Color Atlas of Strabismus Surgery

Third Edition
Color Atlas of Strabismus Surgery
Strategies and Techniques

Kenneth W. Wright, MD
Director, Wright Foundation for Pediatric Ophthalmology and Strabismus
Director of Pediatric Ophthalmology, Cedars-Sinai Medical Center,
Los Angeles
Visiting Associate in Chemical Engineering, California Institute of Technology
Clinical Professor of Ophthalmology, USC Keck School of Medicine
Los Angeles, California, USA

Editor
Sonal Farzavandi, FRCS (Edin)
Senior Consultant
Pediatric Ophthalmology and Strabismus Service
Singapore National Eye Centre
National University Hospital
Singapore

Reviewer
Lisa Thompson, MD
Consulting Physician
Stroger Hospital of Cook County
Chicago, Illinois, USA

Springer
Preface to the Third Edition

Strabismus can be devastating to our patients, yet often difficult to treat even for the seasoned veteran. The goal of the *Atlas of Strabismus Surgery* is to clearly and succinctly share with the reader strategies and surgical techniques that will improve the care of our patients. The atlas covers the management of wide range of strabismus disorders from the relatively simple horizontal strabismus to complex cyclovertical deviations. A variety of surgical techniques are presented, starting with the simple basics and progressing to complicated surgical techniques, such as the delicate superior oblique tendon expander procedure, and the retrieval of a slipped/lost rectus muscle. The atlas is designed to help surgeons of diverse experience, from the resident ophthalmologist to the most experienced strabismologist.

The third edition underwent a true makeover, with virtually every chapter receiving significant changes. Examples include a section on “Planning for Success” to Chapter 2 that provides a logical approach to forming a treatment plan. Incomitant strabismus and torticollis associated with nystagmus or strabismus can be challenging to treat, so we have added a chapter specifically dealing with these important disorders. Throughout the book, clinical case examples have been added to illustrate strabismus treatment strategies. Relatively new to most strabismus surgeons is the use of topical anesthesia for strabismus surgery. Topical anesthesia strabismus surgery requires special techniques to avoid patient discomfort, and a chapter has been added on this up-and-coming procedure. The book has been updated to reflect changes in choice of suture materials, such as the use of nonabsorbable suture for inferior rectus recession. We are also introducing several new titanium instruments from Titan Surgical Company that improve the efficiency and safety of strabismus surgery.

As in previous editions, color photographs are paired with line drawings to help explain the surgical techniques. The simplicity of the line drawing helps to teach technique, while the photographs add the reality of surgical field. This format innovated by the author in the first edition won a publishers award in Philadelphia. To even further improve on this winning format, the third edition has a companion DVD with more than ten videos of strabismus surgery. This combination of line drawings, color photographs, and surgical videos provides the student with the next best thing to live surgery.

I would like to give a special thanks to my dear friend Sonal Farzavandi, MD, for her tenacity in editing every line of text, checking each index entry, and helping with the content. Without Sonal’s help this project would still be lingering today. Lisa Thompson, MD, one of my outstanding
fellows also deserves a sincere thanks for her encouragement and for helping with editing of the book. It is my sincere hope that the third edition will help the surgeon better manage strabismus, improve patient outcomes, and make the great field of strabismus even more rewarding.

Kenneth W. Wright, MD
Preface to the Second Edition

The second edition of the *Color Atlas of Ophthalmic Surgery—Strabismus* is an updated version of the original award-winning textbook published in 1991. The new atlas retains the same style of simplicity and clarity of the first edition. In addition, we have added a new section, “Management Strategies”, which includes seven chapters on the practical management of strabismus syndromes. The idea is to provide the reader with a concise synopsis of what to do for a specific type of strabismus. Section two details strabismus surgical techniques and has been extensively revised and updated from the original edition. Chapter 22, “Reoperation Techniques” was added and describes the management of slipped/lost muscles and strabismus after retinal detachment surgery. As in the first edition, the section on surgical techniques combines line drawings and color photographs of actual surgery to offer both simplicity and realism required for teaching new techniques. I hope you will find this new edition useful in your strabismus practice.

I would like to add a special thanks to Tina Kiss, our pediatric ophthalmology administrator, for her many long hours and weekends without which this project would not have come to fruition. I would also like to extend my sincere gratitude to Laura Bonsall for her encouragement to pursue this project and for her expertise and creativity in the layout and formatting of this book. In addition, I would like to acknowledge all of my fellows who have influenced the material in this book, especially Peter Spiegel, Dean Bonsall, and Gabriela Salvador for their thorough review of the manuscript. Finally, I would like to recognize Allergan, Bausch & Lomb Surgical, Ethicon, Discovery Fund for Eye Research, Cedars-Sinai Medical Center, and University of California, Irvine for their unselfish support.

Kenneth Weston Wright, MD
Preface to the First Edition

The Strabismus volume of Color Atlas of Ophthalmic Surgery was written as a practical text to teach strabismus surgical technique. The best surgical training is obviously hands-on experience; however, a surgical reference is critical to prepare the novice student for the surgical experience, and also for the veteran surgeon to review or expand his surgical repertoire. No drawing can capture the true appearance of the surgical scene, yet a photograph lacks the simplicity which is necessary for the teaching of a surgical procedure. Our strategy was to provide both line drawings and photographs of actual surgery to provide the most realistic presentation yet with the simplicity necessary for teaching new techniques.

Teaching surgical technique is the major goal of this atlas; however, background information, such as muscle physiology and indications for surgery, is provided when applicable. The atlas is intended to be a “how-to” book, and to describe in detail the most effective specific surgical procedures rather than present a short overview of every surgical procedure. Throughout the atlas, surgical drawings and photographs present the surgeon’s view, with the upper lid at the bottom and lower lid at the top. The drawings and photographs of surgical procedures show the left eye unless otherwise stated.

The author would like thank the other contributors, Dr. Laurie Christensen, Dr. Michael Repka, Dr. Burton Kushner, Dr. Monte Del Monte and Dr. Malcolm Mazow for their excellent work. Acknowledgement must also go to Dr. Marshall M. Parks and Dr. David L. Guyton, under whom I was fortunate enough to train. Much of the material in this volume has come either directly or indirectly from their brilliant and innovative work. I would also like to express my sincere gratitude to the fellows who have so greatly influenced and improved my own surgical techniques: Doctors Andrea Lanier, Laurie Christensen, John McVey, and Andrew Terry. I would like to extend special thanks to Dr. Byng-Moo Min and Dr. Chan Park, visiting research fellows from Korea, and to Dr. Ann U. Stout, for their expert review of the manuscript. Finally, I would like to acknowledge the contributions from Margaret Brown-Multani, Surgical Technician, Children’s Hospital of Los Angeles; Paula Edelman, C.O., Children’s Hospital of Los Angeles, for clinical support; and from my sister, Lisa Wright, for her long hours of editing, revising, and re-revising the manuscript.

Too often, strabismus surgery is referred to as “easy”, and is often delegated in training programs to first-year residents. Strabismus surgery is easy when performed properly; however, the untrained surgeon has the
potential to do more harm than good. It is the author’s sincere hope that this atlas will improve strabismus surgical techniques and ultimately benefit patients with strabismus.

Kenneth Weston Wright, MD
Acknowledgment

Thanks to the supporters of Wright Foundation for Pediatric Ophthalmology and Strabismus who help us with our mission:

To reduce blindness and suffering from eye disorders in infants and children and to improve the treatment of strabismus through research, education, and clinical care.
Contents

Preface to the Third Edition ... v
Preface to the Second Edition vii
Preface to the First Edition ... ix
Acknowledgment ... xi

SECTION ONE: MANAGEMENT STRATEGIES 1

1 **Amblyopia Treatment** ... 3
 Clear Retinal Image ... 3
 Correct Ocular Dominance 5
 End Point for Amblyopia Treatment 7

2 **Principles of Strabismus Surgery** 8
 Planning for Success .. 8
 Paradoxical Diplopia ... 9
 How Does Strabismus Surgery Work? 10
 Muscle Recession .. 11
 Muscle Tightening Procedures (Recession, Tuck, and Plication) .. 13
 Recession and Resection ... 15
 Faden ... 15
 Muscle Transposition ... 15

3 **Infantile Esotropia** ... 17
 Small Angle Neonatal Esotropia 17
 Congenital Esotropia ... 18
 Ciancia’s Syndrome (Cross-Fixation Congenital Esotropia) .. 22
 Infantile Accommodative Esotropia 24
 Other Issues on Infantile Esotropia 29

4 **Acquired Esotropia** ... 32
 Accommodative Esotropia 32
 Miotics for Accommodative Esotropia 37
 Non-Accommodative Acquired Esotropia 38
 Cyclic Esotropia .. 39
 Sensory Esotropia .. 40
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Exotropia</td>
</tr>
<tr>
<td>Intermittent Exotropia—X(T)</td>
</tr>
<tr>
<td>High Hypermetropia with Exotropia</td>
</tr>
<tr>
<td>Sensory XT</td>
</tr>
<tr>
<td>Congenital XT</td>
</tr>
<tr>
<td>6 Torticollis, Nystagmus and Incomitant Strabismus</td>
</tr>
<tr>
<td>Torticollis: Compensatory Head Posturing</td>
</tr>
<tr>
<td>Torticollis and Nystagmus</td>
</tr>
<tr>
<td>7 Complex Strabismus</td>
</tr>
<tr>
<td>Duane's Syndrome—Type 1 (Esotropia)</td>
</tr>
<tr>
<td>Duane's Syndrome—Type 2</td>
</tr>
<tr>
<td>Duane's Syndrome—Type 3 (Exotropia)</td>
</tr>
<tr>
<td>Duane's Syndrome with Upshoot and Downshoot</td>
</tr>
<tr>
<td>Synergistic Divergence</td>
</tr>
<tr>
<td>Congenital Fibrosis Syndrome</td>
</tr>
<tr>
<td>A and V Patterns and Oblique Overaction</td>
</tr>
<tr>
<td>Dissociated Strabismus Complex (DVD & DHD)</td>
</tr>
<tr>
<td>Thyroid Strabismus</td>
</tr>
<tr>
<td>Brown's Syndrome</td>
</tr>
<tr>
<td>Double Elevator Palsy (Monocular Elevation Deficit Syndrome)</td>
</tr>
<tr>
<td>Orbital Floor Fracture</td>
</tr>
<tr>
<td>Strabismus Associated with Local Anesthetic Injection</td>
</tr>
<tr>
<td>High Myopia and Esotropia (Heavy Eye Syndrome)</td>
</tr>
<tr>
<td>8 Cranial Nerve Palsies</td>
</tr>
<tr>
<td>Superior Oblique Palsy</td>
</tr>
<tr>
<td>Sixth Nerve Palsy</td>
</tr>
<tr>
<td>Third Nerve Palsy</td>
</tr>
<tr>
<td>Inferior Oblique Palsy</td>
</tr>
</tbody>
</table>

SECTION TWO: SURGICAL TECHNIQUES | 89 |
9 Surgical Anatomy	91
Muscle Measurements	91
Conjunctiva	91
Subconjunctival Fascia	91
Fat Adherence	95
Individual Muscles	95
Vascular Supply and Anterior Segment Ischemia	100
10 Basic Surgical Techniques (Do's and Don'ts)	102
Setup and Exposure	102
Incision Options	102
Hooking a Rectus Muscle	106
Muscle Dissection	107
Muscle Suturing Techniques	108
Scleral Needle Pass	111
Pearls for Muscle Recession	113
Forced Duction Testing	114
11 Rectus Muscle Recession 117
Fornix Surgery .. 117
Limbal Surgery .. 124
Hang-Back Technique 128
Vertical Rectus Muscle Recession 129

12 Topical Anesthesia Strabismus Surgery 131
Principles for Avoiding Pain 131
Topical Anesthesia Technique for Rectus Muscle Recession 132

13 Adjustable Suture Technique 136
Patient Selection .. 136
Initial Anesthesia Considerations 137
Surgical Techniques 137
Limbal Approach: Sliding Noose Technique 137
Adjustment Procedure 140
Fornix Approach: Sliding Noose Technique 143
Bow-Tie Technique 146
Pearls for Postoperative Adjustment 146
Complications ... 147
Preventing Late Overcorrection 148

14 Rectus Muscle Tightening Procedures 149
Rectus Muscle Resection 149
Single Suture Resection: Fornix Approach 149
Double Suture Resection 152
Wright Plication: Rectus Muscle–Scleral Plication (Vessel Sparing) 153
Left Medial Rectus Plication: Fornix Incision 154

15 Horizontal Rectus Muscle Offsets and the Y-Splitting Procedure 156
Horizontal Rectus Muscle Transpositions for A and V Patterns 156
Horizontal Rectus Muscle Transpositions for Vertical Strabismus 157
Rectus Muscle Transpositions for Torsion 159
Y-Splitting of the Lateral Rectus Muscle for Duane’s Retraction Syndrome 159

16 Transposition Surgery for Rectus Muscle Palsy 161
Knapp Procedure 161
Jensen Procedure 162
Hummelsheim Procedure 163
Complications ... 165

17 Inferior Oblique Muscle Weakening Procedures 166
Quantification of Inferior Oblique Overaction 166
Indications for Surgery 166
Making Procedural Choices 167
Anteriorization Procedure 168
Surgical Technique 170
Myectomy ... 176
Extirpation/Denervation of the Inferior Oblique Muscle 177
Complications ... 178
18 Superior Oblique Tendon Tightening Procedures 180
 Physiology of Superior Oblique Tendon Tightening Procedures 180
 Isolation and Exposure of the Superior Oblique Tendon
 (Left Eye: Surgeon’s View) 181
 Harada-Ito Procedure 183
 Disinsertion Harada-Ito Technique 184
 Classic Harada-Ito Technique 186
 Full Tendon Superior Oblique Tuck 187
 Superior Oblique Tendon Plication 190

19 Superior Oblique Tendon Weakening Procedures 191
 Surgical Exposure for Superior Oblique Tendon Weakening 192
 Superior Oblique Tenotomy 194
 Silicone Tendon Expander (Wright Procedure) 195
 Split Tendon Elongation 197
 Posterior Tenectomy 198
 Complications 199

20 Faden Operation (Posterior Fixation Suture) 200
 How a Faden Works 200
 Indications for Faden Operation 200
 Surgical Techniques 202
 Complications 204

21 Reoperation Techniques 205
 Muscle Dehiscence: Lost Muscle 205
 Surgery for a Lost Medial Rectus Muscle 207
 Surgery for Stretched Scar 210
 Pearls for Reoperation: Rectus Dehiscence–Lost Muscle 212
 Strabismus after Retinal Detachment Surgery 212
 Pearls for Strabismus after Retinal Detachment Surgery 214

APPENDIXES 217
 I Surgical Numbers 219
 II Anesthesia 222
 III Instruments for Muscle Surgery 223
 IV Postoperative Care 225

Index 227
Amblyopia is poor vision caused by abnormal visual stimulation during early visual development. The abnormal visual stimulation disrupts neurodevelopment of visual centers in the brain. Abnormal stimulation can arise from a blurred retinal image, or strabismus with strong fixation preference for one eye and cortical suppression of the nondominant eye. Children under 8 years of age are capable of strong cortical suppression and hence can eliminate double vision. Children who alternate fixation and use either eye will alternate suppression and do not develop amblyopia. The vertical prism induced tropia test can be used to determine fixation preference and diagnose unilateral amblyopia in preverbal children with straight eyes or small angle strabismus. This test is performed by placing a vertically oriented 10 PD prism over one eye, either base down or base up. The vertical prism induces a hypertropia allowing evaluation of fixation preference. Strong fixation preference for one eye is indicative of amblyopia. Amblyopia can be bilateral in children with bilateral blurred retinal images (e.g., bilateral congenital cataracts, or bilateral high hypermetropia >+5.00 sphere).

Vision is the foremost priority in ophthalmology so strabismic children with amblyopia should have the amblyopia treated prior to strabismus surgery. After strabismus surgery the parents often assume that all is well, and will default follow up appointments. Thus our best chance for treating amblyopia is before strabismus surgery. An exception to this rule is amblyopia associated with large angle esotropia, with the amblyopic eye fixed in adduction (strabismus fixus) so the visual axis is occluded. Part of the amblyopia treatment is to operate on the amblyopic eye to bring it into primary position, to clear the visual axis and allow occlusion therapy.

Amblyopia therapy works best when initiated in young children under 3 years of age, however, even older children up to 8 to 9 years of age, can show visual acuity improvement with diligent amblyopia therapy. It is also important to monitor children after strabismus surgery for the development of amblyopia until the ages of 8 to 9 years. The two basic strategies to treat amblyopia are:

1. Provide a clear retinal image.
2. Correct ocular dominance.

Clear Retinal Image

The first goal of amblyopia therapy is to ensure the presence of a clear retinal image. A careful cycloplegic refraction is required for all children with amblyopia and strabismus. Topical cyclopentolate 1% with tropicamide
1% given twice can achieve adequate cycloplegia for most patients. Patients with densely pigmented irides may require multiple drops, or even atropine 1% given twice a day for three days if retinoscopy shows variable readings.

Table 1.1 lists refractive errors that are potentially amblyogenic and need correction. Prescribing spectacles for patients with accommodative esotropia is covered in Chapter 4. Patients with straight eyes and anisometropic amblyopia usually have some degree of peripheral fusion. These patients often show significant visual acuity improvement with optical correction alone, even without occlusion therapy. As a rule, give the full hypermetropic correction to the amblyopic eye because amblyopic eyes do not

<table>
<thead>
<tr>
<th>Type of Amblyopia</th>
<th>Refractive Error Requiring Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypermetropic anisometropia</td>
<td>>+1.50 D of anisometropia</td>
</tr>
<tr>
<td>Myopic anisometropia</td>
<td>>−4.00 D of anisometropia</td>
</tr>
<tr>
<td>Astigmatic anisometropia</td>
<td>>+1.50 D anisometropia</td>
</tr>
<tr>
<td>Bilateral hypermetropia</td>
<td>>+5.00 D OU</td>
</tr>
<tr>
<td>Bilateral astigmatism</td>
<td>>+2.50 D OU</td>
</tr>
</tbody>
</table>

These are only suggestions for prescribing spectacles in children, based on the cycloplegic refraction. Decisions on whether or not to treat a specific refractive error should be based on the whole clinical picture including visual acuity when attainable.

Example 1.1. Anisometropic Amblyopia

3-year old

VA: OD 20/25
 OS 20/100

Cycloplegic refraction: OD +1.00 sphere
 OS +3.50 sphere

Stereo acuity without correction: 400 seconds arc (1/3 animals Titmus test)
Alignment: Orthotropia for distance and near

Diagnosis: Anisometropic Amblyopia OS with good binocular function

Treatment: Prescribe spectacles:
 OD + 0.50 sphere
 OS + 3.25 sphere

Note that the plus was slightly reduced (OD more than OS) to facilitate tolerance for spectacle use. Patient to return every 4 weeks to monitor visual acuity improvement. If improvement plateaus, then start part-time occlusion of the right eye 3 to 5 hours a day.
fully accommodate. If the good eye is mildly hyperopic (+0.75 to +1.50 sphere) it is advisable not to give the full plus to the good eye as this will blur the vision and the child may not wear the spectacles (see Example 1.1). The key is that the spectacles must be worn full time—even in the bath tub or swimming pool!

Patients with bilateral high hypermetropia (>+5.00 sphere) will have bilateral amblyopia. These patients are so hypermetropic that they do not fully accommodate and they do not typically develop accommodative esotropia. They require full hypermetropic correction to provide a clear retinal image and treat the amblyopia (see Example 1.2).

Correct Ocular Dominance

Patients with unilateral amblyopia will have strong dominance for the “good eye” and will suppress the amblyopic eye. Part of the strategy to treat amblyopia is to stimulate the amblyopic eye by forcing fixation to the amblyopic eye. There are two ways to switch fixation to the amblyopic eye: 1) occlude the dominant eye, and 2) blur the vision of the dominant eye (penalization).

Occlusion Therapy

Occlusion therapy consists of patching the sound eye to force fixation to the amblyopic eye. For patients with binocular fusion and amblyopia (e.g., intermittent esotropia and anisometropic amblyopia), part time occlusion therapy is preferred over full time in order to maintain binocular fusion. If the child has a constant esotropia and no fusion (e.g., congenital esotropia) then full time occlusion can be done. Follow-up visits for full time occlusion therapy should be scheduled at intervals of 1 week per year of the child’s age. For example, a 2-year old should be checked every 2 weeks to examine the good eye for occlusion induced amblyopia in addition to monitoring visual improvement of the amblyopic eye. In children less than 1 year of age, part time occlusion, half of the waking hours, is suggested to avoid the complication of occlusion amblyopia of the good eye.

Example 1.2. Bilateral Hypermetropic Amblyopia

5-year old

VA: 20/200 OU

Cycloplegic refraction: +8.00 sphere OU

Alignment: Orthotropia for distance and near

Treatment: Prescribe spectacles with the full plus +8.00 sphere OU

Note that patients with bilateral high hypermetropic amblyopia will not fully accommodate so they need their full plus correction to provide a clear retinal image. These patients usually have straight eyes and do not typically have accommodative esotropia as they hypoaccommodate.
Penalization Therapy

Penalization works by blurring the image of the sound eye to force fixation to the amblyopic eye. Blurring of the sound eye can be accomplished by adhesive tape on the spectacle lens, a blurring optical lens, or by atropine drops if the “good eye” is hypermetropic. Atropine penalization consists of instilling one drop of atropine 1% in the sound eye each day and removing the optical correction of the sound eye, while full optical correction is given to the amblyopic eye. If the cycloplegia of the good eye blurs the vision enough to switch fixation to the amblyopic eye then atropine penalization will usually improve vision. The vertical prism induced tropia test can be used to determine which eye is fixating. The “good eye” has to be hypermetropic (at least +2.00 sphere) in order for atropine cycloplegia to blur the vision enough to force fixation to the amblyopic eye at least for near targets (see Example 1.3). Atropine has been reported to have a beneficial effect from the age of three years to seven years old and with an acuity of 20/40 to 20/100. When atropine penalization works, it can provide strong anti-suppression therapy which may result in reverse amblyopia and loss of vision of the sound eye. To avoid reverse amblyopia, patients should be followed closely at intervals of one week per year of the patient’s age not to exceed 3 weeks. Stop penalization if visual acuity in the “good eye” decreases.

Example 1.3. Penalization (see Figure 1.1)

5-year old, patching failure

VA: OD 20/200
 OS 20/30

Cycloplegic refraction: OD +5.50 sphere
 OS +3.00 sphere

Stereo acuity without correction: 3000 seconds arc (Positive fly Titmus test)
Alignment: Orthotropia for distance and near

Diagnosis: Dense amblyopia, patching failure

Treatment: Optical correction right eye—no correction left eye and atropine drops once a day: OD + 5.50 sphere
 OS plano + Atropine 1% every day

Note: The goal is to blur the vision of the “good eye” (left eye) with atropine and no optical correction in order to switch fixation to the amblyopic eye (right eye) that has full optical correction. If atropine penalization induces a switch in fixation to the amblyopic eye then vision will improve. If the patient continues to fixate with the atropinized good eye, then vision in the amblyopic eye will not improve. In these cases patching plus atropine penalization may be effective. Note that for atropine penalization to work the “good eye” must be significantly hypermetropic (>+2.00 sphere).
Atropine penalization left eye.

Figure 1.1. Atropine penalization left eye. Left eye is treated with atropine 1% every day and removal of optical correction. Note that the left pupil is dilated and the spectacle lens has been removed.

End Point for Amblyopia Treatment

Amblyopia treatment is usually continued until vision in the amblyopic eye improves to within 1 or 2 Snellen lines of the sound eye. After improvement is achieved, maintenance therapy, consisting of part-time occlusion (1 to 2 hours a day) of the sound eye, may be necessary until the patient is 7 to 8 years old. Patients with anisometropic amblyopia and binocular fusion tend to maintain their vision after being treated, even without maintenance occlusion therapy, as long as optical correction is continued.

References

Prior to strabismus surgery an important and seemingly obvious question should be asked, “Why are we operating?” Is our treatment goal to establish binocular fusion, eliminate diplopia, expand the field of binocular vision, correct a compensatory head posture, or to simply improve cosmetic appearance? Establishing the goals prior to surgery helps us clarify indications for surgery, and formulate a logical treatment plan. A plan that is best for the patient should be made; not just a plan that is best for correcting the angle of deviation.

The indications for surgery should be based on the patient’s needs: either binocular function or cosmetic appearance (Table 2.1). Urgent surgery is indicated to reestablish binocular fusion in a child with an esophoria that has recently broken down to a tropia. The family should be told that surgery is indicated to regain binocular fusion and not just to improve the cosmetic appearance. In contrast, surgery for a long-standing sensory esotropia secondary to a blind eye is cosmetic, as there is virtually no potential for binocular fusion. In this case the indication for surgery should be based on the cosmetic desires of the patient. In some cases it may be difficult, or even impossible to determine the binocular potential. For example, an older child with equal vision and a history of esotropia since infancy may or may not have binocular fusion potential. In these cases, I tend to give the patient the benefit of doubt, and treat the patient as if they have fusion potential.

Understanding the functional goal also helps direct the surgical plan. Esotropic patients with fusion potential generally require large amounts of surgery, more than the standard surgical numbers (see Chapter 4). A plan based on standard surgery in these patients routinely results in undercorrection. Esotropic patients without binocular fusion potential, however, are ill served by planning for “more” surgery as a consecutive exotropia will inevitably increase over time and an exotropia is a poor cosmetic outcome. In these cases without fusion potential, it is better to do less surgery, as a small residual esotropia is more stable and has a better appearance than a consecutive exotropia. Consideration of the functional outcome also influences the selection of the type of surgery. Monocular recession-resection surgery produces incomitance which is not optimal in a fusing patient, as incomitance can cause diplopia in eccentric positions of gaze. Monocular surgery on the blind eye is, however, the procedure of choice for sensory strabismus to protect the only seeing good eye. These are but a few examples that demonstrate the importance of considering the potential for
binocular fusion when planning strabismus surgery. Table 2.2 lists some important signs that indicate the potential for binocular fusion.

Prior to surgery it is helpful to establish a specific strabismus diagnosis. In most cases the strabismus can be classified into a type, such as partially accommodative esotropia, intermittent exotropia, Duane’s syndrome—esotropia type 1, congenital superior oblique palsy, or Brown’s syndrome. At times, it may be difficult to determine the exact etiology of the strabismus. In these cases an MRI of the head and orbit may be indicated. If after a complete evaluation the cause is unknown, then it is appropriate to operate for the strabismus pattern taking into account the ductions, versions, and the presence of incomitance.

Paradoxical Diplopia

Planning strabismus surgery for adult patients with childhood strabismus offers a special challenge as they may have anomalous retinal correspondence (ARC) and develop postoperative paradoxical diplopia. ARC is a sensory adaptation where the true fovea is suppressed and an eccentric retinal point corresponding to the deviation is considered the center of vision (pseudofovea). When the strabismus is corrected the pseudofovea is
now out of alignment, so the patient will see double even though the eyes appear in anatomical alignment. Paradoxical diplopia is usually not as bothersome as diplopia associated with normal retinal correspondence and patients know which is the “real” image. In most cases paradoxical diplopia will resolve spontaneously over several days to months. Rarely, however, patients may have persistent diplopia requiring prisms, or even additional strabismus surgery, to reverse the correction and re-create the original strabismus.

An important test to predict if an adult is at risk for postoperative diplopia is the **prism neutralization test**. Neutralize the deviation with a prism and ask the patient if they see double. Test for diplopia in free view, then repeat prism neutralization with a red filter over one eye and use a hand light as a fixation target. If the patient sees double with the deviation neutralized the patient should be advised that they will probably see double after surgery. If the patient does not experience bothersome diplopia with prism neutralization, one can operate to correct the full deviation. Paradoxical diplopia is not as bothersome as normal correspondence diplopia. Another approach is to use prism neutralization to find the largest angle of correction that avoids diplopia, and use that as the target angle even though it will result in an undercorrection. It is a good rule to inform all adult patients that postoperative diplopia is a possibility.

How Does Strabismus Surgery Work?

Strabismus surgery corrects ocular misalignment by slackening a muscle (i.e., recession), by tightening a muscle (i.e., resection), or by changing the insertion site of the muscle, thus changing the direction of pull or vector of force (i.e., transposition).

Figure 2.1. Diagram of the horizontal rectus muscles showing the relationship of the moment arm (m) to the muscle axis and center of rotation. The moment arm intersects the center of rotation and is perpendicular to the muscle axis. The longer the moment arm and the stronger the muscle force, the greater the rotational force.
Figure 2.2. Starling’s length-tension curve: The relationship of a muscle’s force is proportional to the tension on the muscle. More tension on a muscle will increase muscle force, and slackening a muscle will reduce its force. Note the relationship is not linear, but exponential. Towards the end of the curve a small degree of slackening produces a disproportionately large amount of muscle weakening.

When a muscle contracts it produces a force that rotates the globe in a particular direction (muscle action) with a certain rotational force. **Rotational force** that moves an eye is directly proportional to the length of the moment arm \((m)\) and the force of the muscle contraction \((F)\).

\[
\text{Rotational Force} = m \times F
\]

where, \(m\) = moment arm and \(F\) = muscle force.

Muscle Recession

A muscle recession moves the muscle insertion to a new location closer to the muscle’s origin creating muscle slack. Muscle slack created by a recession reduces muscle strength as per Starling’s length tension curve. The initial slackening of muscle fibers is taken up by fiber reorganization but there is probably a persistent change in both the recessed muscle and the antagonist. Surgical charts on the amount of recession for a specific deviation reflect the exponential character of the length tension curve. For example, each 0.5 mm of a bilateral medial rectus recession will correct approximately 5 prism diopters (PD) of esotropia up to a recession of 5.5 mm. However, after 5.5 mm of recession, each additional 0.5 mm of recession results in 10 PD of correction. Clinically, this is important, as we must be extremely careful when measuring large recessions because relatively small errors in measurement will result in large errors in eye alignment. An inadvertent over recession of only 1.0 mm on a planned 6.0 mm bilateral medial rectus recession could result in a 20PD overcorrection.

A unilateral rectus muscle recession will induce incomitance, as rectus muscle recessions have more of an effect in the field of action of the muscle. Note that when the eye rotates towards the recessed muscle *(right drawing)*, the moment arm shortens and muscle slack increases. This results in progressive weakening of the rotational force as the eye turns towards the recessed muscle. In contrast, on eye rotation away from the recessed
Example 2.1. How would you best correct this esotropia with a recession? (Forced ductions are negative)

<table>
<thead>
<tr>
<th>Right gaze</th>
<th>Primary position</th>
<th>Left gaze</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET 25 PD</td>
<td>ET 15 PD</td>
<td>ET 5 PD</td>
</tr>
</tbody>
</table>

Answer: Recess the Left medial rectus muscle.

Note that a left medial rectus muscle recession would have more of an effect in right gaze where the deviation is maximum. A right medial rectus muscle recession would induce an exotropia in left gaze and leave a residual esotropia in right gaze if the esotropia in primary position is corrected.