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Preface

This Festschrift is dedicated to Melvyn B. Nathanson by his colleagues, friends, and
students. This volume celebrates his many contributions to various areas of number
theory. Mel’s outstanding career as a mathematician and a public figure resulted in
many achievements both in science and in the public arena.

It is appropriate to quote here the tribute of the great I.M. Gelfand to Mel:

I remember Melvyn as a young man attending my seminar in Moscow. He partic-
ipated in my Rutgers seminar as well and taught us a lot of number theory. I enjoy
his love of mathematics and the way he thinks about it. I wish him all the best and
expect new wonderful results from him.

We thank Jean Bourgain, M.-C. Chang, Javier Cilleruelo, Shalom Eliahou,
Christian Elsholtz, Ron Graham, Ben Green, Yahya O. Hamidoune, Peter Hegarty,
Alex Iosevich, Sergei V. Konyagin, D. Labrousse, Cédric Lecouvey, Vsevolod
F. Lev, Máté Matolcsi, Steven J. Miller, Tom Morgan, Marina Nechayeva,
Lan Nguyen, Kevin O’Bryant, J.L. Ramı́rez Alfonsı́n, Burton Randol, Øystein
J. Rødseth, Svetlana Roudenko, Imre Z. Ruzsa, Ilda da Silva, Jonathan Sondow,
Daniel Scheinerman, Oriol Serra, Zhi-Wei Sun, Julia Wolf, and Michael E. Zieve
for their contributions to this volume.

David Chudnovsky
Gregory Chudnovsky

Editors
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Máté Matolcsi and Imre Z. Ruzsa

Explicit Constructions of Infinite Families of MSTD Sets . . . . . . . . . . . . . . . . . . . . .229
Steven J. Miller and Daniel Scheinerman

An Inverse Problem in Number Theory and Geometric Group
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249
Melvyn B. Nathanson

Cassels Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259
Melvyn B. Nathanson

Asymptotics of Weighted Lattice Point Counts Inside Dilating
Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287
Marina Nechayeva and Burton Randol

Support Bases of Solutions of a Functional Equation Arising
From Multiplication of Quantum Integers and the Twin
Primes Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303
Lan Nguyen

Exponential Sums and Distinct Points on Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
Øystein J. Rødseth



Contents xi

New Vacca-Type Rational Series for Euler’s Constant �
and Its “Alternating” Analog ln 4

�
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331

Jonathan Sondow

Mixed Sums of Primes and Other Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341
Zhi-Wei Sun

Classes of Permutation Polynomials Based on Cyclotomy
and an Additive Analogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355
Michael E. Zieve





Addictive Number Theory

Melvyn B. Nathanson

A True Story

In 1996, just after Springer-Verlag published my books Additive Number Theory:
The Classical Bases [34] and Additive Number Theory: Inverse Problems and the
Geometry of Sumsets [35], I went into my local Barnes and Noble superstore on
Route 22 in Springfield, New Jersey, and looked for them on the shelves. Suburban
bookstores do not usually stock technical mathematical books, and, of course, the
books were not there. As an experiment, I asked if they could be ordered. The person
at the information desk typed in the titles, and told me that his computer search
reported that the books did not exist. However, when I gave him the ISBN numbers,
he did find them in the Barnes and Noble database. The problem was that the book
titles had been cataloged incorrectly. The data entry person had written Addictive
Number Theory.1

I have always found it addictive to think about mathematics. Of course, as many
have observed, it is better for one’s career to think about fashionable things, or about
things that appeal to fashionable people. To me, fashionable is boring, and I prefer to
think about problems that interest almost no one. Of course, if what appeals to you
is what is already popular, then that is what you should study. We mathematicians
are free to investigate whatever we like.

In the preface to the first volume, The Classical Bases, I wrote

Additive number theory is a deep and beautiful part of mathematics, but for too long it has
been obscure and mysterious, the domain of a small number of specialists, who have often
been specialists only in their own small part of additive number theory. This is the first

1 I have told this story many times, and like every good story, it has acquired an independent
existence. I have heard others tell variations on the tale, always with the same additive–addictive
punch line.

M.B. Nathanson
Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468
and
CUNY Graduate Center, New York, New York 10016
e-mail: melvyn.nathanson@lehman.cuny.edu

D. Chudnovsky and G. Chudnovsky (eds.), Additive Number Theory: Festschrift
In Honor of the Sixtieth Birthday of Melvyn B. Nathanson,
DOI 10.1007/978-0-387-68361-4 1, c� Springer Science+Business Media, LLC 2010

1

melvyn.nathanson@lehman.cuny.edu


2 M.B. Nathanson

of several books on additive number theory. I hope that these books will demonstrate the
richness and coherence of the subject and that they will encourage renewed interest in the
field.

The results have far exceeded my expectations. The second volume, Inverse Prob-
lems, has developed into a major field of mathematics, sometimes called “additive
combinatorics,” and has, mirabile dictu, become fashionable. The central result in
this book is an extraordinary “inverse theorem” of Gregory Freiman about the struc-
ture of a finite set A of integers whose sumset ACA is small. I had been interested
in this result for a long time, and, when Freiman emigrated from the former Soviet
Union and was invited to the Institute for Advanced Study, I visited him and dis-
cussed it with him. He was astonished, and years later remarked, “No one mentioned
my theorem for decades until you asked me about it in Princeton.” A few years later,
after the publication of Inverse Theorems, the British mathematician Tim Gowers
used Freiman’s theorem in his work on effective bounds for Szemerédi’s theorem
on long arithmetic progressions in dense sets of integers. I met Gowers for the first
time also at the Institute for Advanced Study, and he told the following story, which
he recounted in a recent email:

I had got to the stage of understanding that Freiman’s theorem would be useful . . . but I
couldn’t understand Freiman’s proof, and Ruzsa’s was spread over more than one paper
and published in obscure journals so I couldn’t piece that together either. And then I found
myself browsing in the mathematics section of Blackwell’s in Oxford (even though I myself
am and was at Cambridge), and saw your book. The title was promising, and to my great
delight I saw that it contained a full account of Ruzsa’s proof. This was a great stroke of
luck: your book gave me exactly the help I needed at exactly the right time.

Gowers received a Fields Medal in large part for his work on Szemerédi’s theorem.
To veterans in combinatorial and additive number theory, who are used to at best

benign neglect and at worst scorn and ridicule, this is an astounding transformation.
Paul Erdős, one of the great figures in 20th century mathematics, was not highly
regarded by the mathematical mafiosi. Combinatorial and additive number theory
have only recently come into fashion, but even now, attention is paid to only a small
part of the subject, the part connected with harmonic analysis and ergodic theory.
This is because there have been and continue to be remarkable theorems arising
from the union of analysis and combinatorial number theory, and everyone focuses
on (that is, the herd stampedes toward) the successful. In the next few years I plan
to complete at least two more volumes on additive number theory, with an emphasis
on other strange and beautiful but still not well known results. It will be curious to
see if suddenly they, too, become hot topics.

Remarks on Some of My Articles

The editors of this volume have asked me to comment on some of my articles that I
particularly like. The first, of course, are juvenilia: Articles that I wrote while I was
a graduate student in mathematics at the University of Rochester from 1966 to 1971.
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(My mathematical life started rather late: I studied philosophy as an undergraduate
at the University of Pennsylvania, and then spent a year at Harvard as a graduate
student in biophysics before switching to math.) My Rochester advisor was Sanford
L. Segal [53, 54], an erudite and charming analytic number theorist and historian
of mathematics under the Nazis. Our work did not intersect, but many years later I
wrote a short article on functional equations [31] that Sandy generalized [52].

My Rochester articles were on a variety of topics, for example, an exponential
diophantine equation [24, 56], the greatest order of an element from the symmetric
group [26] (I subsequently learned that I did not invent this problem, and that Ed-
mund Landau [19] had used prime number theory to determine the asymptotics),
complementing sets of lattice points [23], the fundamental domain of a discrete
group [28], and a result, sometimes called the “fundamental theorem of additive
number theory,” about the structure of the iterated sumsets hA of a finite set of
integers [27]. Many years later, my student Sandie Han, Christoph Kirfel, and I
extended this to linear forms [12], and I later generalized a related result of Kho-
vanskii [15, 16] to linear forms in abelian semigroups [37]. The latter result used
some commutative algebra, specifically, the Hilbert polynomial in several variables
for finitely generated algebras. Ruzsa and I have published a purely combinatorial
proof [49]. My student Jaewoo Lee has studied a related problem [20].

In 1970 I spent the Lent and Easter terms as a visiting research student at the
University of Cambridge in DPPMS, the Department of Pure Mathematics and
Mathematical Statistics, in its former building at 16 Mill Lane. One of the reasons
I went to Cambridge was to talk to Cassels, who had written two beautiful arti-
cles [3, 4] on the Catalan conjecture (“8 and 9 are the only consecutive powers”).
Another forgotten bit of juvenilia is my proof that the analog of the Catalan conjec-
ture is true in any field of rational functions [29]. A friend at Cambridge was Béla
Bollobás, and it may have been Béla who first introduced me to Erdős.

My plan was to stay in Europe for the summer and attend the International
Congress of Mathematicians in Nice in September. At the end of the academic year
I travelled to Russia, and then to Hungary and Israel, where I wanted to find a uni-
versity where I could work on my own. I showed up unannounced at the Weizmann
Institute of Science in Rehovot, and told someone that I was looking for a place
to study. I was sent to a math professor there, Shlomo Sternberg, who asked what
I was interested in. I told him about additive number theory. “No one in Israel is
interested in that,” he said, “so you might as well stay here.” Weizmann gave me
an office and library access, and found a place for me to live. Browsing in the jour-
nals in the library, I learned about an idea of Milnor to define a “random” binary
sequence, and wrote my first articles, “Derivatives of binary sequences” [22] and
“Integrals of binary sequences” [25], which were published in the SIAM Journal of
Applied Mathematics.

The Weizmann Institute library had a copy of Halberstam and Roth’s book
Sequences, Vol. I [11], which I carefully studied. (I gave a lecture at Weizmann
in 2001, and looked for the book in the library. It was still on the shelf. No one had
signed it out since I did in 1970.) I became and am still fascinated by the Erdős-
Turán conjecture that the representation function of an asymptotic basis for the
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nonnegative integers of order two must be unbounded. In the process of trying to
construct a counterexample, I invented the concept of a minimal asymptotic basis,
which is a set A of nonnegative integers with the property that the sumset A C A
contains all sufficiently large integers, but, for every element a� 2 A, there are
infinitely many positive integers that cannot be represented as the sum of two ele-
ments from the set A n fa�g. I constructed explicit examples of minimal asymptotic
bases. This was my first original idea about additive bases. Later I learned that min-
imal bases had been previously defined by Stöhr [55], and that Härtter [13] had
proved their existence, but that I had constructed the first nontrivial examples. Many
years later I realized that the opposite of the Erdős-Turán conjecture holds for bases
for the additive group of all integers, and that every function f W Z ! N0 [ f1g
with only finitely many zeros is the representation function of an asymptotic basis
for Z [5,39,41–43]. This is essentially what distinguishes a group and a semigroup.

In September, 1971, I began my first job, as an instructor at Southern Ilinois
University in Carbondale. There were two other number theorists there, Lauwerens
Kuipers and Harald Niederreiter, who were completing their monograph Uniform
Distribution of Sequences [18]. SIU had a Ph.D. program in mathematics, an excel-
lent library, and an atmosphere that was, for me, conducive to research. I continued
to think about minimal bases. Driving home to Philadelphia from Carbondale for
Thanksgiving, I realized that the set B of nonnegative even integers has the property
that infinitely many positive integers (i.e. the odd numbers) cannot be represented
as the sum of two elements of B , but that, if b� is any nonnegative integer not in
B (i.e. any odd positive integer) then the set B [ fb�g is an asymptotic basis of
order 2. Thus, B can reasonably be called a maximal asymptotic nonbasis, which
is the natural dual of a minimal asymptotic basis. I was able to describe all max-
imal asymptotic nonbases consisting of unions of congruence classes, and also to
construct examples of other types of maximal asymptotic nonbases.

I combined my various results in the article “Minimal bases and maximal
nonbases in additive number theory,” which appeared in the Journal of Number The-
ory [30]. The article contained a list of unsolved problems. I had mailed a preprint
to Erdős in Budapest. In a short time I received a letter from him with a presump-
tive solution to one of the problems. I found his proof difficult, and worked hard to
understand it. Finally I understood the idea of the proof, but I also realized that the
proof was wrong, and that, modifying the argument, I could prove exactly the op-
posite of what Erdős had claimed was true. This did answer my question, but with a
“change of sign.” We published this in “Maximal asymptotic nonbases” [6], the first
of nearly 20 articles that Erdős and I wrote together. My two favorite articles with
Erdős are on oscillations of bases [7] and on representation functions of minimal
bases [8].

Although I was on the faculty of SIU from 1971 to 1981, I was actually on leave
for four of my first 7 years. I received an IREX fellowship for the academic year
1972–1973 to study with Gel’fand at Moscow State University in the USSR. One
result was the article “Classification problems in K-categories” [33]. In 1974–1975
I was appointed Assistant to André Weil at the Institute for Advanced Study. I ar-
rived in Princeton in the summer, when Weil was in Paris. When he returned in
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the fall, I asked him, “As your Assistant, what do I have to do for you?” He replied,
“Nothing, and conversely.” A few weeks later, however, he asked if I would take
notes of his lectures on the history of number theory, which became Weil’s book
Elliptic Functions according to Eisenstein and Kronecker [57]. I spent 1975–1976 at
Rockefeller University and Brooklyn College (CUNY), and 1977–1978 at Harvard
University. In addition to my appointment in mathematics at Harvard, I was also
a member of the nuclear nonproliferation working group of the Program for Sci-
ence and International Affairs (now the Belfer Center for Science and International
Affairs in the Kennedy School of Government), and we wrote a book, Nuclear Non-
proliferation: The Spent Fuel Problem [10]. About this time I also wrote another
nonmathematical book, Komar-Melamid: Two Soviet Dissident Artists [32].

From 1981–1986 I was Dean of the Graduate School of Rutgers-Newark and on
the doctoral mathematics faculty at Rutgers-New Brunswick. My Rutgers Ph. D.
student John C. M. Nash and I wrote “Cofinite subsets of asymptotic bases for the
positive integers” [21]. Since 1986 I have been Professor of Mathematics at Lehman
College (CUNY) and the CUNY Graduate Center. For the first 5 years (1986–1991)
I was also Provost at Lehman. During 10 years of administrative duty I was, to
Erdős’ satisfaction, still able to find the time to prove and conjecture, and published
many articles. With my CUNY Ph.D. student Xing-De Jia I wrote several articles,
including a new construction of thin minimal asymptotic bases [14].

For many years I was also an adjunct member of the faculty of Rockefeller Uni-
versity in the laboratory of Morris Schreiber. At Rockefeller in 1976, I organized
my first number theory conference. Erdős gave a lecture in which he discussed the
following problem about the number of sums and products of a finite set of positive
integers: Prove that for every " > 0 there exists a number K."/ such that, if A is
a set of k positive integers and k � K."/ then there are at least k2�" integers that
can be represented in the form aC a0 or aa0 with a; a0 2 A. At the time, there were
no results on this problem, but in 1983 Erdős and Szemerédi [9] proved that there
exists a ı > 0 such that the number of sums and products is at least k1Cı :
Eventually, I was able to obtain an explicit value for ı (Nathanson [36]), and the
sum-product problem has become another hot topic in number theory.

A more recent subject is work with my students Brooke Orosz and Manuel Silva,
together with Kevin O’Bryant and Imre Ruzsa, on the comparative theory of binary
linear forms evaluated at finite sets of integers [48]. There is much more to be done
in this area.

Finally, I would like to mention three other very new topics of research. In work
with Blair Sullivan on the Caccetta-Haggkvist conjecture in graph theory [44,50], a
new definition of the height of a subspace in a finite projective space was introduced.
This height function has been further studied by O’Bryant [51] and Batson [1].

In a different direction, I have studied multiplicative functional equations satis-
fied by formal power series that look like quantum integers (for example, [2,38,40]),
and, with Alex Kontorovich, their additive analogs [17].

At the Institute for Advanced Study in 1974–1975, I noticed some articles of
Jack Milnor and Joe Wolf about the growth of finitely generated groups, and thought
that this work that should be investigated as a kind of “nonabelian additive number
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theory.” Thirty six years later, I have finally started to think about this subject, now
called “geometric group theory” and “metric geometry,” and have obtained some
new results [45–47].

Acknowledgements I want to thank David and Gregory Chudnovsky for organizing and editing
this volume. Back in 1982, the Chudnovskys and I, together with Harvey Cohn, created the New
York Number Theory Seminar at the CUNY Graduate Center, and we have been running this
weekly seminar together for more than a quarter century. It has been a pleasure to know them and
work with them.

Most of all, I acknowledge the love and support of my wife Marjorie and children Becky and
Alex.
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7. P. Erdős and M. B. Nathanson, Partitions of the natural numbers into infinitely oscillating bases

and nonbases, Comment. Math. Helv. 51 (1976), no. 2, 171–182.
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The first was to illustrate the interplay between Additive Number Theory and prob-
lems on exponential sums, by reviewing various recent contributions in this general
area and how they relate to several classical problems. The second was to present a
proof of the Gauss sum estimate

max
a2F�

p

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< C jH j1�ı

for subgroups H < F�
p , jH j > p" (" > 0 fixed and arbitrary), which is a typical

sample of those developments. My intent here was to make the argument as elemen-
tary and self-contained as possible (which it is, up to the Plunnecke–Ruzsa theory
of set addition).

Therefore, what follows is not written in a homogeneous style. The first three sec-
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only statements of the results. Note that this presentation is mostly geared toward the
author’s own research and is certainly far from complete, either from mathematical
or historical perspective (the interested reader may wish to consult books such as
[K-S] or [T-V] for background material). The reference list only serves this exposé
and a more complete bibliography may be found in [K-S] and [T-V].

0 Sum-Product Theorem in Fp

Theorem 1 ([B-K-T] and [B-G-K]).
Given " > 0, there is ı > 0 such that if A � Fp and 1 < jAj < p1�", then

jAC Aj C jA:Aj > cjAj1Cı :

There is the following quantitative statement.

Theorem 2 ([Ga] and [Ka-S]).

jAC Aj C jA:Aj > cmin
�

jAj 14
13 ; p

1
12 jAj 11

12

�

:

Denote

EC.A;B/ D jf.x1; x2; y1; y2/ 2 A2 �B2jx1 C y1 D x2 C y2gj
(additive energy)

E�.A;B/ D jf.x1; x2; y1; y2/ 2 A2 � B2jx1y1 D x2y2gj
(multiplicative energy).

The Sum-Product theorem follows then from:

Proposition 1.

E�.A;A/4 � jAC Aj9jAj2 C 1

p
jAC Aj8jAj5

using the inequality

jA:Aj � jAj4
E�.A/

:

1 Preliminaries from Additive Combinatorics

(Plünnecke–Ruzsa Theory).
We consider subsets of an additive group G;C.
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Lemma 1 (triangle inequality).

jA� Bj � jA� C j jB � C jjC j :

Theorem 1 ([P-R]). Let X;A1; : : : ; Ak � G satisfy

jX C Ai j � ˛i jX j .1 � i � k/:

Then there is X1 � X with

jX1 CA1 C � � � C Akj � ˛1˛2 � � �˛k jX1j:

Corollary 1.

jA1 C � � � C Akj � jA1 CX j � � � jAk CX jjX jk�1 :

Corollary 2 ([Ka-S]). There exists X 0 � X; jX 0j > 1
2
jX j with

jX 0 C A1 C � � � C Akj . jA1 CX j � � � jAk CX jjX jk�1 :

Proof. If Y � X; jY j � 1
2
jX j, then

jAi C Y j
jY j � 2 jAi CX jjX j D 2˛i : .	/

Use [P-R] iteratively.
Construct disjoint set Xs � X s.t.

jXs CA1 C � � � CAk j � 2k˛1 � � �˛kjXsj: .		/

Assume X1; : : : ; Xs obtained. Let Y D Xn.X1 [ : : : [ Xs/. If jY j < 1
2
jX j, set

X 0 D X1 [ : : : [ Xs. From (		)

jX 0 C A1 C � � � C Akj �
X

s0�s
jXs0 C A1 C � � � C Akj � 2k˛1 � � �˛k jX 0j:

If jY j � 1
2
jX j, then .	/. Apply [P-R] to Y ) XsC1 � Y such that

jXsC1 C A1 C � � � C Akj � .2˛1/ � � � .2˛k/jXsC1j:

ut
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Proof of Proposition.
E�.A/ D

X

a;b2A
jaA \ bAj:

Hence, there is b0 2 A and A1 � A, 1 � N � jAj with

jaA\ b0Aj 
 N if a 2 A1
and

jA1jN � E�.A/
jAj : .	/

Case 1.
A1 � A1
A1 � A1 D Fp:

Then, there is � D a1�a2

a3�a4
.ai 2 Ai / s.t.

ˇ
ˇ
ˇ
ˇ

�

.x1; x2; x3; x4/ 2 A41j� D
x1 D x2
x3 � x4

� ˇ
ˇ
ˇ
ˇ
� jA1j

4

p
:

Hence

j.a1 � a2/A1 C .a3 � a4/A1j D j�A1 CA1j � jA1j
2j�A1j2

EC.�A1; A1/
� p:

Estimate

j.a1 � a2/A1 C .a3 � a4/A1j � ja1A1 � a2A1 C a3A1 � a4A1j
ŒP�R�� jAj�3

4Y

iD1
jaiA˙ b0Aj:

From triangle inequality

jaiA˙ b0Aj � jaiAC .aiA\ b0A/j jb0AC .aiA \ b0A/jjaiA\ b0Aj
<
jAC Aj2

N
.since ai 2 A1/:

Hence,

p . jAj�3
� jAC Aj2

N

�4

. jAj�3jAC Aj8jAj8E�.A;A/�4
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since N satisfies .	/
E�.A/4 � 1

p
jAC Aj8 jAj5:

Case 2.
A1 � A1
A1 � A1 6D Fp:

Hence,
A1 �A1
A1 �A1 6�

A1 � A1
A1 � A1 C 1

and there is � D a1�a2

a3�a4
C 1.ai 2 A1/ s.t.

� 62 A1 � A1
A1 � A1 :

Therefore, for any subset A0 � A1
jA0j2 D jA0 C �A0j D j.a1 � a2/A0 C .a1 � a2 C a3 � a4/A0j

� j.a1 � a2/A0 C .a1 � a2/A1 C .a3 � a4/A1j:

Using the Corollary to [P-R], take A0 s.t. X 0 D .a1 � a2/A0 satisfies jX 0j D jA0j >
1
2
jA1j and

jX 0 C .a1 � a2/A1 C .a3 � a4/A1j . j.a1 � a2/A1 CX j j.a3 � a4/A1 CX jjX j
where X D .a1 � a2/A1.

Hence,

jA1j2 
 jA0j2 . jA1 C A1j:j.a3 � a4/A1 C .a1 � a2/A1jjA1j
and

jA1j3 . jAC Aj ja1A1 � a2A1 C a3A1 � a4A1j:
As before, since ai 2 A1

ja1A � a2AC a3A � a4Aj � jAj�3 jAC Aj
8

N 4
:

Therefore,

jAj�3jAC Aj9 & N 4jA1j3 � .N:jA1j/4
jAj �

.�/
Ex.A/

4

jAj5

and
E�.A/4 � jAC Aj9jAj2:

ut
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2 Some Tools from Graph Theory:
The Balog–Szemerédi–Gowers Theorem

Statement. Let G;C be an additive group. There is an absolute constant C such
that the following holds. Let A � G be a finite set andK 2 RC such that

EC.A;A/ >
1

K
jAj3:

Then there is a subset A0 � A such that

jA0j > K�C jAj
jA0 ˙ A0j < KC jA0j:

Remark. Underlying Balog–Szemerédi–Gowers is in fact a result from graph the-
ory, which will be implicit in the argument.

Also, Balog–Szemerédi–Gowers is not restricted to an Abelian setting and there
are variants for general groups, both in discrete and continuous settings, using sim-
ilar proofs (see the book [T-V]).

Sketch of the Proof.

Main idea. We construct a large subset A0 � A, such that whenever x; x0 2 A0,
then there are at least K�C jAj7 representations

x � x0 D x1 � x2 C x3 � x4 C x5 � x6 C x7 � x8 with xi 2 A:
Hence

jA0 � A0j � jAj8
K�C jAj7 :

The construction.

Let !.x/ D jf.x1; x2/ 2 A2jx D x1 � x2gj for x 2 G.
Hence,

X

x2G
!.x/ D jAj2

X

!.x/2 D EC.A/:

Define

D D
�

z 2 Gj!.z/ > 1

2K
jAj
�

(the ‘popular’ differences).
Then

1

K
jAj3 <

X

z2D
!.z/2 C

�
1

2K
jAj
�

jAj2
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and
X

z2D
!.z/2 >

1

2K
jAj3:

Define the following (directed) graph R � A � A

.x; y/ 2 R, x � y 2 D:

Hence,

jRj D
X

z2D
!.z/ >

1

2K
jAj2:

Denote Rx ; Ry the sections of R. Thus,

1

2K
jAj2 <

X

y2A
jRy j � jAj 12

0

@
X

y2A
jRy j2

1

A

1
2

and
X

y2A
jRy j2 > 1

4K2
jAj3: (1)

Define
Y D f.x; x0/ 2 A � Aj jRx \Rx0 j < � jAjg

where we take
� D 10�3K�2:

Then, X

y2A
j.Ry � Ry/ \ Y j D

X

.x;x0/2Y
jRx \ Rx0 j < � jAj3 (2)

and from (1), (2)

X

y2A
jRy j2 > 1

8K2
jAj3 C 1

8K2�

X

y2A
j.Ry � Ry/\ Y j:

Therefore, there is y
0
2 A with

jRy
0
j2 > 1

8K2
jAj2 C 10j.Ry

0
�Ry

0
/ \ Y j

) jRy
0
j > 1

3K
jAj:

The set A0 is defined by

A0 D
�

x 2 Ry
0
j j.fxg � Ry

0
/\ Y j < 1

3
jRy

0
j
�

:
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Since
1

3
jRy

0
nA0j jRy

0
j � j.Ry

0
� Ry

0
/\ Y j < 1

10
jRy

0
j2

we have

jA0j > 1

2
jRy

0
j > 1

6K
jAj:

Take any x1; x2 2 A0. Then,

jfx 2 Ry
0
j.x1; x/ 62 Y and .x2; x/ 62 Y gj >

�

1 � 2
3

�

jRy
0
j

and
jRx1

\ Rxj > � jAj; jRx2
\Rx j > � jAj

for at least 1
3
jRy

0
j elements x 2 Ry

0
.

Write

x1 � x2 D .x1 � x/ � .x2 � x/
D .x1 � y1/� .x � y1/ � .x2 � y2/C .x � y2/

where yi 2 Rxi
\Rx .i D 1; 2/:

Since x1 � y1; x � y1; x2 � y2; x � y2 2 D, each difference has at least 1
2K
jAj

representations in A� A. Hence, there are at least

1

3
jRy

0
j:.�:jAj/2:

�
1

2K
jAj
�4

& K�9jAj7

representations

x1 � x2 D z1 � z2 C z3 � z4 C z5 � z6 C z7 � z8

with zi 2 A, as claimed.
This proves the Balog–Szemerédi–Gowers theorem.

3 Exponential Sum Estimate

We will establish the following estimate on Gauss sums.

Theorem 1. Let H be a multiplicative subgroup of F�
p and jH j > p" for some

" > 0. Then,

max
.a;p/D1

ˇ
ˇ
ˇ
ˇ
ˇ

X

x2H
ep.ax/

ˇ
ˇ
ˇ
ˇ
ˇ
< C jH j1�ı where ı D ı."/ > 0:
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Denote
Of .k/ D

X

x2Fp

ep.kx/f .x/ .k 2 Fp/

the Fourier transform of f W Fp ! C.

Lemma 2 (harmonic analysis). Let � W Fp ! Œ0; 1� be a probability measure
.
P
�.x/ D 1/.

Denote for ı > 0
ƒı D fk 2 Fpj j O�.k/j > p�ıg:

Then,

jf.k1; k2/ 2 ƒı jk1 � k2 2 ƒ2ıgj > p�2ı jƒı j2:

Proof. Let j O�.k/j D ck O�.k/ with ck 2 C; jckj D 1. We have

jƒı j:p�ı <
X

k2ƒı

ck O�.k/ D
X

x2Fp

2

4
X

k2ƒı

ckep.kx/

3

5�.x/

and

jƒı j2p�2ı <
X

x2Fp

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

k2ƒı

ckep.kx/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

�.x/ �
X

k1;k22ƒı

j O�.k1 � k2/j:

ut
Corollary 3.

EC.ƒı ; ƒı/ > p�4ı jƒı j4
jƒ2ı j :

Corollary 4. There is the following dichotomy. Let � > ı > 0.
Either

jƒ2ı j > p� jƒı j
or there is ƒ � ƒı such that

jƒj > p�C� jƒı j
jƒCƒj < pC� jƒj:

Proof. Corollary 1+ Balog–Szemerédi–Gowers. ut
Let H < F�

p ; jH j D p˛ for some ˛ > 0.



18 J. Bourgain

Definition. A probability measure � on Fp is H -invariant provided

O�.k/ D O�.hk/ for all k 2 Fp ; h 2 H:

Example.

�.x/ D
(

1
jH j if x 2 H
0 if x 62 H: :

Main Proposition.

For all � < 1 and ı > 0, there is ı0 D ı0.˛; �; ı/ > 0 such that

ƒı0 6D f0g ) jƒı j > p�:
Here, ƒı D ƒı .�/, where � is an arbitrary H -invariant measure.

The argument gives ı0.˛; �; ı/ D ı

exp. 1
˛.1��/

/C
.

The limitation of the method: jH j D p˛ with ˛ 
 1
log logp (see [B1]).

Proof of Theorem using Proposition.

Take � D 1 � ˛
3
; ı D ˛

4
) ı0, according to the Proposition.

Apply the Proposition with � D 1
jH j1H .

Assume j O�.a/j > p�ı0

for some a 2 F�
p ) ƒı0 6D f0g.

Hence, jƒı j > p� )

p��2ı <
X

k2Fp

j O�.k/j2 D p
X

x2Fp

�.x/2 D p

jH j D p
1�˛

(contradiction).

Proof of the Main Proposition.

By H -invariance:ƒı D H:ƒı .
Hence,

ƒı 6D f0g ) jƒı j � p˛:
Thus, the statement certainly holds for � D ˛.

Assume now we established the statement for some � < 1. Thus

.	/ 8ı > 0; 9ı0 > 0 such that ƒı0 6D f0g ) jƒı j > p�

for arbitraryH -invariant �.
We will then derive the statement for �1 D �C cmin.�; 1 � �/.
Take ı > 0 (small enough))

.�/
ı0 < ı and 1

2
ı0 )
.�/
ı00.

Assume ƒı00 6D f0g ) jƒ 1
2
ı0 j > p� .


