromosomes

Genes are discrete units in which biological characteristics are inherited from parents to offspring. Genes are normally transmitted unchanged from generation to generation, and they usually occur in pairs. If a given pair consists of similar genes, the individual is said to be homozygous for the gene in question, while if the genes are dissimilar, the individual is said to be heterozygous. For example, if we have two alternative genes, say A and a, there are two kinds of homozygotes, namely $A A$ and $a a$, and one kind of heterozygote, namely $A a$. These alternative genes are called alleles. With a single pair of alleles, there are three different kinds of possible organisms represented by the three genotypes $A A, A a$, and $a a$.

Genes are generally very numerous, and situated within the cell nucleus, where they lie in linear order along microscopic bodies called chromosomes. The chromosomes occur in similar, or homologous, pairs, where the number of pairs is constant for each species. For example, Drosophila has 4 pairs of chromosomes, pine has 12, the house mouse has 20, humans have 23, etc. The totality of these pairs constitutes the genome of a particular organism. One of the chromosome pairs in the genome
are the sex chromosomes (typically denoted by \mathbf{X} and \mathbf{Y}) that determine genetic sex. The other pairs are autosomes which guide the expression of most other traits.

Each gene pair has a certain place or locus on a particular chromosome. Since the chromosomes occur in pairs, the loci and the genes occupying them also occur in pairs. Therefore, it is the loci that have the fixed linear order, although a given locus may be occupied by any gene from the series of alleles (more than two alleles or multialleles) determining a particular trait. The most important purpose of a genome mapping project is to locate the genes affecting trait expressions on chromosomes.

1.3 Meiosis

When ordinary body cells divide and multiply, the cell nucleus undergoes a process of division called mitosis, which results in the two daughter cells, each having a full set of paired chromosomes exactly like the parent cell. But in the production of reproductive cells or gametes (ova and spermatozoa), we have a different mechanism, called meiosis. This ensures that only one chromosome from each homologous pair passes into each gamete. It follows that gametes also possess only one gene from each gene pair. The number of chromosomes in a gamete is referred to as the haploid number, in contrast to the full complement possessed by a fertilized egg, or zygote, which is diploid.

A diagram is drawn to illustrate the biological process of meiosis (Fig. 1.1). The chromosomes are already duplicated by the time they become visible at the start of the first meiotic division. Each pair of duplicates is joined at the centromere, a small particle at which two arms of the chromosome are connected. The duplicated pairs remain joined throughout the first anaphase. The paternal homolog (a duplicated pair) moves to one pole; the maternal homolog (another duplicated pair) moves to the other. The immediate products of the first meiotic division are two cells, each containing a diploid chromosome set. However, each homologous pair of chromosomes in one of these cells is a pair of maternally originated chromosomes or a pair of paternally originated chromosomes. The assortment between the two cells is random, with each resulting cell normally containing some chromosome pairs of maternal origin and others of paternal origin. In the second meiotic division, the number of chromosomes is halved and each of the two products of the first division produces identical daughter cells with half the usual number of chromosomes.

The significance of reduction division in meiosis is that it can maintain a diploid (double) chromosome set after fertilization, the fusion of a male gamete (sperm) with a female gamete (egg). A second essential characteristic of meiosis is that there is an interchange of genetic material between the two chromosomes of a homologous pair. Thus, the haploid gamete chromosome set contains a mixture of chromosomes, some derived from the father and some from the mother.

Gamete precursor cell at beginning of meiosis; the DNA has already been duplicated.

First meiotic division: the homolog pair.

First meiotic division: paired duplicated chromosomes align at equator of spindle; duplicated chromosome strands stay together; members of each separate toward poles.

Formation of two daughter cells: each contains two of the previously duplicated chromosomes (one of each pair).

Second meiotic division: DNA is not duplicated, but previously duplicated centromeres and chromosomes now separate. Each cell forms two identical daughter cells, with DNA and chromosomes reduced by one-half.

Fig. 1.1. Schematic diagram of meiosis in a hypothetical male who has one pair of identical autosomes (white) and one dissimilar XY pair (shaded). Adapted from Cavalli-Sforza and Bodmer (1971).

1.4 Mendel's Laws

1.4.1 Mendel's First Law

Genes are present in pairs in all cells of an adult organism, except for gametes. The gametes have only one gene from any given pair. Thus if an adult has genotype $A A$, all the gametes produced are of type A. But if the genotype is $A a$, two types of gametes are possible, A and a, and these are normally produced in equal numbers. When fertilization occurs, a sperm carrying one gene from the male parent is united with an ovum carrying one gene from the female parent, thus making up a complete pair. The fertilized egg, or zygote, then develops to produce an organism in each body cell, of which one gene is derived from one parent and one from the other. The new individual produces its own reproductive cells, and so the process can continue.

The considerations above constitute Mendel's first law, the Law of Segregation. This states that characteristics are controlled by pairs of genes that segregate or separate during the formation of the reproductive cells, thus passing into different gametes. The pairs are restored when fertilization occurs, and this leads to the production of different types of offspring in certain definite proportions. In effect, segregation shuffles the genes and redeals them to the next generation. Characters themselves may also be said to show segregation, but the precise manner in which this happens depends on the nature of the genes involved and their dominant and recessive relationships.

Suppose we cross two individuals, represented by $A A$ and $a a$. All gametes from the first will be A and all from the second will be a. Thus, all zygotes F_{1} will be of the heterozygous type $A a$. We now cross two individuals from the F_{1} to form a new F_{2} generation. Each F_{1} heterozygous $A a$ produces two kinds of gametes, A and a, in equal numbers. At fertilization, there are four ways in which a zygote can be formed: one A gene from each parent; one a from each parent; A from the male and a from the female; or A from the female and a from the male. We therefore expect the three types of offspring $A A, A a$, and $a a$ in the ratios of $1: 2: 1$ in the F_{2} generation. But, if A is dominant, the first two classes will be phenotypically indistinguishable, giving the characters A and a in a $3: 1$ ratio.

If one of the heterozygous F_{1} offspring is mated back to the homozygous parent, a backcross population is generated. The genotype of an individual in the backcross depends only on the heterozygous F_{1} in which two kinds of gametes, A and a, are formed in equal numbers. Thus, the segregation ratio of the genotypes in the backcross follows a 1:1 ratio.

1.4.2 Mendel's Second Law

Mendel's second law says that when two or more pairs of genes segregate simultaneously, they do so independently. This is the Law of Independent Assortment. In some cases, this law is adequate, but it is subject to certain very important exceptions. These arise because of the phenomenon of linkage, a main topic of this book.

Suppose we have two pairs of genes represented by \mathbf{A}, with two alleles A and a, and \mathbf{B} with two alleles B and b. If we cross two individuals, one homozygous for both A and B and the other homozygous for both a and b (i.e., the mating $A A B B \times a a b b$), it is obvious that all offspring will be $A a B b$. This is because the first parent must produce gametes that are all $A B$, and the second parent must produce gametes which are all $a b$. We now consider the intercross $A a B b \times A a B b$. If the segregation is to be independent then each of these individuals will produce four kinds of gametes, namely $A B, A b, a B$ and $a b$, in equal numbers. Combining the four alternative types of gametes from one parent with the four alternatives from the other leads to 16 combinations, which are not, however, all different. The various possibilities are most easily presented as shown in the diagram of Fig. 1.2. It will be seen from the diagram that there are in fact nine distinct genotypes, $A A B B$ (1), $A A B b$ (2), $A A b b$ (1), $A a B B$ (2), $A a B b$ (4), $A a b b$ (2), $a a B B$ (1), $a a B b$ (2), and $a a b b$ (1), where the number given in parentheses is the forming number of each genotype. But if each gene pair exhibits
a dominant/recessive relationship, there will be only four separate phenotypic classes, $A B, A b, a B$, and $a b$ occurring in the ratio 9:3:3:1.

	Gametes			
	$A B$	$A b$	$a B$	$a b$
$A B$	$\begin{aligned} & A A B B \\ & (A B) \end{aligned}$	$A A B b$ (AB)	$\begin{gathered} A a B B \\ (A B) \end{gathered}$	$\begin{aligned} & A a B b \\ & (A B) \end{aligned}$
$A b$ Gametes	$A A B b$ (AB)	$A A b b$ (Ab)	$\begin{aligned} & A a B b \\ & (A B) \end{aligned}$	$A a b b$ (Ab)
$a B$	$\begin{gathered} A a B B \\ (A B) \end{gathered}$	$\begin{aligned} & A a B b \\ & (A B) \end{aligned}$	$\begin{gathered} a a B B \\ (a B) \end{gathered}$	$\begin{gathered} a a B b \\ (a B) \end{gathered}$
$a b$	$\begin{aligned} & A a B b \\ & (A B) \end{aligned}$	$A a b b$ (Ab)	$\begin{gathered} a a B b \\ (a B) \end{gathered}$	$\begin{gathered} a a b b \\ (a b) \end{gathered}$

Fig. 1.2. Gene segregation of an intercross, $A a B b \times A a B b$, involving two gene pairs. When each pair exhibits dominance, the resultant phenotypes are given in brackets. The degree of dominance is roughly described by different darknesses of the cells.

1.5 Linkage and Mapping

Mendel's second law applies to genes whose loci lie on different chromosomes. Genes whose loci lie on the same chromosome will tend to remain together. Loci on the same chromosome are said to be syntenic, and those on different chromosomes are said to be nonsyntenic. The extent to which syntenic loci remain together depends on their closeness. We are thus led to consider the phenomenon of linkage.

In order to see what essentially is involved in linkage, let us consider the formation of gametes by a heterozygote $A a B b$. If the loci for the gene pairs A, a and B, b lie on the same kind of chromosome, we can specify more exactly the composition of the homologous pair of chromosomes. Thus, one chromosome may contain A and B, the other a and b; i.e.,

$$
\begin{align*}
& A++a \tag{1.1}\\
& B+-b
\end{align*}
$$

where the two vertical lines stand for the two homologous chromosomes. Or, alternatively, A and b may lie on one chromosome, while the other contains a and B; i.e.,

Definition 1.1. [Some Basic Terms] For alleles A and B, the arrangement displayed in diagram (1.1) is termed coupling and is written $A B / a b$; the arrangement in diagram (1.2) is called repulsion and is indicated by $A b / a B$. The relative arrangement of nonalleles (i.e., A vs. B, A vs. b, a vs. B, or a vs. b) at different loci along a chromosome is called the linkage phase.

At an early stage of meiosis, the two chromosomes 1 and 2 lie side by side with corresponding loci aligned. If the parental genotype is $A B / a b$, we can represent the alignment as in Fig. 1.3A. Each of the paired chromosomes is then duplicated to form two sister strands (chromatids) connected to each other at a region called the centromere. The homologous chromosomes form pairs, so that each resulting complex consists of four chromatids known as a tetrad (Fig. 1.3B). At this stage, the nonsister chromatids adhere to each other in a semi-random fashion at regions called chiasmata. Each chiasma represents a point where crossing over between two nonsister chromatids can occur (Fig. 1.3C). Chiasmata do not occur entirely at random, as they are more likely farther away from the centromere, and it is unusual to find two chiasmata in very close proximity to each other.

Fig. 1.3. Diagram for crossing-over between linked loci A and B.

Each gamete receives one chromatid from a tetrad to make up the haploid complement (Fig. 1.3D). Since it is possible that more than one crossover occurs on the chromosomes, some chromosomes in the haploid complement consist of a number of segments from the two parental chromosomes. The number of segments is determined by the number of crossovers that occurred in the formation of the chromatid that became the chromosome. If no crossovers occur, then the chromosome will be a replicate of an entire parental chromosome. If one crossover occurs between two loci \mathcal{A} and \mathcal{B}, then the chromosome will consist of two segments, one from each parental chromosome. In the former case, the resultant gametes must be $A B$ or $a b$, just like the parental chromosomes. In the latter case, where there is one point of exchange, we have the new combinations $A b$ and $a B$, called recombinant types. In general, if
there are an even number of points of exchange between the two loci, the final result will be indistinguishable from $A B$ or $a b$. But if there are an odd number of points of exchange, the result will be like $A b$ or $a B$.

The existence of linkage means that there will be more gametes like $A B$ and $a b$, and fewer like $A b$ and $a B$. Let us suppose that the proportion of recombinant gametes is r, which we call the recombination fraction, and that the proportion of parental type is $1-r$. The recombination fraction can be estimated on the basis of the expected number of recombinants in a segregating progeny (see Chapter 3). In general, we should not expect to find recombination fractions greater than one-half, though in certain unusual circumstances there may be a tendency for chromosomes inherited from one parent or from particular stocks to associate nonrandomly.

From the definition of the recombination fraction, it follows that the special case $r=1 / 2$ is equivalent to independent segregation or no linkage. Actually, if two loci on one chromosome are a long way apart, odd and even numbers of points of exchange will be about equally frequent (i.e., 50 percent each), so this case will not be immediately distinguishable from the case where the loci are on different chromosomes. Alternatively, if two loci are close together, the frequency of points of exchange will be low, and the corresponding recombination fraction will be small. To some extent, we can use the latter as a measure of the distance between any two loci.

A better scale of measurement is that afforded by the density of points of exchange.
Definition 1.2. [Map Distance] The map distance between any two loci is the average number of points of exchange occurring in the segment.

The map distance is a quantity that is automatically additive. There is a very simple relationship between the recombination fraction and the map distance for a pair of loci in the simplest case of no interference. Such a relationship is called a map function and will be discussed in Section 3.10. When the recombination fractions between pairs of loci on a single chromosome have been determined from an appropriate linkage experiment, it is a simple matter to transform them into map distances and hence construct a chromosome map. Since there is no reason to suppose that chromosomes are homogeneous along their lengths with regard to the frequency of crossing-over, we cannot assume that there is necessarily a very close correspondence between genetic map distance and the actual physical distance between the corresponding genes.

When many genes are considered, an issue arises about their linear arrangement within each chromosome. The loci of any organism fall into linkage groups, where any locus in one group is unlinked to any locus in a different group. Within any group, however, the loci can be arranged in a linear order. For sufficiently close loci, the recombination fraction between any pair may, in an elementary analysis, be used as a direct measure of the distance between the loci. To retain additivity at greater separations, we must work in terms of the average number of crossovers rather than the recombination fraction (which only measures the frequency of an odd number of crossovers). We thus need to know how the recombination fractions observed between many pairs of loci lying on a single chromosome can be fitted into a unifying picture
based on the notion of a chromosome map. This will critically rely upon the development of theoretical models and statistical algorithms for constructing genetic linkage maps, which is one of the major themes of this book.

1.6 Interference

In the simplest case, we assume that the points of exchange occur at random, so that the pattern of crossing-over in any segment of a chromosome is independent of the pattern in any other segment. In practice, however, nonrandomness is common and was named interference by H. J. Muller (1916). When, as usual, this is positive, the occurrence of a point of exchange tends to inhibit the formation of other such points in its neighborhood. Various models are available for describing the phenomenon of interference, and some of these entail the occurrence of recombination fractions greater than one-half in sufficiently long chromosomes.

As mentioned earlier, each chromosome splits longitudinally into a pair of identical daughter-chromosomes (chromatids) during the relevant part of a meiotic division. The two chromatids are initially held together by the centromere (Fig. 1.3B). Crossing-over always occurs between chromatids from different chromosomes of a homologous pair, as shown in Fig. 1.3C. Thus, the phenomenon of crossing-over actually involves all four chromatids, or strands, of any pair of homologous chromosomes. A pair of homologous chromosomes united by crossing-over is often called bivalent.

We may envision the occurrence of several points of exchange or chiasma, each of which now entails the X-like arrangement of chromatids shown in Fig. 1.3C. We can distinguish between two kinds of interference.

Definition 1.3. [Kinds of Interference] One type of interference is chiasma interference, in which the occurrence of one chiasma influences the chance of another occurring in its neighborhood, and another is chromatid interference, which is a nonrandom relationship between the pair of strands involved in one chiasma and the pair involved in the next chiasma.

Chiasma interference is common, and some distributions have been observed in which the variance of interference was as low as a quarter of its mean. Chromatid interference, on the other hand, is much more difficult to detect, and evidence for its existence is more scant. It has been proven that chiasma interference alone is incapable of causing recombination fractions of more than 50 percent (Mather 1938).

1.7 Quantitative Genetics

1.7.1 Population Properties of Genes

Mendelian segregation leads to simple and predictable segregation ratios in the offspring of specific mating types but only applies to a progeny population derived from
two parents of known genotype. However, different mating types can occur simultaneously to generate the offspring in a natural or experimental population in which the ratios of the different genotypes are weighted averages of the segregation ratios of all the possible mating types, the weights being the relative frequencies of the different mating types. The population properties of genes can be described by the allele frequencies, genotype frequencies, and Hardy-Weinberg law.

Consider a gene with two alleles, A and a, with respective frequencies p_{1} and p_{0}, in a population. Let P_{2}, P_{1}, and P_{0} be the population frequencies of three genotypes, $A A, A a$ and $a a$, respectively. When the mating type frequencies arise from random mating, the ratios of the different genotypes follow a mathematical model established independently by the English mathematician Hardy (1908) and the German physician Weinberg (1908). This well-known model, today called the Hardy-Weinberg Law, states that, if individuals in the population mated with each other at random, these frequencies would satisfy the relationship

$$
\begin{equation*}
P_{1}^{2}=4 P_{2} P_{0} \tag{1.3}
\end{equation*}
$$

and each of these frequencies is kept unchanged from generation to generation. The population that follows equation (1.3) is said to be at Hardy-Weinberg equilibrium, in which the genotype frequencies can be expressed as $P_{2}=p_{1}^{2}, P_{1}=2 p_{1} p_{0}$, and $P_{0}=p_{0}^{2}$, respectively. Approaches exist to test whether or not a population is at Hardy-Weinberg equilibrium (Falconer and Mackay 1996; Lynch and Walsh 1998).

1.7.2 A General Quantitative Genetic Model

A gene that is segregating in a population may affect the phenotype of a trait. For a complex or quantitatively inherited trait, the genes that determine it may be numerous and their relationships with the environment may be complicated. The study of the genetic basis of a quantitative trait is the theme of quantitative genetics.

Consider a quantitative trait with phenotypic value P, which is determined by the genetic (G) and environmental factors (E) and their interaction $(G \times E)$, expressed as

$$
\begin{equation*}
\mathrm{P}=\mathrm{G}+\mathrm{E}+\mathrm{G} \times \mathrm{E} \tag{1.4}
\end{equation*}
$$

Assuming that all terms in equation (1.4) are independent of one another, we partition the phenotypic variance of the trait into the corresponding genetic, environmental, and genotype \times environment interaction variance components:

$$
\begin{equation*}
V_{\mathrm{P}}=V_{\mathrm{G}}+V_{\mathrm{E}}+V_{\mathrm{G} \times \mathrm{E}} . \tag{1.5}
\end{equation*}
$$

In statistics, the variance is generally symbolized by V or σ^{2}. The genetic variance, V_{G} or σ_{G}^{2}, is due to the effects of all genes that determine the trait. Consider a gene with genotypes $A A, A a$, and $a a$ whose genotypic values and frequencies in a population at Hardy-Weinberg equilibrium are expressed as follows:

Genotype	Genotypic Value	Frequency
$A A$	$\mu_{2}=\mu+a$	$P_{2}=p_{1}^{2}$
$A a$	$\mu_{1}=\mu+d$	$P_{1}=2 p_{1} p_{0}$
$a a$	$\mu_{0}=\mu-a$	$P_{0}=p_{0}^{2}$

The three different genotypes are symbolized by $j(j=2$ for $A A, 1$ for $A a$, and 0 for $a a$). Genotypic values are composed of the overall mean of the trait (μ), the additive effect (a) of the gene due to the substitution of alleles from A to a, or the dominance effect (d) due to the interaction effect of different alleles A and a at the gene. If there is no dominance, $d=0$; if allele A is dominant over a, d is positive; and if allele a is dominant over A, d is negative. Dominance is complete if d is equal to $+a$ or $-a$, and there is overdominance if d is greater than $+a$ or less than $-a$. The degree of dominance is described by the ratio d / a.

The population mean of the three genotypes with different frequencies is calculated as

$$
\bar{\mu}=\sum_{j=0}^{2} P_{j} \mu_{j}=\left(p_{1}-p_{0}\right) a+2 p_{1} p_{0} d
$$

and we have the genetic variance for this gene,

$$
\begin{aligned}
\sigma_{g}^{2} & =\sum_{j=0}^{2} P_{j}\left(\mu_{j}-\bar{\mu}\right)^{2} \\
& =2 p_{1} p_{0}\left[a+\left(p_{1}-p_{0}\right) d\right]^{2}+4 p_{1}^{2} p_{0}^{2} d^{2} \\
& =2 p_{1} p_{0} \alpha^{2}+4 p_{1}^{2} p_{0}^{2} d^{2} \\
& \stackrel{\text { def }}{=} \sigma_{a}^{2}+\sigma_{d}^{2}
\end{aligned}
$$

where $\alpha=a+\left(p_{1}-p_{0}\right) d$ is the average effect due to the substitution of alleles from A to a (Falconer and Mackay 1996). The first term of the genetic variance, σ_{A}^{2}, is the additive genetic variance component, and the second term, σ_{D}^{2}, is the dominance genetic variance component. These two expressions can be readily extended to include the effects of all underlying genes for a trait. If gene interactions are ignored, the variances contributed by all the genes are expressed as $\sigma_{G}^{2}=\sum \sigma_{g}^{2}, \sigma_{A}^{2}=\sum \sigma_{a}^{2}$, and $\sigma_{D}^{2}=\sum \sigma_{d}^{2}$.

1.7.3 Genetic Models for the Backcross and \mathbf{F}_{2} Design

The partitioning of the genetic variance can be made for different genetic settings. Consider two parental populations, P_{1} and P_{2}, fixed with favorable alleles A_{1}, \ldots, A_{m} and unfavorable alleles a_{1}, \ldots, a_{m}, respectively, for all m loci. The two parents are crossed to generate an F_{1}. The F_{1} is backcrossed to one of the parents to form a backcross or self-crossed to form an F_{2}.

Let a_{k} and d_{k} be the additive and dominance effects of gene k, respectively, and $r_{k l}$ be the recombination fraction between any two genes k and l. Consider a pair of genes, \mathbf{A}_{k} and \mathbf{A}_{l}, whose genotypic values (upper) and frequencies (lower) in the F_{2} population are expressed as

	$A_{l} A_{l}$	$A_{l} a_{l}$	$a_{l} a_{l}$
$A_{k} A_{k}$	$\mu+a_{k}+a_{l}$	$\mu+a_{k}+d_{l}$	$\mu+a_{k}-a_{l}$
	$\frac{1}{4}\left(1-r_{k l}\right)^{2}$	$\frac{1}{2} r_{k l}\left(1-r_{k l}\right)$	$\frac{1}{4} r_{k l}^{2}$
$A_{k} a_{k}$	$\mu+d_{k}+a_{l}$	$\mu+d_{1}+d_{2}$	$\mu+d_{k}-a_{l}$
	$\frac{1}{2} r_{k l}\left(1-r_{k l}\right)$	$\frac{1}{2}\left[r_{k l}^{2}+\left(1-r_{k l}\right)^{2}\right]$	$\frac{1}{2} r_{k l}\left(1-r_{k l}\right)^{2}$
$a_{k} a_{k}$	$\mu-a_{k}+a_{l}$	$\mu-a_{k}+d_{l}$	$\mu-a_{k}-a_{l}$
	$\frac{1}{4} r_{k l}^{2}$	$\frac{1}{2} r_{k l}\left(1-r_{k l}\right)$	$\frac{1}{4}\left(1-r_{k l}\right)^{2}$

where the genotypic values are composed of the additive and dominance effects at the two genes because gene interactions are ignored, and the derivation of the genotype frequencies in the F_{2}, expressed in terms of the recombination fraction between two genes, needs knowledge of linkage analysis, described in Section 3.5. From display 1.6, we can derive the genetic variance of the trait as

$$
\begin{align*}
\sigma_{G}^{2}= & \frac{1}{2} \sum_{k=1}^{m} a_{k}^{2}+\frac{1}{4} \sum_{k=1}^{m} d_{k}^{2} \\
& +\frac{1}{2} \sum_{k=1}^{m} \sum_{l=1, k \neq l}^{m}\left(1-2 r_{k l}\right) a_{k} a_{l}+\frac{1}{4} \sum_{k=1}^{m} \sum_{l=1, k \neq l}^{m}\left(1-2 r_{k l}\right)^{2} d_{k} d_{l} . \tag{1.7}
\end{align*}
$$

The first term on the right side of equation (1.7) for the F_{2} is the additive variance within loci, the second is the dominance variance within loci, the third is the additive covariance between different loci, and the fourth is the dominance covariance between different loci.

For the backcross, in which the dominance effect cannot be defined due to inadequate degrees of freedom, we can derive a similar but simpler genetic variance, expressed as

$$
\begin{equation*}
\sigma_{G}^{2}=\frac{1}{4} \sum_{k=1}^{m} a_{k}^{2}+\frac{1}{4} \sum_{k \neq l}^{m}\left(1-2 r_{k l}\right) a_{k} a_{l} . \tag{1.8}
\end{equation*}
$$

From equation (1.8), the genetic variance in a backcross consists of the additive genetic variance and additive covariance between different loci.

1.7.4 Epistatic Model

Genes may affect quantitative traits in an interactive way. The effect due to gene interaction was coined as epistasis by W. Bateson (1902). From a physiological perspective, epistasis describes the dependence of gene effects at one locus upon those at the other locus. Fisher (1918) first partitioned the genetic variance into additive, dominance, and epistatic components using the least squares principle. Cockerham (1954) further partitioned the two-gene epistatic variance into the additive \times additive, additive \times dominance, dominance \times additive, and dominance \times dominance interaction components. There are many approaches for specifying epistasis, but we will model epistasis using Mather and Jinks' (1982) approach.

Consider two genes, one denoted by \mathbf{A}, with three genotypes, $A A, A a$, and $a a$, and the second denoted by \mathbf{B}, with three genotypes, $B B, B b$, and $b b$. These two genes form nine two-locus genotypes, whose genotypic values, denoted by $\mu_{j_{1} j_{2}}$, can be partitioned into different components

$$
\begin{array}{rll}
\mu_{j_{1} j_{2}}= & \mu & \text { overall mean } \\
& +\left(j_{1}-1\right) a_{1}+\left(j_{2}-1\right) a_{2} & \text { additive effects } \\
+j_{1}\left(2-j_{1}\right) d_{1}+j_{2}\left(2-j_{2}\right) d_{2} & \text { dominance effects } \\
& +\left(j_{1}-1\right)\left(j_{2}-1\right) i_{a a} & \text { additive } \times \text { additive effect } \\
+\left(j_{1}-1\right) j_{2}\left(2-j_{2}\right) i_{a d} & \text { additive } \times \text { dominance effect } \tag{1.9}\\
+j_{1}\left(2-j_{1}\right)\left(j_{2}-1\right) i_{d a} & \text { dominance } \times \text { additive effect } \\
& +j_{1}\left(2-j_{1}\right) j_{2}\left(2-j_{2}\right) i_{d d} & \text { dominance } \times \text { dominance effect, }
\end{array}
$$

where

$$
j_{1}, j_{2}= \begin{cases}2 & \text { for } A A \text { or } B B \\ 1 & \text { for } A a \text { or } B b \\ 0 & \text { for } a a \text { or } b b\end{cases}
$$

The second line of equation (1.9) is the additive effects of single genes, the third line is the dominance effects of single genes, and the fourth, fifth, sixth, and seventh lines are the epistatic effects between the two genes, additive \times additive $\left(i_{a a}\right)$, additive \times dominance $\left(i_{a d}\right)$, dominance \times additive $\left(i_{d a}\right)$, and dominance \times dominance $\left(i_{d d}\right)$, respectively.

For the two genes that are cosegregating with the recombination fraction of r in an F_{2} population, the genotypic values and frequencies are expressed in Table 1.1. Note that the genotype frequencies are calculated in terms of r. Based on Table 1.1, the genetic variance of a trait can be derived.

1.7.5 Heritability and Its Estimation

According to equation (1.5), the total phenotypic variance of a quantitative trait is decomposed into its genetic, environment and genotype \times environment interaction

Table 1.1. Genotypic values (upper) and frequencies (lower) of the nine genotypes at two genes, \mathbf{A} and \mathbf{B}.

	$B B$	$B b$	$b b$
$A A$	$\mu+a_{1}+a_{2}+i_{a a}$	$\mu+a_{1}+d_{2}+i_{a d}$	$\mu+a_{1}-a_{2}-i_{a a}$
	$\frac{1}{4}(1-r)^{2}$	$\frac{1}{2} r(1-r)$	$\frac{1}{4} r^{2}$
$A a$	$\mu+d_{1}+a_{2}+i_{d a}$	$\mu+d_{1}+d_{2}+i_{d d}$	$\mu+d_{1}-a_{2}-i_{d a}$
	$\frac{1}{2} r(1-r)$	$\frac{1}{2}\left[r^{2}+(1-r)^{2}\right]$	$\frac{1}{4} r(1-r)$
$a a$	$\mu-a_{1}+a_{2}-i_{a a}$	$\mu-a_{1}+d_{2}-i_{a d}$	$\mu-a_{1}-a_{2}+i_{a a}$
	$\frac{1}{4} r^{2}$	$\frac{1}{2} r(1-r)$	$\frac{1}{4}(1-r)^{2}$

variance components. The ratio of the genetic variance over the phenotypic variance is defined as broad-sense heritability, i.e.,

$$
\begin{equation*}
H^{2}=\frac{\mathrm{V}_{\mathrm{G}}}{\mathrm{~V}_{\mathrm{G}}+\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{G} \times \mathrm{E}}} \tag{1.10}
\end{equation*}
$$

As shown above, the genetic effect or variance can be partitioned into additive (A) and nonadditive (NA) effects or variances. Thus, we have

$$
\begin{aligned}
\mathrm{P} & =\mathrm{G}+\mathrm{E}+\mathrm{G} \times \mathrm{E} \\
& =\mathrm{A}+\mathrm{NA}+\mathrm{E}+\mathrm{A} \times \mathrm{E}+\mathrm{NA} \times \mathrm{E},
\end{aligned}
$$

and

$$
\begin{aligned}
V_{\mathrm{P}} & =V_{\mathrm{G}}+V_{\mathrm{E}}+V_{\mathrm{G} \times \mathrm{E}} \\
& =V_{\mathrm{A}}+V_{\mathrm{NA}}+V_{\mathrm{E}}+V_{\mathrm{A} \times \mathrm{E}}+V_{\mathrm{NA} \times \mathrm{E}}
\end{aligned}
$$

if all the effects terms are independent of each other.
The nonadditive effect or variance is the summation of dominance and epistatic effect or variance. Because the additive effect can be inherited from the parents to offspring whereas the nonadditive effect cannot, we use the ratio of the additive variance over the total phenotypic variance, define as the narrow-sense heritability, i.e.,

$$
\begin{equation*}
h^{2}=\frac{V_{A}}{\mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{NA}}+\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{A} \times \mathrm{E}}+\mathrm{V}_{\mathrm{NA} \times \mathrm{E}}} \tag{1.11}
\end{equation*}
$$

to quantify the degree with which the phenotypic value of a quantitative trait is unchanged from one generation to next. The two heritability parameters (1.10) and (1.11) are traditionally used to describe the degree of overall genetic control for a trait, including the contributions of all the underlying genes (Lynch and Walsh 1998). These
two parameters are now commonly used to describe the contributions of individual genes if these genes can be detected by an approach like genetic mapping, described in Chapters 8-14.

In practice, genetic variances can be estimated on the basis of a quantitative genetic theory founded by Cockerham $(1954,1963)$. According to this theory, a set of parents is crossed to generate multiple crosses in a mating design. The progeny from the mating design is then grown in a particular experimental design, from which the phenotypic data collected are analyzed by statistical approaches, such as analysis of variance, to obtain various experimental variances. Based on the resemblance between relatives, the estimated experimental variances are used to estimate the additive and dominance genetic variances and, therefore, the broad- and narrow-sense heritabilities.

Comparable to Cockerham's models, Mather and Jinks (1982) proposed a different approach based on generation differences to estimate genetic effect or variance components. Consider study material composed of three generations, inbred parents P_{1} and P_{2}, the non-segregating F_{1} and the segregating F_{2}, which are grown under the same condition. The phenotypic variance of a trait for the two pure parent lines ($\mathrm{V}_{\mathrm{P}_{1}}$ and $\mathrm{V}_{\mathrm{P}_{2}}$) and F_{1} progeny $\left(\mathrm{V}_{\mathrm{F}_{1}}\right)$ is purely due to environmental factors, whereas the phenotypic variance of the same trait in the $\mathrm{F}_{2}\left(\mathrm{~V}_{\mathrm{F}_{2}}\right)$ includes a sum of genetic, environmental and genotype \times environmental variance. Thus, the genetic variance of the trait can be estimated by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{F}_{2}}-\mathrm{V}_{\mathrm{F}_{1}}, \tag{1.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{F}_{2}}-\frac{1}{4}\left(\mathrm{~V}_{\mathrm{P}_{1}}+\mathrm{V}_{\mathrm{P}_{2}}+2 \mathrm{~V}_{\mathrm{F}_{1}}\right) \tag{1.13}
\end{equation*}
$$

The estimates of individual genetic variance components can be obtained by the inclusion of more generations (Mather and Jinks 1982).

1.7.6 Genetic Architecture

Most quantitative traits are determined by a web of many interacting loci and by an array of environmental factors (Falconer and Mackay 1996). The traditional polygenic theory of quantitative traits (Mather 1943) envisaged a fairly large number of loci, each with relatively small and equal effects, acting in a largely additive way. Over the years it has indeed been observed that a quantitative trait may display complicated genetic architecture (Mackay 1996, 2001), expressed as
(1) It may be controlled by a fairly large number of loci; for example, of the order of 50, according to the work of Shrimpton and Robertson (1988a,b);
(2) Genes act in ways which may be additive, dominance, epistatic with other genes, and interactive with environmental factors;
(3) The magnitude of the effect produced by each locus can vary considerably;
(4) The same genes may affect different phenotypic traits through pleiotropic effects;
(5) The genes affecting the trait may be distributed over the genome at random or in a certain pattern.

With a deep use of genetic mapping to analyze quantitative traits, increasing evidence has been observed for the third point, which suggests that typically a small number of loci account for a very large fraction of the variation in the trait. For this reason, the traditional polygenic model may be replaced by a new oligogenic model in which a small number of major genes each with a large effect, combined with many minor genes each with a small effect, determine the genetic variation of a quantitative trait (see Mackay 1996 for an excellent review).

1.7.7 The Estimation of Gene Number

The actual number of genes that control a quantitative trait is one of the most important elements for the genetic architecture of the trait. Gene number can be estimated by a biometrical approach, although it depends on some critical assumptions (Lande 1981; Lynch and Walsh 1998). The number of genes estimated by this approach basically reflects the effective number of genes that contribute a major part of genetic variation of a trait. The most widely used approach for estimating gene number is based on the phenotypic means and variances of two parental lines and their hybrids, i.e., $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and backcrosses. The biometrical approach for the enumeration of effective genes was first proposed by Castle (1921).

Suppose there are two contrasting parental lines, one $\left(\mathrm{P}_{1}\right)$ being homozygous for all increasing alleles and the second $\left(\mathrm{P}_{2}\right)$ being homozygous for all decreasing alleles. These two lines are crossed to generate the F_{1} and F_{2}. There are a total of unlinked m_{e} effective genes each with the same effect (a) that is purely additive. The mean phenotype of the P_{1} and P_{2} line can be written, respectively, as

$$
\begin{aligned}
& \mu_{\mathrm{P}_{1}}=\mu+\sum_{i=1}^{m_{e}} a=\mu+m_{e} a \\
& \mu_{\mathrm{P}_{1}}=\mu-\sum_{i=1}^{m_{e}} a=\mu-m_{e} a
\end{aligned}
$$

whose difference is

$$
\begin{equation*}
\Delta=\mu_{\mathrm{P}_{1}}-\mu_{\mathrm{P}_{2}}=2 m_{e} a \tag{1.14}
\end{equation*}
$$

with the overall mean μ being canceled. Based on equation (1.7), the genetic variance of the F_{2} is rewritten as

$$
\begin{equation*}
\mathrm{V}_{\mathrm{G}}=\frac{1}{2} \sum_{i=1}^{m_{e}} a^{2}=\frac{1}{2} m_{e} a^{2} \tag{1.15}
\end{equation*}
$$

under the assumptions as mentioned above. Combining equations (1.14) and (1.15), we obtain the Castle-Wright estimator of gene number as

$$
\begin{equation*}
\hat{m}_{e}=\frac{\Delta^{2}}{8 \mathrm{~V}_{\mathrm{G}}} \tag{1.16}
\end{equation*}
$$

where V_{G} is estimated by equation (1.12) or (1.13). The sampling variance of \hat{n}_{e} can be approximated by

$$
\begin{equation*}
\operatorname{Var}\left(\hat{m}_{e}\right)=\hat{m}_{e}^{2}\left[\frac{4\left(\mathrm{~V}_{\mathrm{P}_{1}}+\mathrm{V}_{\mathrm{P}_{2}}\right)}{\Delta^{2}}+\frac{\operatorname{Var}\left(\mathrm{V}_{\mathrm{G}}\right)}{\mathrm{V}_{\mathrm{G}}^{2}}\right] \tag{1.17}
\end{equation*}
$$

where

$$
\operatorname{Var}\left(\mathrm{V}_{\mathrm{G}}\right)=\frac{2 \mathrm{~V}_{\mathrm{F}_{2}}^{2}}{n_{\mathrm{F}_{2}}+2}+\frac{2 \mathrm{~V}_{\mathrm{F}_{1}}^{2}}{n_{\mathrm{F}_{1}}+2}
$$

with $n_{\mathrm{F}_{2}}$ and $n_{\mathrm{F}_{1}}$ being the sample sizes, if equation (1.12) is used.
After the Castle-Wright estimator, several studies were pursued to improve the estimation of gene number. Lande (1981) generalized the Castle-Wright estimator for use with outcrossing populations. Zeng et al. (1990) and Zeng (1992) relaxed some of the critical assumptions, including unlinkage and equal additive effect, used for the Castle-Wright estimator. Epistatic effects between different genes were considered in Wu (1996) who extended gene enumeration to estimate a more complete picture of genetic architecture. In particular, Wu's model allows for the estimation of more genetic parameters by including multiple generations, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{2}$ and backcrosses, in the same experiment. Generally speaking, use of biometrical approaches for the estimation of gene number has been limited in practice, despite their significance in helping to understand general quantitative genetic theory. A more precise approach for gene enumeration is based on genetic mapping with molecular markers in which the association between markers and phenotypic variation is analyzed and tested by statistical models (Lander and Botstein 1989).

1.8 Molecular Genetics

Molecular genetics applied to linkage analysis is concerned with genetic marker technologies. Molecular genetic markers are readily assayed phenotypes that have a direct $1: 1$ correspondence with DNA sequence variation at a specific location in the genome. In principle, the assay for a genetic marker is not affected by environmental factors. Genetic markers are DNA sequence polymorphisms that show Mendelian inheritance. For genome mapping, the ideal genetic marker is codominant, multiallelic, and hypervariable (i.e., segregates in almost every family). However, some dominant markers are also very useful and powerful in particular situations.

Molecular markers have many different types. Restriction fragment length polymorphisms (RFLPs) were the first genetic markers that were widely used for genomic mapping and population studies. RFLP markers are obtained by using restriction endonucleases to precisely cleave a genomic DNA fragment containing a particular gene sequence. If two organisms differ in the distance between sites of cleavage of a particular restriction endonuclease, they will produce different lengths of the fragments when the DNA is digested with a restriction enzyme. The fragments can then

