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Preface

Most traits in nature and of importance to agriculture are quantitatively inherited.
These traits are difficult to study due to the complex nature of their inheritance.
However, recent developments of genomic technologies provide a revolutionary means
for unraveling the secrets of genetic variation in quantitative traits. Genomic tech-
nologies allow the molecular characterization of polymorphic markers throughout the
entire genome that are then used to identify and map the genes or quantitative trait
loci (QTLs) underlying a quantitative trait based on linkage analysis.

Statistical analysis is a crucial tool for analyzing genome data, which are now
becoming increasingly available for a variety of species, and for giving precise expla-
nations regarding genetic variation in quantitative traits occurring among species,
populations, families, and individuals. In 1989, Lander and Botstein published a hall-
mark methodological paper for interval mapping that enables geneticists to detect
and estimate individual QTL that control the phenotype of a trait. Today, interval
mapping is an important statistical tool for studying the genetics of quantitative traits
at the molecular level, and has led to the discovery of thousands of QTLs responsible
for a variety of traits in plants, animals, and humans. In a recent study published
in Science, Li, Zhou, and Sang (2006, 311, 1936–1939) were able to characterize the
molecular basis of the reduction of grain shattering – a fundamental selection process
for rice domestication – at the detected QTL by interval mapping. Among many
other examples of the success of interval mapping are the positional cloning of QTLs
responsible for fruit size and shape in tomato (Frary et al. 2000, Science 289, 85–88)
and for branch, florescence, and grain architecture in maize (Doebley et al. 1997,
Nature 386, 485–488; Gallavotti et al. 2004, Nature 432, 630–635; Wang et al. 2005,
Nature 436, 714–719).

To make it suitable for various practical applications, interval mapping has been
extensively modified and extended during the past 15 years. A host of useful statis-
tical methods for QTL mapping have been produced through the collective efforts of
statistical geneticists. However, these methods generally have various objectives and
utilities and are sporadically distributed in a massive amount of literature. A single
volume synthesizing statistical developments for genetic mapping may be helpful for
many researchers, especially those with a keen interest in building a bridge between
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genetics and statistics, to acquaint themselves with this expanding area as quickly as
possible.

This book intends to provide geneticists with the tools needed to understand and
model the genetic variation for quantitative traits based on genomic data collected
in mapping research and equip statisticians with the uniqueness and ideas in relation
to the exploration of genetic secrets using their computational skills. This book also
intends to attract researchers toward multidisciplinary research and to introduce them
to new paradigms in genomic science. In this book, the statistical and computational
theories applied to genetic mapping are developed hand in hand and a number of
examples displaying the implications of statistical genomics are introduced.

This book contains 14 chapters, broadly divided into three parts. Part 1, including
Chapters 1 and 2, provides introductory genetics and statistics at the level appropriate
for understanding general genetic concepts and statistical models for genetic mapping.
Part 2, composed of Chapters 3–7, attempts to provide a thorough and comprehensive
coverage of linkage analysis with molecular markers. Models and methods for link-
age analysis and map construction are systematically introduced for different designs,
such as the backcross/F2 (Chapter 3), outbred crosses (Chapter 4), recombinant in-
bred lines (Chapter 5) and structured pedigrees (Chapter 7), and for special marker
types including distorted and misclassified markers (Chapter 6) and dominant mark-
ers (Chapters 4 and 7). Part 3, composed of Chapters 8–14, covers statistical models
and algorithms of QTL mapping. The topics include simple marker-phenotype associ-
ation analyses (Chapter 8), the statistical structure of interval mapping (Chapter 9),
regression- (Chapter 10) and maximum likelihood-based analysis of interval mapping
(Chapter 11), threshold and confidence interval determination (Chapter 12), compos-
ite interval mapping using multiple markers as cofactors (Chapter 13), and interval
mapping for outbred mapping populations (Chapter 14). In the Appendices, we pro-
vide general statistical theories directly related to the genetic mapping approaches
introduced and R programs for some of the examples used in the book. A webpage
(http://www.buffalo.edu/∼cxma/book/) was constructed for this book, which in-
cludes a complete list of programs and algorithms written in MatLab or R for all
the examples.

Writing a book in such a rapidly developing and changing field is a pain but, more
precisely speaking, full of excitement. In the summer of 1997, Wu delivered a series
of lectures on statistical methods for QTL mapping to graduate students and faculty
at Nanjing Forestry University, China. In the spring semester of 2002, Wu taught a
statistical genetics course at the master’s level at the University of Florida and then
was joined for coteaching by Casella in the spring of 2003 and Ma in the spring of
2005. This course is now taught by Wu at the University of Florida and by Ma at
the State University of New York at Buffalo on the regular basis. We all gave many
lectures or short courses related to statistical genetics at other places and times. At
each place and time, we were heavily impressed by the enthusiasm of students and
other audiences to learn this fascinating area. All these encouraged us to write a
book that can cover basic methods for statistical genetics research. The concepts,
models and algorithms related to genetic mapping have been published in a variety of
statistics and genetics journals by a large number of authors, but part of the material
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contained in this book comes from our collaborative research program in the past five
years. In particular, we apologize for those authors whose work was not mentioned in
this book because of limited space.

During the writing of this book, many of our colleagues and friends both at the
University of Florida and outside provided valuable help from different perspective.
Wu is warmly grateful to his postdoctoral advisor, Dr. Zhao-Bang Zeng at North
Carolina State University, for tremendous guidance and for leading him to the field of
statistical genetics. Dr. Bruce Walsh at the University of Arizona provided insightful
reviews of the book manuscript in different stages. Several anonymous reviewers
gave constructive comments that significantly improve the presentation of the book.
Students or postdocs who attended our lectures and classes or are working with us
on statistical genetics in different places have provided many insightful suggestions to
improve our presentation of the book. The following students or postdocs in our group,
former or current, deserve special thanks: Yuehua Cui, Wei Hou, Hongying Li, Min
Lin, Tian Liu, Fei Long, Xiang-Yang Lou, Qing Lu, Damaris Santana, Zhaojie Wang,
Zuoheng Wang, Jiasheng Wu, Song Wu, Jie Yang, John Yap, Li Zhang, Wei Zhao, and
Yun Zhu. The data used for examples in the book were kindly supplied by Dr. James
Cheverud at Washington University (mouse), Dr. Junyi Gai at Nanjing Agricul-
tural University (soybean), Rory Todhunter at Cornell University (dog), Drs. Stan
Wullschleger and Tongming Yin at Oak Ridge National Laboratory (poplar), and
Dr. Jun Zhu at Zhejiang University (rice).

We are grateful to the Department of Statistics and the Institute of Food and
Agricultural Sciences at the University of Florida for writing this book and performing
our research program. Finally, we are greatly indebted to our respective families for
their continuous support of our research activities over the years. This work is partially
supported by NSF grant 0540745.

Gainesville, FL Rongling Wu
Buffalo, NY Chang-Xing Ma
December 2006 George Casella
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1

Basic Genetics

1.1 Introduction

There have been enormous advances in the science of genetics. A huge amount of
information regarding the precise molecular mechanisms of genetic transmission from
parent to offspring is becoming increasingly available. In this chapter, we briefly review
basic terminology and principles of genetics from Mendelian, population, quantita-
tive and molecular perspectives at a level appropriate for understanding the research
methods to be described in this book. Much of the description for classic Mendelian
genetics is adapted from Bailey’s (1961) book. To learn more about modern genetics,
please look into the more general genetics textbooks that are listed at the end of this
chapter.

1.2 Genes and Chromosomes

Genes are discrete units in which biological characteristics are inherited from parents
to offspring. Genes are normally transmitted unchanged from generation to genera-
tion, and they usually occur in pairs. If a given pair consists of similar genes, the
individual is said to be homozygous for the gene in question, while if the genes are
dissimilar, the individual is said to be heterozygous. For example, if we have two al-
ternative genes, say A and a, there are two kinds of homozygotes, namely AA and
aa, and one kind of heterozygote, namely Aa. These alternative genes are called alle-
les. With a single pair of alleles, there are three different kinds of possible organisms
represented by the three genotypes AA,Aa, and aa.

Genes are generally very numerous, and situated within the cell nucleus, where
they lie in linear order along microscopic bodies called chromosomes. The chromo-
somes occur in similar, or homologous, pairs, where the number of pairs is constant
for each species. For example, Drosophila has 4 pairs of chromosomes, pine has 12,
the house mouse has 20, humans have 23, etc. The totality of these pairs constitutes
the genome of a particular organism. One of the chromosome pairs in the genome



2 1 Basic Genetics

are the sex chromosomes (typically denoted by X and Y) that determine genetic sex.
The other pairs are autosomes which guide the expression of most other traits.

Each gene pair has a certain place or locus on a particular chromosome. Since
the chromosomes occur in pairs, the loci and the genes occupying them also occur
in pairs. Therefore, it is the loci that have the fixed linear order, although a given
locus may be occupied by any gene from the series of alleles (more than two alleles or
multialleles) determining a particular trait. The most important purpose of a genome
mapping project is to locate the genes affecting trait expressions on chromosomes.

1.3 Meiosis

When ordinary body cells divide and multiply, the cell nucleus undergoes a process of
division called mitosis, which results in the two daughter cells, each having a full set
of paired chromosomes exactly like the parent cell. But in the production of reproduc-
tive cells or gametes (ova and spermatozoa), we have a different mechanism, called
meiosis. This ensures that only one chromosome from each homologous pair passes
into each gamete. It follows that gametes also possess only one gene from each gene
pair. The number of chromosomes in a gamete is referred to as the haploid number, in
contrast to the full complement possessed by a fertilized egg, or zygote, which is
diploid.

A diagram is drawn to illustrate the biological process of meiosis (Fig. 1.1). The
chromosomes are already duplicated by the time they become visible at the start of
the first meiotic division. Each pair of duplicates is joined at the centromere, a small
particle at which two arms of the chromosome are connected. The duplicated pairs
remain joined throughout the first anaphase. The paternal homolog (a duplicated pair)
moves to one pole; the maternal homolog (another duplicated pair) moves to the other.
The immediate products of the first meiotic division are two cells, each containing
a diploid chromosome set. However, each homologous pair of chromosomes in one
of these cells is a pair of maternally originated chromosomes or a pair of paternally
originated chromosomes. The assortment between the two cells is random, with each
resulting cell normally containing some chromosome pairs of maternal origin and
others of paternal origin. In the second meiotic division, the number of chromosomes
is halved and each of the two products of the first division produces identical daughter
cells with half the usual number of chromosomes.

The significance of reduction division in meiosis is that it can maintain a diploid
(double) chromosome set after fertilization, the fusion of a male gamete (sperm) with
a female gamete (egg). A second essential characteristic of meiosis is that there is an
interchange of genetic material between the two chromosomes of a homologous pair.
Thus, the haploid gamete chromosome set contains a mixture of chromosomes, some
derived from the father and some from the mother.
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Gamete precursor cell at beginning of

meiosis; the DNA has already been dupli-

cated.

First meiotic division: the homolog pair.

First meiotic division: paired duplicated

chromosomes align at equator of spindle;

duplicated chromosome strands stay to-

gether; members of each separate toward

poles.

Formation of two daughter cells: each con-

tains two of the previously duplicated chro-

mosomes (one of each pair).

Second meiotic division: DNA is not du-

plicated, but previously duplicated cen-

tromeres and chromosomes now separate.

Each cell forms two identical daughter

cells, with DNA and chromosomes reduced

by one-half.

Fig. 1.1. Schematic diagram of meiosis in a hypothetical male who has one pair of identical
autosomes (white) and one dissimilar XY pair (shaded). Adapted from Cavalli-Sforza and
Bodmer (1971).

1.4 Mendel’s Laws

1.4.1 Mendel’s First Law

Genes are present in pairs in all cells of an adult organism, except for gametes. The
gametes have only one gene from any given pair. Thus if an adult has genotype AA,
all the gametes produced are of type A. But if the genotype is Aa, two types of
gametes are possible, A and a, and these are normally produced in equal numbers.
When fertilization occurs, a sperm carrying one gene from the male parent is united
with an ovum carrying one gene from the female parent, thus making up a complete
pair. The fertilized egg, or zygote, then develops to produce an organism in each body
cell, of which one gene is derived from one parent and one from the other. The new
individual produces its own reproductive cells, and so the process can continue.



4 1 Basic Genetics

The considerations above constitute Mendel’s first law, the Law of Segregation.
This states that characteristics are controlled by pairs of genes that segregate or sepa-
rate during the formation of the reproductive cells, thus passing into different gametes.
The pairs are restored when fertilization occurs, and this leads to the production of
different types of offspring in certain definite proportions. In effect, segregation shuf-
fles the genes and redeals them to the next generation. Characters themselves may
also be said to show segregation, but the precise manner in which this happens
depends on the nature of the genes involved and their dominant and recessive
relationships.

Suppose we cross two individuals, represented by AA and aa. All gametes from
the first will be A and all from the second will be a. Thus, all zygotes F1 will be of
the heterozygous type Aa. We now cross two individuals from the F1 to form a new
F2 generation. Each F1 heterozygous Aa produces two kinds of gametes, A and a, in
equal numbers. At fertilization, there are four ways in which a zygote can be formed:
one A gene from each parent; one a from each parent; A from the male and a from
the female; or A from the female and a from the male. We therefore expect the three
types of offspring AA, Aa, and aa in the ratios of 1:2:1 in the F2 generation. But, if
A is dominant, the first two classes will be phenotypically indistinguishable, giving
the characters A and a in a 3:1 ratio.

If one of the heterozygous F1 offspring is mated back to the homozygous parent,
a backcross population is generated. The genotype of an individual in the backcross
depends only on the heterozygous F1 in which two kinds of gametes, A and a, are
formed in equal numbers. Thus, the segregation ratio of the genotypes in the backcross
follows a 1:1 ratio.

1.4.2 Mendel’s Second Law

Mendel’s second law says that when two or more pairs of genes segregate simultane-
ously, they do so independently. This is the Law of Independent Assortment. In some
cases, this law is adequate, but it is subject to certain very important exceptions.
These arise because of the phenomenon of linkage, a main topic of this book.

Suppose we have two pairs of genes represented by A, with two alleles A and a,
and B with two alleles B and b. If we cross two individuals, one homozygous for both
A and B and the other homozygous for both a and b (i.e., the mating AABB×aabb),
it is obvious that all offspring will be AaBb. This is because the first parent must
produce gametes that are all AB, and the second parent must produce gametes which
are all ab. We now consider the intercross AaBb × AaBb. If the segregation is to be
independent then each of these individuals will produce four kinds of gametes, namely
AB,Ab, aB and ab, in equal numbers. Combining the four alternative types of gametes
from one parent with the four alternatives from the other leads to 16 combinations,
which are not, however, all different. The various possibilities are most easily presented
as shown in the diagram of Fig. 1.2. It will be seen from the diagram that there
are in fact nine distinct genotypes, AABB (1), AABb (2), AAbb (1), AaBB (2),
AaBb (4), Aabb (2), aaBB (1), aaBb (2), and aabb (1), where the number given in
parentheses is the forming number of each genotype. But if each gene pair exhibits
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a dominant/recessive relationship, there will be only four separate phenotypic classes,
AB, Ab, aB, and ab occurring in the ratio 9:3:3:1.

(AB)
AaBb

(AB)
AaBb

(AB)
AaBb

(AB)
AaBb

(aB)
aaBb

(aB)
aaBb

(ab)
aabb

(Ab)
Aabb

(aB)
aaBB

(Ab)
Aabb

(Ab)
AAbb

(AB)
AaBB

(AB)
AABb

(AB)
AABB

(AB)
AABb

(AB)
AaBB

Gametes

ab

aB

Ab

AB

AB Ab aB ab

Gametes

Fig. 1.2. Gene segregation of an intercross, AaBb×AaBb, involving two gene pairs. When
each pair exhibits dominance, the resultant phenotypes are given in brackets. The degree of
dominance is roughly described by different darknesses of the cells.

1.5 Linkage and Mapping

Mendel’s second law applies to genes whose loci lie on different chromosomes. Genes
whose loci lie on the same chromosome will tend to remain together. Loci on the same
chromosome are said to be syntenic, and those on different chromosomes are said to
be nonsyntenic. The extent to which syntenic loci remain together depends on their
closeness. We are thus led to consider the phenomenon of linkage.

In order to see what essentially is involved in linkage, let us consider the formation
of gametes by a heterozygote AaBb. If the loci for the gene pairs A, a and B, b lie on
the same kind of chromosome, we can specify more exactly the composition of the
homologous pair of chromosomes. Thus, one chromosome may contain A and B, the
other a and b; i.e.,

B

aA

b ,(1.1)

where the two vertical lines stand for the two homologous chromosomes. Or, alter-
natively, A and b may lie on one chromosome, while the other contains a and B;
i.e.,
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b

aA

B .(1.2)

Definition 1.1. [Some Basic Terms] For alleles A and B, the arrangement displayed
in diagram (1.1) is termed coupling and is written AB/ab; the arrangement in diagram
(1.2) is called repulsion and is indicated by Ab/aB. The relative arrangement of
nonalleles (i.e., A vs. B, A vs. b, a vs. B, or a vs. b) at different loci along a chromosome
is called the linkage phase.

At an early stage of meiosis, the two chromosomes 1 and 2 lie side by side with
corresponding loci aligned. If the parental genotype is AB/ab, we can represent the
alignment as in Fig. 1.3A. Each of the paired chromosomes is then duplicated to
form two sister strands (chromatids) connected to each other at a region called the
centromere. The homologous chromosomes form pairs, so that each resulting complex
consists of four chromatids known as a tetrad (Fig. 1.3B). At this stage, the non-
sister chromatids adhere to each other in a semi-random fashion at regions called
chiasmata. Each chiasma represents a point where crossing over between two non-
sister chromatids can occur (Fig. 1.3C). Chiasmata do not occur entirely at random,
as they are more likely farther away from the centromere, and it is unusual to find
two chiasmata in very close proximity to each other.

A

B

A

B

a

b

A

B

a

B

A

B

A

b

a

B

a

b

a

b

A

B

a

b

A

b

a

b

A (pairing up) B (tetrad) C (crossing over) D (haplotype)

centro-
 mere

chromo-
 some 21 chro-

matid 21 21 chiasma NR R R NR

Fig. 1.3. Diagram for crossing−over between linked loci A and B.

Each gamete receives one chromatid from a tetrad to make up the haploid com-
plement (Fig. 1.3D). Since it is possible that more than one crossover occurs on the
chromosomes, some chromosomes in the haploid complement consist of a number of
segments from the two parental chromosomes. The number of segments is determined
by the number of crossovers that occurred in the formation of the chromatid that
became the chromosome. If no crossovers occur, then the chromosome will be a repli-
cate of an entire parental chromosome. If one crossover occurs between two loci A
and B, then the chromosome will consist of two segments, one from each parental
chromosome. In the former case, the resultant gametes must be AB or ab, just like
the parental chromosomes. In the latter case, where there is one point of exchange,
we have the new combinations Ab and aB, called recombinant types. In general, if
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there are an even number of points of exchange between the two loci, the final result
will be indistinguishable from AB or ab. But if there are an odd number of points of
exchange, the result will be like Ab or aB.

The existence of linkage means that there will be more gametes like AB and
ab, and fewer like Ab and aB. Let us suppose that the proportion of recombinant
gametes is r, which we call the recombination fraction, and that the proportion of
parental type is 1 − r. The recombination fraction can be estimated on the basis of
the expected number of recombinants in a segregating progeny (see Chapter 3). In
general, we should not expect to find recombination fractions greater than one-half,
though in certain unusual circumstances there may be a tendency for chromosomes
inherited from one parent or from particular stocks to associate nonrandomly.

From the definition of the recombination fraction, it follows that the special case
r = 1/2 is equivalent to independent segregation or no linkage. Actually, if two loci on
one chromosome are a long way apart, odd and even numbers of points of exchange
will be about equally frequent (i.e., 50 percent each), so this case will not be imme-
diately distinguishable from the case where the loci are on different chromosomes.
Alternatively, if two loci are close together, the frequency of points of exchange will
be low, and the corresponding recombination fraction will be small. To some extent,
we can use the latter as a measure of the distance between any two loci.

A better scale of measurement is that afforded by the density of points of exchange.

Definition 1.2. [Map Distance] The map distance between any two loci is the aver-
age number of points of exchange occurring in the segment.

The map distance is a quantity that is automatically additive. There is a very
simple relationship between the recombination fraction and the map distance for a
pair of loci in the simplest case of no interference. Such a relationship is called a
map function and will be discussed in Section 3.10. When the recombination frac-
tions between pairs of loci on a single chromosome have been determined from an
appropriate linkage experiment, it is a simple matter to transform them into map dis-
tances and hence construct a chromosome map. Since there is no reason to suppose
that chromosomes are homogeneous along their lengths with regard to the frequency
of crossing−over, we cannot assume that there is necessarily a very close correspon-
dence between genetic map distance and the actual physical distance between the
corresponding genes.

When many genes are considered, an issue arises about their linear arrangement
within each chromosome. The loci of any organism fall into linkage groups, where
any locus in one group is unlinked to any locus in a different group. Within any
group, however, the loci can be arranged in a linear order. For sufficiently close loci,
the recombination fraction between any pair may, in an elementary analysis, be used
as a direct measure of the distance between the loci. To retain additivity at greater
separations, we must work in terms of the average number of crossovers rather than
the recombination fraction (which only measures the frequency of an odd number of
crossovers). We thus need to know how the recombination fractions observed between
many pairs of loci lying on a single chromosome can be fitted into a unifying picture
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based on the notion of a chromosome map. This will critically rely upon the develop-
ment of theoretical models and statistical algorithms for constructing genetic linkage
maps, which is one of the major themes of this book.

1.6 Interference

In the simplest case, we assume that the points of exchange occur at random, so that
the pattern of crossing−over in any segment of a chromosome is independent of the
pattern in any other segment. In practice, however, nonrandomness is common and
was named interference by H. J. Muller (1916). When, as usual, this is positive, the
occurrence of a point of exchange tends to inhibit the formation of other such points
in its neighborhood. Various models are available for describing the phenomenon of
interference, and some of these entail the occurrence of recombination fractions greater
than one-half in sufficiently long chromosomes.

As mentioned earlier, each chromosome splits longitudinally into a pair of identi-
cal daughter−chromosomes (chromatids) during the relevant part of a meiotic divi-
sion. The two chromatids are initially held together by the centromere (Fig. 1.3B).
Crossing−over always occurs between chromatids from different chromosomes of a
homologous pair, as shown in Fig. 1.3C. Thus, the phenomenon of crossing−over
actually involves all four chromatids, or strands, of any pair of homologous chromo-
somes. A pair of homologous chromosomes united by crossing−over is often called
bivalent.

We may envision the occurrence of several points of exchange or chiasma, each of
which now entails the X-like arrangement of chromatids shown in Fig. 1.3C. We can
distinguish between two kinds of interference.

Definition 1.3. [Kinds of Interference] One type of interference is chiasma inter-
ference, in which the occurrence of one chiasma influences the chance of another
occurring in its neighborhood, and another is chromatid interference, which is a non-
random relationship between the pair of strands involved in one chiasma and the pair
involved in the next chiasma.

Chiasma interference is common, and some distributions have been observed in
which the variance of interference was as low as a quarter of its mean. Chromatid
interference, on the other hand, is much more difficult to detect, and evidence for
its existence is more scant. It has been proven that chiasma interference alone is
incapable of causing recombination fractions of more than 50 percent (Mather 1938).

1.7 Quantitative Genetics

1.7.1 Population Properties of Genes

Mendelian segregation leads to simple and predictable segregation ratios in the off-
spring of specific mating types but only applies to a progeny population derived from
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two parents of known genotype. However, different mating types can occur simulta-
neously to generate the offspring in a natural or experimental population in which
the ratios of the different genotypes are weighted averages of the segregation ratios
of all the possible mating types, the weights being the relative frequencies of the
different mating types. The population properties of genes can be described by the
allele frequencies, genotype frequencies, and Hardy-Weinberg law.

Consider a gene with two alleles, A and a, with respective frequencies p1 and p0,
in a population. Let P2, P1, and P0 be the population frequencies of three genotypes,
AA, Aa and aa, respectively. When the mating type frequencies arise from random
mating, the ratios of the different genotypes follow a mathematical model established
independently by the English mathematician Hardy (1908) and the German physician
Weinberg (1908). This well-known model, today called the Hardy-Weinberg Law,
states that, if individuals in the population mated with each other at random, these
frequencies would satisfy the relationship

P 2
1 = 4P2P0,(1.3)

and each of these frequencies is kept unchanged from generation to generation. The
population that follows equation (1.3) is said to be at Hardy-Weinberg equilibrium,
in which the genotype frequencies can be expressed as P2 = p2

1, P1 = 2p1p0, and
P0 = p2

0, respectively. Approaches exist to test whether or not a population is at
Hardy-Weinberg equilibrium (Falconer and Mackay 1996; Lynch and Walsh 1998).

1.7.2 A General Quantitative Genetic Model

A gene that is segregating in a population may affect the phenotype of a trait. For a
complex or quantitatively inherited trait, the genes that determine it may be numer-
ous and their relationships with the environment may be complicated. The study of
the genetic basis of a quantitative trait is the theme of quantitative genetics.

Consider a quantitative trait with phenotypic value P, which is determined by the
genetic (G) and environmental factors (E) and their interaction (G × E), expressed as

P = G + E + G × E.(1.4)

Assuming that all terms in equation (1.4) are independent of one another, we partition
the phenotypic variance of the trait into the corresponding genetic, environmental,
and genotype × environment interaction variance components:

VP = VG + VE + VG×E.(1.5)

In statistics, the variance is generally symbolized by V or σ2. The genetic variance, VG

or σ2
G, is due to the effects of all genes that determine the trait. Consider a gene with

genotypes AA, Aa, and aa whose genotypic values and frequencies in a population at
Hardy-Weinberg equilibrium are expressed as follows:
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Genotype Genotypic Value Frequency

AA µ2 = µ + a P2 = p2
1

Aa µ1 = µ + d P1 = 2p1p0

aa µ0 = µ − a P0 = p2
0

The three different genotypes are symbolized by j (j = 2 for AA, 1 for Aa, and 0
for aa). Genotypic values are composed of the overall mean of the trait (µ), the
additive effect (a) of the gene due to the substitution of alleles from A to a, or
the dominance effect (d) due to the interaction effect of different alleles A and a at
the gene. If there is no dominance, d = 0; if allele A is dominant over a, d is positive;
and if allele a is dominant over A, d is negative. Dominance is complete if d is equal
to +a or −a, and there is overdominance if d is greater than +a or less than −a. The
degree of dominance is described by the ratio d/a.

The population mean of the three genotypes with different frequencies is calcu-
lated as

µ̄ =
2∑

j=0

Pjµj = (p1 − p0)a + 2p1p0d,

and we have the genetic variance for this gene,

σ2
g =

2∑

j=0

Pj (µj − µ̄)2

= 2p1p0[a + (p1 − p0)d]2 + 4p2
1p

2
0d

2

= 2p1p0α
2 + 4p2

1p
2
0d

2

def
= σ2

a + σ2
d,

where α = a + (p1 − p0)d is the average effect due to the substitution of alleles from
A to a (Falconer and Mackay 1996). The first term of the genetic variance, σ2

A, is
the additive genetic variance component, and the second term, σ2

D, is the dominance
genetic variance component. These two expressions can be readily extended to in-
clude the effects of all underlying genes for a trait. If gene interactions are ignored,
the variances contributed by all the genes are expressed as σ2

G =
∑

σ2
g , σ2

A =
∑

σ2
a,

and σ2
D =

∑
σ2

d.

1.7.3 Genetic Models for the Backcross and F2 Design

The partitioning of the genetic variance can be made for different genetic settings.
Consider two parental populations, P1 and P2, fixed with favorable alleles A1, ..., Am

and unfavorable alleles a1, ..., am, respectively, for all m loci. The two parents are
crossed to generate an F1. The F1 is backcrossed to one of the parents to form a
backcross or self-crossed to form an F2.
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Let ak and dk be the additive and dominance effects of gene k, respectively, and
rkl be the recombination fraction between any two genes k and l. Consider a pair of
genes, Ak and Al, whose genotypic values (upper) and frequencies (lower) in the F2

population are expressed as

AlAl Alal alal

AkAk µ + ak + al µ + ak + dl µ + ak − al

1
4 (1 − rkl)2 1

2rkl(1 − rkl) 1
4r2

kl

Akak µ + dk + al µ + d1 + d2 µ + dk − al

1
2rkl(1 − rkl) 1

2 [r2
kl + (1 − rkl)2] 1

2rkl(1 − rkl)2

akak µ − ak + al µ − ak + dl µ − ak − al

1
4r2

kl
1
2rkl(1 − rkl) 1

4 (1 − rkl)2

(1.6)

where the genotypic values are composed of the additive and dominance effects at the
two genes because gene interactions are ignored, and the derivation of the genotype
frequencies in the F2, expressed in terms of the recombination fraction between two
genes, needs knowledge of linkage analysis, described in Section 3.5. From display 1.6,
we can derive the genetic variance of the trait as

σ2
G =

1
2

m∑

k=1

a2
k +

1
4

m∑

k=1

d2
k

+
1
2

m∑

k=1

m∑

l=1,k �=l

(1 − 2rkl)akal +
1
4

m∑

k=1

m∑

l=1,k �=l

(1 − 2rkl)2dkdl.(1.7)

The first term on the right side of equation (1.7) for the F2 is the additive variance
within loci, the second is the dominance variance within loci, the third is the additive
covariance between different loci, and the fourth is the dominance covariance between
different loci.

For the backcross, in which the dominance effect cannot be defined due to in-
adequate degrees of freedom, we can derive a similar but simpler genetic variance,
expressed as

σ2
G =

1
4

m∑

k=1

a2
k +

1
4

m∑

k �=l

(1 − 2rkl)akal.(1.8)

From equation (1.8), the genetic variance in a backcross consists of the additive genetic
variance and additive covariance between different loci.
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1.7.4 Epistatic Model

Genes may affect quantitative traits in an interactive way. The effect due to gene
interaction was coined as epistasis by W. Bateson (1902). From a physiological per-
spective, epistasis describes the dependence of gene effects at one locus upon those
at the other locus. Fisher (1918) first partitioned the genetic variance into additive,
dominance, and epistatic components using the least squares principle. Cockerham
(1954) further partitioned the two-gene epistatic variance into the additive × ad-
ditive, additive × dominance, dominance × additive, and dominance × dominance
interaction components. There are many approaches for specifying epistasis, but we
will model epistasis using Mather and Jinks’ (1982) approach.

Consider two genes, one denoted by A, with three genotypes, AA, Aa, and aa,
and the second denoted by B, with three genotypes, BB, Bb, and bb. These two
genes form nine two-locus genotypes, whose genotypic values, denoted by µj1j2 , can
be partitioned into different components

µj1j2 = µ overall mean
+ (j1 − 1)a1 + (j2 − 1)a2 additive effects

+ j1(2 − j1)d1 + j2(2 − j2)d2 dominance effects
+ (j1 − 1)(j2 − 1)iaa additive × additive effect

+ (j1 − 1)j2(2 − j2)iad additive × dominance effect(1.9)
+ j1(2 − j1)(j2 − 1)ida dominance × additive effect

+ j1(2 − j1)j2(2 − j2)idd dominance × dominance effect,

where

j1, j2 =

⎧
⎪⎨

⎪⎩

2 for AA or BB

1 for Aa or Bb

0 for aa or bb

.

The second line of equation (1.9) is the additive effects of single genes, the third line
is the dominance effects of single genes, and the fourth, fifth, sixth, and seventh lines
are the epistatic effects between the two genes, additive × additive (iaa), additive ×
dominance (iad), dominance × additive (ida), and dominance × dominance (idd),
respectively.

For the two genes that are cosegregating with the recombination fraction of r in
an F2 population, the genotypic values and frequencies are expressed in Table 1.1.
Note that the genotype frequencies are calculated in terms of r. Based on Table 1.1,
the genetic variance of a trait can be derived.

1.7.5 Heritability and Its Estimation

According to equation (1.5), the total phenotypic variance of a quantitative trait is
decomposed into its genetic, environment and genotype × environment interaction



1.7 Quantitative Genetics 13

Table 1.1. Genotypic values (upper) and frequencies (lower) of the nine genotypes at two
genes, A and B.

BB Bb bb

AA µ + a1 + a2 + iaa µ + a1 + d2 + iad µ + a1 − a2 − iaa

1
4
(1 − r)2 1

2
r(1 − r) 1

4
r2

Aa µ + d1 + a2 + ida µ + d1 + d2 + idd µ + d1 − a2 − ida

1
2
r(1 − r) 1

2
[r2 + (1 − r)2] 1

4
r(1 − r)

aa µ − a1 + a2 − iaa µ − a1 + d2 − iad µ − a1 − a2 + iaa

1
4
r2 1

2
r(1 − r) 1

4
(1 − r)2

variance components. The ratio of the genetic variance over the phenotypic variance
is defined as broad-sense heritability, i.e.,

H2 =
VG

VG + VE + VG×E
.(1.10)

As shown above, the genetic effect or variance can be partitioned into additive (A)
and nonadditive (NA) effects or variances. Thus, we have

P = G + E + G × E
= A + NA + E + A × E + NA × E,

and

VP = VG + VE + VG×E

= VA + VNA + VE + VA×E + VNA×E,

if all the effects terms are independent of each other.
The nonadditive effect or variance is the summation of dominance and epistatic

effect or variance. Because the additive effect can be inherited from the parents to off-
spring whereas the nonadditive effect cannot, we use the ratio of the additive variance
over the total phenotypic variance, define as the narrow-sense heritability, i.e.,

h2 =
VA

VA + VNA + VE + VA×E + VNA×E
,(1.11)

to quantify the degree with which the phenotypic value of a quantitative trait is
unchanged from one generation to next. The two heritability parameters (1.10) and
(1.11) are traditionally used to describe the degree of overall genetic control for a trait,
including the contributions of all the underlying genes (Lynch and Walsh 1998). These
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two parameters are now commonly used to describe the contributions of individual
genes if these genes can be detected by an approach like genetic mapping, described
in Chapters 8–14.

In practice, genetic variances can be estimated on the basis of a quantitative
genetic theory founded by Cockerham (1954, 1963). According to this theory, a set of
parents is crossed to generate multiple crosses in a mating design. The progeny from
the mating design is then grown in a particular experimental design, from which the
phenotypic data collected are analyzed by statistical approaches, such as analysis of
variance, to obtain various experimental variances. Based on the resemblance between
relatives, the estimated experimental variances are used to estimate the additive and
dominance genetic variances and, therefore, the broad- and narrow-sense heritabilities.

Comparable to Cockerham’s models, Mather and Jinks (1982) proposed a differ-
ent approach based on generation differences to estimate genetic effect or variance
components. Consider study material composed of three generations, inbred parents
P1 and P2, the non-segregating F1 and the segregating F2, which are grown under
the same condition. The phenotypic variance of a trait for the two pure parent lines
(VP1 and VP2) and F1 progeny (VF1) is purely due to environmental factors, whereas
the phenotypic variance of the same trait in the F2 (VF2) includes a sum of genetic,
environmental and genotype × environmental variance. Thus, the genetic variance of
the trait can be estimated by

VG = VF2 − VF1 ,(1.12)

or

VG = VF2 −
1
4

(VP1 + VP2 + 2VF1) .(1.13)

The estimates of individual genetic variance components can be obtained by the
inclusion of more generations (Mather and Jinks 1982).

1.7.6 Genetic Architecture

Most quantitative traits are determined by a web of many interacting loci and by an
array of environmental factors (Falconer and Mackay 1996). The traditional polygenic
theory of quantitative traits (Mather 1943) envisaged a fairly large number of loci,
each with relatively small and equal effects, acting in a largely additive way. Over the
years it has indeed been observed that a quantitative trait may display complicated
genetic architecture (Mackay 1996, 2001), expressed as

(1) It may be controlled by a fairly large number of loci; for example, of the order of
50, according to the work of Shrimpton and Robertson (1988a,b);

(2) Genes act in ways which may be additive, dominance, epistatic with other genes,
and interactive with environmental factors;

(3) The magnitude of the effect produced by each locus can vary considerably;
(4) The same genes may affect different phenotypic traits through pleiotropic effects;
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(5) The genes affecting the trait may be distributed over the genome at random or in
a certain pattern.

With a deep use of genetic mapping to analyze quantitative traits, increasing
evidence has been observed for the third point, which suggests that typically a small
number of loci account for a very large fraction of the variation in the trait. For this
reason, the traditional polygenic model may be replaced by a new oligogenic model
in which a small number of major genes each with a large effect, combined with many
minor genes each with a small effect, determine the genetic variation of a quantitative
trait (see Mackay 1996 for an excellent review).

1.7.7 The Estimation of Gene Number

The actual number of genes that control a quantitative trait is one of the most impor-
tant elements for the genetic architecture of the trait. Gene number can be estimated
by a biometrical approach, although it depends on some critical assumptions (Lande
1981; Lynch and Walsh 1998). The number of genes estimated by this approach ba-
sically reflects the effective number of genes that contribute a major part of genetic
variation of a trait. The most widely used approach for estimating gene number is
based on the phenotypic means and variances of two parental lines and their hybrids,
i.e., F1, F2 and backcrosses. The biometrical approach for the enumeration of effective
genes was first proposed by Castle (1921).

Suppose there are two contrasting parental lines, one (P1) being homozygous for
all increasing alleles and the second (P2) being homozygous for all decreasing alleles.
These two lines are crossed to generate the F1 and F2. There are a total of unlinked
me effective genes each with the same effect (a) that is purely additive. The mean
phenotype of the P1 and P2 line can be written, respectively, as

µP1 = µ +
me∑

i=1

a = µ + mea,

µP1 = µ −
me∑

i=1

a = µ − mea,

whose difference is

∆ = µP1 − µP2 = 2mea,(1.14)

with the overall mean µ being canceled. Based on equation (1.7), the genetic variance
of the F2 is rewritten as

VG =
1
2

me∑

i=1

a2 =
1
2
mea

2,(1.15)

under the assumptions as mentioned above. Combining equations (1.14) and (1.15),
we obtain the Castle-Wright estimator of gene number as



16 1 Basic Genetics

m̂e =
∆2

8VG
,(1.16)

where VG is estimated by equation (1.12) or (1.13). The sampling variance of n̂e can
be approximated by

Var(m̂e) = m̂2
e

[
4(VP1 + VP2)

∆2
+

Var(VG)
V2

G

]
,(1.17)

where

Var(VG) =
2V2

F2

nF2 + 2
+

2V2
F1

nF1 + 2

with nF2 and nF1 being the sample sizes, if equation (1.12) is used.
After the Castle-Wright estimator, several studies were pursued to improve the

estimation of gene number. Lande (1981) generalized the Castle-Wright estimator for
use with outcrossing populations. Zeng et al. (1990) and Zeng (1992) relaxed some of
the critical assumptions, including unlinkage and equal additive effect, used for the
Castle-Wright estimator. Epistatic effects between different genes were considered
in Wu (1996) who extended gene enumeration to estimate a more complete picture
of genetic architecture. In particular, Wu’s model allows for the estimation of more
genetic parameters by including multiple generations, P1, P2, F1, F2 and backcrosses,
in the same experiment. Generally speaking, use of biometrical approaches for the
estimation of gene number has been limited in practice, despite their significance in
helping to understand general quantitative genetic theory. A more precise approach
for gene enumeration is based on genetic mapping with molecular markers in which
the association between markers and phenotypic variation is analyzed and tested by
statistical models (Lander and Botstein 1989).

1.8 Molecular Genetics

Molecular genetics applied to linkage analysis is concerned with genetic marker tech-
nologies. Molecular genetic markers are readily assayed phenotypes that have a di-
rect 1:1 correspondence with DNA sequence variation at a specific location in the
genome. In principle, the assay for a genetic marker is not affected by environmental
factors. Genetic markers are DNA sequence polymorphisms that show Mendelian in-
heritance. For genome mapping, the ideal genetic marker is codominant, multiallelic,
and hypervariable (i.e., segregates in almost every family). However, some dominant
markers are also very useful and powerful in particular situations.

Molecular markers have many different types. Restriction fragment length poly-
morphisms (RFLPs) were the first genetic markers that were widely used for genomic
mapping and population studies. RFLP markers are obtained by using restriction
endonucleases to precisely cleave a genomic DNA fragment containing a particular
gene sequence. If two organisms differ in the distance between sites of cleavage of a
particular restriction endonuclease, they will produce different lengths of the frag-
ments when the DNA is digested with a restriction enzyme. The fragments can then


