Handbook of High-Temperature Superconductivity
J. Robert Schrieffer
Handbook of High-Temperature Superconductivity

Theory and Experiment

J. Robert Schrieffer
Editor

James S. Brooks
Associate Editor

Springer
Front Cover Image: Angle resolved phase sensitive determination of the in-plane superconducting gap in YBa$_2$Cu$_3$O$_{7-\delta}$. Combined SQUID microscope images of a series of 2-junction YBCO/Nb rings, with one junction angle fixed at 167.5 degrees relative to the majority twin a-axis direction of the YBCO, and the other junction angle varying in 5 degree intervals. The images, each of a square area 150 microns on a side and taken after the rings were cooled in zero field, are arranged in a polar plot. They show that the rings were either in the $n = 0$ or $n = 1/2$ flux quantum states. The transitions from the $n = 0$ to $n = 1/2$ flux quantum states occur at angles slightly different from $(2m + 1) 45$ degrees, m an integer, because of a small s-wave component in addition to the predominant d-wave component to the in-plane superconducting gap in this high temperature cuprate perovskite superconductor. Image appears courtesy of J.R. Kirtley. Data were originally published in J.R. Kirtley, C.C. Tsuei, Ariando, C.J.M. Verwijs, S. Harkema, and H. Hilgenkamp, *Nature Physics* 2, 190 (2006).
Low temperature superconductivity was discovered by H. Kammerlingh-Onnes in 1911, at the University of Leiden. He was awarded the 1913 Nobel Prize in Physics, partly for this discovery, i.e., that at low enough temperatures, certain metals become perfect conductors of electricity. In 1933, Meissner and Ossenfeld discovered that a superconductor (SC) is also a perfect diamagnet, i.e., that the magnetic field vanishes in the bulk of a SC. In 1957, J. Bardeen, L.N. Cooper and J.R. Schrieffer (BCS) advanced the pairing theory of superconductivity which gives a quantitative account of many properties of low temperature SCs, and makes a number of predictions of novel phenomena which have been confirmed in a large variety of experiments. BCS were awarded the Nobel Prize in 1972 for the pairing theory.

Through intensive experimental research, the maximum T_c was raised to $21^\circ K$ in an alloy NbGeAl. In 1986, G. Bednorz and K.A. Müller discovered “high temperature superconductivity” in the layered cuprate La$_{2-x}$Ba$_x$CuO$_4$ at $30^\circ K$, for which they were awarded the 1987 Nobel Prize in Physics. $T_c \sim 93^\circ K$ was discovered by P. Chu in the ternary compound of YBaCuO soon there after.

The maximum T_c found to date is in a mercury based cuprate, which has $T_c = 133^\circ K$ at ambient pressure ($\sim 160^\circ K$ under pressure). Through concerted experimental and theoretical efforts, strong evidence has been adduced that the attractive electron pairing interaction in HTS cuprates is magnetic in origin.

A lot has happened since 1986. The problem of high temperature superconductivity, and more generally that of metallic strongly correlated systems, remains a major open problem in condensed matter physics, and it is the focus of intensive research. As the reader will see from the many chapters to follow, the authors are meeting these challenges. There have been incredible advances in materials, in sample quality and in single crystals, in hole and electron doping, and in the development of sister compounds with lower T_c’s that allow access to the normal state with available high magnetic fields. Probes for structure and dynamics such as scanning-tunneling probe spectroscopy, angle resolved photoemission, and neutron scattering have greatly advanced. High precision resonance and thermodynamic methods, low energy optical probes, and high pressures have likewise been brought to bear on the problems. The authors’ statement in the introductory section of Chapter 3 articulates a broad central theme of this treatise: “This revolution...” (in this case in reference to ARPES) “...and its scientific impact result from dramatic advances in four essential components: instrumental resolution and efficiency, sample manipulation, high quality samples and well-matched scientific issues.” On the theoretical front, the deceptively simple problem of a “doped Mott Insulator,” when applied to the cuprates, turns out to be only the starting point of what rapidly becomes a huge
and complex problem. To go beyond BCS, new phenomena need new theories: not only high T_c, but pairing, interactions, symmetry, pseudogaps, inhomogeneity and stripes, the proximity of magnetism and superconductivity, sensitivity to impurities, and non-Fermi liquid normal state properties must all be addressed.

We have selected the title “Handbook of High Temperature Superconductivity” to describe this treatise since many of the articles go into considerable depth in both experimental and theoretical methodologies.

The treatise begins in Chapter 1 with Müller’s review of hole-doped cuprates where he argues that the dynamical coexistence of bipolarons and fermions are essential features of both the normal and superconducting states. In Chapter 2 Kirtley and Tafuri briefly review the information obtained from tunneling into conventional superconductors and describe why the situation is more complicated and interesting in the cuprates. They then describe experimental methods for making tunneling contacts, the evidence for and implications of d-wave symmetry, the superconducting gap, the pseudogap, quasiparticle interactions, and other aspects of high temperature superconductors. In Chapter 3, the technique of angle resolved photoemission spectroscopy (ARPES) is described in some detail by Zhou, Cuk, Devereaux, Nagaosa, and Shen, and the impact of ARPES on our understanding of the electronic structure, such as Fermi surface, gap anisotropy and d-wave character, and pseudogap behavior is reviewed. Of special importance is their presentation of the latest results on the electron-phonon interaction in the cuprates. In Chapter 4 Bonn and Hardy review microwave studies of high temperature superconductors, where considerable background and detail is given to the methods employed. Results on the penetration depth leading to the “superfluid stiffness” parameter, the surface resistance that yields the microwave conductivity, and a discussion of the role of superconducting fluctuations are presented. In Chapter 5 Slichter reviews the area of magnetic resonance (predominantly NMR, but also briefly ESR) in high temperature superconductors. The spin lattice relaxation time, transverse relaxation time, and the Knight shift are discussed for both YBCO, LSCO in terms of information gained on the electron spin susceptibility, and on the pairing state. In Sr doped and undoped LCO, analysis of line widths and shapes yield information about local (spatial) spin modulations, and spin glass behavior.

Neutron scattering in the cuprates is presented in Chapter 6 by Tranquada in the context of magnetic excitations and antiferromagnetic correlations for both hole and (briefly) electron doped systems. The evolution of the spin dynamics with doping, from the antiferromagnetism of the parent insulators through the universal magnetic excitation spectrum found near optimal doping, is discussed. The nature of stripe order and its possible relevance are also covered. In the summary, the nature of magnetic excitations revealed by neutron scattering is discussed in the context of current theoretical work. In Chapter 7 Orenstein treats optical conductivity and spatial inhomogeneity in the cuprates, first in an overview of the field. An additional spectral feature seen in the so-called “terahertz gap” in many cuprates is discussed, and is assigned to the spatial variation of the superfluid density. It is shown that optical conductivity can provide critical information about inhomogeneity in the cuprates. In Chapter 8 Geballe and Koster consider the wide range of superconducting transition temperature (T_c) values in the cuprates and re-visit the notion that interactions are confined to the CuO$_2$ layers. They provide evidence that T_c enhancements found in the cuprates that contain charge reservoir layers can be understood in terms of pairing interactions in the charge reservoir layers, and also propose linear quasiparticles to account for superconductivity in the one dimensional double chain cuprates. In Chapter 9, Fisher, Gordon, and Phillips review the thermodynamic properties of high temperature superconductors. More recent results (mostly specific heat) based on better samples and new interpretations are featured, and are reported for the energy gap, fluctuation
effects, vortices, flux-lattice melting, the pseudogap, stripes, and chemical substitutions. Some attention is also given to experimental methodology.

The various anomalies in the normal state transport properties of cuprates are reviewed by Hussey in Chapter 10. Experimental work on in-plane and inter-plane electrical transport, Hall effect and Kohler’s rule, thermal transport, and the Nernst-Ettinghausen effect, are reviewed for materials over a wide range of doping. Despite the wide-range of crystallographic structures in the different cuprate families, a remarkably generic picture emerges, suggesting the transport behavior is largely associated with a single CuO\(_4\) unit. Theoretical attempts at explaining this mysterious behavior are also summarized. A comprehensive review of high pressure effects on elemental, binary, and high \(T_c\) superconductors is given by Schilling in Chapter 11. Hydrostatic, non-hydrostatic, and uniaxial pressure effects are discussed. One conclusion is that pressure effects seem to point to the structure of the CuO\(_2\) planes as the most important parameter that determines \(T_c\), where “the closer the planes are to being square and flat, and the smaller their area A, the higher the value of \(T_c\)”. The result \(T_c \sim A^{-2}\) is considered to be one of the most important results that pressure has yet given us for high temperature superconductors. Future prospects for combining pressure with other simultaneous measurements to resolve other aspects of the high \(T_c\) problem are also discussed. In Chapter 12 Brooks reviews in parallel quasi-one and quasi-two dimensional organic superconductors, and their close relationship to the Mott Hubbard model. Both conventional and unconventional (p-wave and d-wave) superconducting properties are discussed, and similarities and differences between organic and cuprate and perovskite systems are described.

In the next three chapters theoretical aspects of high temperature superconductivity are treated. Scalapino, in Chapter 13, reviews numerical studies of the two-dimensional one-band Hubbard model which show that this model exhibits the basic phenomena seen in the cuprates. These show that, at half-filling, the ground state of the system is a Mott-Hubbard antiferromagnetic insulator. Then, upon doping the system away from half filling a pseudogap can appear and at low temperatures evidence for d-wave pairing and striped phases are found. The near degeneracy of these phases is also reminiscent of the behavior of the actual cuprate materials. This chapter concludes with a discussion of what numerical methods tell us about the momentum, frequency and spin structure of the pairing interaction in this model. In Chapter 14 Lee reviews previous theoretical work on high temperature superconductivity, and argues that the one-band Hubbard model in the strong coupling limit (\(t-t'\) model with \(t'\)) can capture the physics. To make further progress, the treatment involves the constraint of no-double occupancy and thereby gauge theories. The predicted pseudogap and vortex structure lead to a description of the phase diagram and the onset of \(T_c\). A number of other fundamental theoretical issues including RVB, spin liquids, fractionalization and emergent phenomena are also discussed. Kivelson and Fradkin, in Chapter 15, consider the role of inhomogeneity for the mechanism of high temperature superconductivity. In reviewing the field, the authors observe that superconductivity is common, but high temperature superconductivity is rare and confined to a small subset of materials. They analyze a class of model inhomogeneous doped Mott insulators, which are shown conclusively to exhibit high temperature superconductivity. Generalizing from this, they propose that an optimal degree (and form) of inhomogeneity (probably self-organized) is an essential feature of the mechanism. The relation of this notion to the occurrence of competing orders is clarified. The chapter contains an interesting appendix on “what defines high temperature superconductivity?”.

We depart from the cuprates in Chapter 16 where Pugh, Saxena and Lonzarich consider novel quantum states and unconventional forms of superconductivity which may occur on the border of long range magnetic order in heavy-fermion and related itinerant electron magnetic
materials. The chapter begins by considering the simplest deviations from the standard low temperature theory of metals that are observed on the border of long-range ferromagnetic order in metals where no superconductivity arises. It then describes cases on the border of antiferromagnetism where superconducting instabilities are prevalent. The effective dimensionality and proximity of density instabilities in some heavy-fermion superconductors are considered in light of Cooper pair formation. The case of superconductivity on the border of ferromagnetism is also described. Open questions to our current understanding are highlighted and possible future advances are discussed. Some of the materials described in the chapter have some similarities with high temperature superconductors and these are considered. An important aspect of this chapter is the description of the next generation of high pressure and low temperature instrumentation to further advance research in the important area of magnetic metals, quantum phase transitions and superconductivity.

We think you will find this treatise essential to obtain a global view of high temperature superconductivity, including the experimental and theoretical methods involved, the materials, the relationships with heavy-fermion and organic systems, and the many formidable remaining problems and challenges.

J.R. Schrieffer
J.S. Brooks
Acknowledgments

The contributors would like to acknowledge that the origin of this treatise arose from the insight, enthusiasm and persuasive influence of J.R. Schrieffer. We have all greatly benefited from his kind and personal manner, and his fundamental advances in the field of condensed matter physics.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ix</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xxi</td>
</tr>
<tr>
<td>Credit Lines</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1 From Single- to Bipolarons with Jahn–Teller Character and Metallic Cluster-Stripes in Hole-Doped Cuprates

K. A. Müller

1.1. The Original Jahn–Teller Polaron Concept and Its Shortcomings 1
1.2. Recent Experiments Probing Delocalized Properties 2
1.3. Probing of Local Properties 4
1.4. The Intersite JT-Bipolaron Concept Derived from EXAFS, EPR, and Neutron Scattering 5
1.5. Two-Component Scenario 7
1.6. JT-Bipolarons as the Elementary Quasiparticles to Understand the Phase Diagram and Metallic Clusters or Stripes 9
1.7. Substantial Oxygen Isotope Effects 12
1.8. Concluding Remarks 17
Bibliography 17

2 Tunneling Measurements of the Cuprate Superconductors

J. R. Kirtley and F. Tafuri

2.1. Introduction 19
2.2. General Concepts 20
2.2.1. Types of Junction Structures 20
2.2.2. Generalized Junction Conductance 22
2.2.3. The Tunnel and Proximity Effects 22
2.2.4. Andreev Reflection and Bound States 25
2.2.5. The Josephson Effect: General Features 27
Andreev Reflection in SNS Junctions 28
2.3. Means of Preparing Tunnel Junctions 32
2.3.1. Junctions with Single Crystals 32

Bibliography
2.3.2. Grain Boundary Junctions .. 32
 Bicrystal Junctions ... 32
 Biepitaxial Junctions .. 33
 Step-Edge Junctions .. 34
 Electron Beam Junctions ... 34
2.3.3. Junctions with Artificial Barriers 35
 Noble Metal Barriers .. 35
 Perovskite and Layered Materials Barriers 36
2.3.4. Interface-Engineered Junctions 37
2.3.5. Junctions with HTS Rather than YBCO 37
 La_{1.85}Sr_{0.15}CuO_{4}-Based Trilayer with One-Unit-Cell-Thick Barrier . 37
 Electron Doped HTS .. 38
 Ca and Co Doped YBCO: Insights into the Overdoped Regime 38
 Ultra-Thin Films and Superlattices 38
 Intrinsic Stacked Junctions .. 38
2.4. π-Rings and 0 − π-Junctions 39
2.5. Tunneling Spectroscopy ... 44
 2.5.1. Superconducting Gap .. 44
 General Features ... 44
 Temperature Dependence .. 50
 Momentum Dependence .. 53
 Doping Dependence .. 57
 Macroscopic Quantum Effects ... 59
 2.5.2. Pseudogap .. 60
 Temperature Dependence .. 60
 Magnetic Field Dependence ... 62
 2.5.3. Linear Conduction Background 64
 2.5.4. Zero-Bias Anomalies .. 65
 2.5.5. Atomically Resolved Conductivity Modulation Effects 69
 2.5.6. Strong Coupling Effects 72
 Electron–Phonon ... 73
 Electron–Magnon ... 74
2.6. Conclusions .. 75
Bibliography .. 75

3 Angle-Resolved Photoemission Spectroscopy on Electronic Structure
and Electron–Phonon Coupling in Cuprate Superconductors
X. J. Zhou, T. Cuk, T. Devereaux, N. Nagaosa, and Z.-X. Shen
3.1. Introduction ... 87
3.2. Angle-Resolved Photoemission Spectroscopy 88
 3.2.1. Principle ... 88
 3.2.2. Technique ... 90
3.3. Electronic Structures of High Temperature Superconductors 95
 3.3.1. Basic Crystal Structure and Electronic Structure 95
 3.3.2. Brief Summary of Some Latest ARPES Results 98
3.4. Electron–Phonon Coupling in High Temperature Superconductors 98
 3.4.1. Brief Survey of Electron–Phonon Coupling in High-Temperature Superconductors ... 99
Contents

3.4.2. Electron–Phonon Coupling: Theory .. 102
 General ... 102
 Weak Coupling—Perturbative and Self-Energy Description 106
 Strong Coupling—Polaron .. 110

3.4.3. Band Renormalization and Quasiparticle Lifetime Effects 111
 El–Ph Coupling Along the (0,0)−(π,π) Nodal Direction 111
 Multiple Modes in the Electron Self-Energy 116
 El–Ph Coupling Near the (π,0) Antinodal Region 118
 Anisotropic El–Ph Coupling .. 122

3.4.4. Polaronic Behavior ... 124
 Polaronic Behavior in Parent Compounds 124
 Doping Dependence: From Z≈0 Polaron to Finite Z Quasiparticles ... 128
 Doping Evolution of Fermi Surface: Nodal−Antinodal Dichotomy 130

3.4.5. Electron–Phonon Coupling and High Temperature Superconductivity ... 135

3.5. Summary .. 137

Bibliography .. 138

4 Microwave Electrodynamics of High Temperature Superconductors

D. A. Bonn and W. N. Hardy

4.1. Introduction .. 145

4.2. Electrodynamics of Superconductors ... 146
 4.2.1. London Theory ... 146
 4.2.2. Surface Impedance Approximation 147
 4.2.3. Non-local Electrodynamics .. 151
 4.2.4. Excitation Spectrum of a d-Wave Superconductor 151
 Phenomenological Pairing Model .. 152
 Effect of Impurities .. 154

4.3. Experimental Techniques .. 156
 4.3.1. Penetration Depth Techniques—Single Crystals 158
 Excluded Volume Techniques .. 158
 Far Infrared Reflectivity: |Re|e^iθ .. 159
 Measurement of Internal Field Distribution in Mixed State 160
 Zero-Field Gadolinium ESR ... 161
 4.3.2. Penetration Depth Techniques—Thin Films 161
 Low Frequency Mutual Inductance Techniques 161
 Thin Film Resonator Techniques .. 161
 Millimetre Wave Transmission .. 162
 Far-Infrared Reflection ... 162
 Slow Muon Beam Method .. 162
 4.3.3. Penetration Depth Techniques—Powders 162
 4.4. Measurement of Surface Resistance Rs 163
 4.4.1. Single Crystals ... 163
 Cavity Perturbation ... 163
 Broadband Bolometric Spectroscopy .. 165
 Thin Film Methods ... 165
Contents

- **4.5. Penetration Depth** ... 166
 - 4.5.1. Complementary Roles of λ and R_s 166
 - 4.5.2. YBa$_2$Cu$_3$O$_{6+x}$... 167
 - 4.5.3. Penetration Depth Anisotropy in YBa$_2$Cu$_3$O$_{6+x}$ 170
 - 4.5.4. Oxygen Doping Effects 171
 - 4.5.5. Other Materials ... 174
 - Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$... 174
 - Tl$_2$Ba$_2$CaCu$_2$O$_{8}$... 174
 - Tl$_2$Ba$_2$CuO$_{6+\delta}$.. 174
 - La$_{1-x}$Sr$_x$CuO$_4$.. 175
 - HgBa$_2$Ca$_2$Cu$_3$O$_{8+\delta}$ 175
 - Electron Doped Thin Films and Single Crystals 175
 - 4.5.6. \hat{c}-Axis Penetration Depth 177
- **4.6. Surface Resistance** ... 179
 - 4.6.1. YBa$_2$Cu$_3$O$_{6+x}$ ab-Plane 180
 - 4.6.2. Disorder and Quasiparticle Damping 185
 - 4.6.3. Other Materials—ab-Plane 187
 - 4.6.4. Low Temperature Limit 193
 - 4.6.5. Anisotropy ... 200
- **4.7. Fluctuations** ... 202
- **Bibliography** .. 209

5 Magnetic Resonance Studies of High Temperature Superconductors

Charles P. Slichter

- **5.1. Introduction** ... 215
- **5.2. Basic NMR Theory and Experiment** 216
 - 5.2.1. The Resonance Spectrum .. 216
 - 5.2.2. Exciting a Resonance 217
 - 5.2.3. Spin–Lattice Relaxation 219
 - 5.2.4. Double Resonance .. 220
 - 5.2.5. NMR in Superconductors 221
- **5.3. NMR in Normal State Metals** .. 221
- **5.4. NMR in Conventional BCS Superconductors** 223
- **5.5. The Cuprate Spin Hamiltonian** 224
- **5.6. YBCO above T_C .. 226
 - 5.6.1. One or Two Components? 226
 - 5.6.2. The Spin Pseudogap .. 227
 - 5.6.3. The Spin–Lattice Relaxation Time 227
 - 5.6.4. Transverse Relaxation and T_{2G} 232
 - 5.6.5. Scaling Relationships ... 234
- **5.7. YBCO Below T_C: NMR Evidence About the Pairing State** 236
 - 5.7.1. The Knight Shift ... 236
 - 5.7.2. Spin–Lattice Relaxation .. 239
- **5.8. LSCO** .. 240
 - 5.8.1. The Spectrum ... 240
 - 5.8.2. One or Two Components .. 243
 - 5.8.3. The Incommensurate State 244
 - 5.8.4. Spatial Modulation ... 245
6 Neutron Scattering Studies of Antiferromagnetic Correlations in Cuprates

John M. Tranquada

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Introduction</td>
<td>257</td>
</tr>
<tr>
<td>6.2. Magnetic Excitations in Hole-Doped Superconductors</td>
<td>259</td>
</tr>
<tr>
<td>6.2.1. Dispersion</td>
<td>259</td>
</tr>
<tr>
<td>6.2.2. Spin Gap and “Resonance” Peak</td>
<td>262</td>
</tr>
<tr>
<td>6.2.3. Discussion</td>
<td>263</td>
</tr>
<tr>
<td>6.3. Antiferromagnetism in the Parent Insulators</td>
<td>264</td>
</tr>
<tr>
<td>6.3.1. Antiferromagnetic Order</td>
<td>264</td>
</tr>
<tr>
<td>6.3.2. Spin Waves</td>
<td>267</td>
</tr>
<tr>
<td>6.3.3. Spin Dynamics at $T > T_N$</td>
<td>271</td>
</tr>
<tr>
<td>6.4. Destruction of Antiferromagnetic Order by Hole Doping</td>
<td>272</td>
</tr>
<tr>
<td>6.5. Stripe Order and Other Competing States</td>
<td>274</td>
</tr>
<tr>
<td>6.5.1. Charge and Spin Stripe Order in Nickelates</td>
<td>274</td>
</tr>
<tr>
<td>6.5.2. Stripes in Cuprates</td>
<td>276</td>
</tr>
<tr>
<td>6.5.3. Spin-Density-Wave Order in Chromium</td>
<td>279</td>
</tr>
<tr>
<td>6.5.4. Other Proposed Types of Competing Order</td>
<td>280</td>
</tr>
<tr>
<td>6.6. Variation of Magnetic Correlations with Doping and Temperature in Cuprates</td>
<td>280</td>
</tr>
<tr>
<td>6.6.1. Magnetic Incommensurability vs. Hole Doping</td>
<td>280</td>
</tr>
<tr>
<td>6.6.2. Doping Dependence of Energy Scales</td>
<td>282</td>
</tr>
<tr>
<td>6.6.3. Temperature-Dependent Effects</td>
<td>283</td>
</tr>
<tr>
<td>6.7. Effects of Perturbations on Magnetic Correlations</td>
<td>284</td>
</tr>
<tr>
<td>6.7.1. Magnetic Field</td>
<td>284</td>
</tr>
<tr>
<td>6.7.2. Zn Substitution</td>
<td>286</td>
</tr>
<tr>
<td>6.7.3. Li-Doping</td>
<td>286</td>
</tr>
<tr>
<td>6.8. Electron-Doped Cuprates</td>
<td>286</td>
</tr>
<tr>
<td>6.9. Discussion</td>
<td>288</td>
</tr>
<tr>
<td>6.9.1. Summary of Experimental Trends in Hole-Doped Cuprates</td>
<td>288</td>
</tr>
<tr>
<td>6.9.2. Theoretical Interpretations</td>
<td>289</td>
</tr>
</tbody>
</table>

7 Optical Conductivity and Spatial Inhomogeneity in Cuprate Superconductors

J. Orenstein

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction</td>
<td>299</td>
</tr>
<tr>
<td>7.1.1. Optical Conductivity of Superconductors</td>
<td>299</td>
</tr>
<tr>
<td>7.1.2. Optical Conductivity and the Cuprates</td>
<td>300</td>
</tr>
<tr>
<td>7.2. Low Frequency Optical Conductivity in the Cuprates</td>
<td>301</td>
</tr>
<tr>
<td>7.2.1. YBCO Single Crystals: Success of the Two-Fluid Model</td>
<td>301</td>
</tr>
<tr>
<td>7.2.2. The BSCCO System: Failure of the Two-Fluid Description</td>
<td>303</td>
</tr>
<tr>
<td>7.2.3. Additional Examples</td>
<td>307</td>
</tr>
</tbody>
</table>
7.3. Optical Conductivity vs. Hole Concentration in BSCCO 309
 7.3.1. Systematics of the Conductivity Anomaly 309
 7.3.2. Quantitative Modeling of $\sigma(\omega, T)$ 312
7.4. Collective Mode Contribution to Optical Conductivity 314
 7.4.1. Origin of the Collective Contribution 314
 7.4.2. Optical Conductivity in the Presence of Inhomogeneity 316
 7.4.3. Extended Two-Fluid Model ... 316
 7.4.4. Comparison of Model and Experiment 320
7.5. Summary and Outlook .. 321
 7.5.1. Summary .. 321
 7.5.2. Outlook and Directions of Future Research 321
Bibliography ... 323

8 What T_c can Teach About Superconductivity
 T. H. Geballe and G. Koster
8.1. Introduction ... 325
8.2. Cuprate Superconductivity .. 326
 8.2.1. Pairing and T_c in the Cuprates 327
 The Cu Ion .. 327
8.3. Interactions Beyond the CuO$_2$ Layers 328
 8.3.1. Pairing Centers in the Charge Reservoir Layer Cuprates 329
 8.3.2. Negative-U Center Electronic Pairing in a Model System 330
 8.3.3. The Chain-Layer Cuprates 334
 8.3.4. Other Chain Layer Compounds 338
8.4. Superconductivity Originating in the CuO$_2$ Layers 339
8.5. Summary ... 341
Bibliography ... 341

9 High-T_c Superconductors: Thermodynamic Properties
 R. A. Fisher, J. E. Gordon, and N. E. Phillips
9.1. Introduction ... 345
 9.1.1. Scope and Organization of the Review 345
 9.1.2. Cuprate Superconductors: Occurrence; Structures; Nomenclature;
 Phase Diagram; Characteristic Parameters 346
 9.1.3. Magnetic Properties; Critical-Field Measurements 349
 9.1.4. Specific-Heat Measurements 350
 Specific Heat: Component Contributions; Field and Temperature
 Dependences; Nomenclature ... 350
 Specific Heat: Experimental Techniques 352
 Specific Heat: Problems and Uncertainties in Analysis of Data 353
9.2. Low-Temperature Specific Heat 353
 9.2.1. Zero-Field “Linear” Term 354
 9.2.2. Evidence for Line Nodes in the Energy Gap 357
9.3. Chemical Substitutions .. 360
 9.3.1. Rare-Earth Substitutions on the Y and La Sites 361
 9.3.2. General Effects of Substitutions on the Cu Sites 362
 9.3.3. Effects of Zn Substitution on the Cu Sites 364
9.4. Stripes .. 367
9.5. Specific-Heat Anomaly at T_c: Fluctuations; BCS Transition, BEC 372
9.5.1. Gaussian and Critical Fluctuations: .. 372
 Fluctuations: Optimally-Doped Samples in Zero Field 373
 Fluctuations: Optimally Doped Samples in Field 375
 Fluctuations: Under- and Over-Doped Samples 376
9.5.2. BCS to BEC .. 376
9.6. Vortex-Lattice Melting .. 380
9.6.1. Introduction; Early Measurements on YBCO 380
9.6.2. Other Measurements on YBCO ... 381
9.6.3. Measurements on Other HTS .. 386
9.7. Calorimetric Evidence for the Pseudogap 387
9.7.1. Determination of the Electron Specific Heat of $YBa_2Cu_3O_{6+\delta}$ 387
9.7.2. Use of the Differential Method to Obtain the Conduction-Electron Specific Heat of $YBa_2Cu_3O_{6+\delta}$—A Simplified Discussion 388
9.7.3. Other Specific-Heat Results and Their Interpretation 390

Bibliography .. 390

10 Normal State Transport Properties

N. E. Hussey

10.1. Introduction ... 399
10.2. Evolution of the In-Plane Resistivity with Doping 400
10.2.1. Introduction .. 400
10.2.2. Optimally Doped Cuprates .. 401
10.2.3. Underdoped Cuprates .. 404
10.2.4. Overdoped Cuprates .. 406
10.3. The Out-of-Plane Transport ... 406
10.3.1. Introduction .. 406
10.3.2. Optimal Doped Cuprates .. 407
10.3.3. Underdoped Cuprates .. 408
10.3.4. Overdoped Cuprates .. 409
10.4. The Anomalous Hall Coefficient and Violation of Kohler’s Rule 410
10.4.1. Introduction .. 410
10.4.2. Magnitude of R_H ... 410
10.4.3. The Inverse Hall Angle cot $\theta_H(T)$ 411
10.4.4. Theoretical Modeling of $\rho_{ab}(T)$ and $R_H(T)$ in Cuprates 412
10.4.5. In-Plane Magnetoresistance .. 414
10.5. Impurity Studies ... 416
10.6. Thermal Transport .. 417
10.6.1. Introduction .. 417
10.6.2. Thermoelectric Power .. 418
10.6.3. Thermal Conductivity .. 418
10.6.4. Nernst–Ettinghausen Effect .. 419
10.7. Discussion and Summary .. 419

Bibliography .. 422
11 High-Pressure Effects
J. S. Schilling

11.1. Introduction ... 427
11.2. Elemental Superconductors 430
 11.2.1. Simple Metals ... 430
 11.2.2. Nonalkali Metals .. 430
 11.2.3. Alkali Metals .. 433
11.3. Binary Superconductors 436
 11.3.1. A-15 Compounds 437
 11.3.2. A Special Case: MgB$_2$ 438
 11.3.3. Doped Fullerenes A$_3$C$_{60}$ 439
11.4. Multiatom Superconductors: High-T_c Oxides 442
 11.4.1. Nonhydrostatic Pressure Media 446
 11.4.2. Structural Phase Transitions 446
 11.4.3. Oxygen Ordering Effects 447
 11.4.4. Intrinsic Pressure Dependence $T_c^{intr}(P)$ 451
 11.4.5. Uniaxial Pressure Results 453
11.5. Conclusions and Outlook 455
Bibliography ... 457

12 Superconductivity in Organic Conductors
J. S. Brooks

12.1. Introduction ... 463
12.2. Organic Building Blocks and Electronic Structure 464
12.3. “Conventional” Properties of Organic Superconductors 466
12.4. The “Standard Model” for Metallic, Insulating, and Antiferromagnetic Ground States ... 475
 12.4.1. Band Filling and Its Consequences 475
 12.4.2. Can Superconductivity Emerge From the “Standard Model”? 479
 12.4.3. But What if it is Really Just Phonons? 481
12.5. “Unconventional” Properties of Organic Superconductors 481
 12.5.1. Q1D Materials and p-Wave Pairing 481
 12.5.2. Q2D Materials and d-Wave Pairing 482
 12.5.3. Magnetic Field Induced Superconductivity and Possible FFLO States 483
12.6. Comparison of High-T_c Superconductors with Organic Conductors 486
12.7. Summary and Future Prospects 488
Bibliography ... 490

13 Numerical Studies of the 2D Hubbard Model
D. J. Scalapino

13.1. Introduction ... 495
13.2. Numerical Techniques .. 496
 13.2.1. Determinantal Quantum Monte Carlo 497
 13.2.2. The Dynamic Cluster Approximation 499
 13.2.3. The Density Matrix Renormalization Group 501
13.3. Properties of the 2D Hubbard Model 503
 13.3.1. The Antiferromagnetic Phase 504
 13.3.2. $d_{x^2-y^2}$ Pairing .. 506
 13.3.3. Stripes ... 510
 13.3.4. The Pseudogap .. 512
13.4. The Structure of the Effective Pairing Interaction 516
13.5. Conclusions ... 522
Bibliography .. 524

14 t–J Model and the Gauge Theory Description of Underdoped Cuprates

Patrick A. Lee

14.1. Introduction ... 527
14.2. Basic Electronic Structure of the Cuprates 528
14.3. Phenomenology of the Underdoped Cuprates 531
14.4. Introduction to RVB and a Simple Explanation of the Pseudogap . 534
14.5. Slave-Boson Formulation of t–J Model and Mean Field Theory 536
14.6. $U(1)$ Gauge Theory of the URVB State 541
14.7. $SU(2)$ Slave-Boson Theory of Doped Mott Insulators 546
 14.7.1. $SU(2)$ Slave-Boson Mean-Field Theory at Finite Doping 547
 14.7.2. Effect of Gauge Fluctuations: Enhanced (π, π) spin Fluctuations in Pseudogap Phase .. 550
 14.7.3. σ-Model Effective Theory and New Collective Modes in the Superconducting State .. 551
 14.7.4. Vortex Structure .. 554
 14.7.5. Phase Diagram .. 555
14.8. Spin Liquids, Deconfinement, and the Emergence of Gauge Fields and Fractionalized Particles .. 557
14.9. Application of Gauge Theory to the High T_c Superconductivity Problem .. 559
 14.9.1. Spin Liquid, Quantum Critical Point, and the Pseudogap 560
 14.9.2. Signature of the Spin Liquid 562
14.10. Summary and Outlook .. 563
Bibliography .. 565

15 How Optimal Inhomogeneity Produces High Temperature Superconductivity

Steven A. Kivelson and Eduardo Fradkin

15.1. Why High Temperature Superconductivity is Difficult 570
15.2. Dynamic Inhomogeneity-Induced Pairing Mechanism of HTC 572
 15.2.1. Pairing in Hubbard Clusters 573
 15.2.2. Spin-Gap Proximity Effect 574
15.3. Superconductivity in a Striped Hubbard Model: A Case Study 576
 15.3.1. Zeroth-Order Solution: Isolated two-Leg Ladders 578
 15.3.2. Weak Inter-Ladder Interactions 579
 15.3.3. Renormalization-Group Analysis and Inter-Ladder Mean Field Theory .. 580
 15.3.4. The $x \rightarrow 0$ Limit ... 581
 15.3.5. Relation to Superconductivity in the Cuprates 582
15.4. Why There is Mesoscale Structure in Doped Mott Insulators 582
15.5. Weak Coupling Vs. Strong Coupling Perspectives ... 584
15.6. What is so Special About the Cuprates? .. 585
 15.6.1. Is Charge Order, Or Fluctuating Charge Order, Ubiquitous? 585
 15.6.2. Does the “Stuff” Between the Cu–O Planes Matter? 586
 15.6.3. What About Phonons? .. 588
 15.6.4. What About Magnetism? ... 588
 15.6.5. Must We Consider Cu–O Chemistry and the Three-Band Model? 589
 15.6.6. Is d-Wave Crucial? .. 589
 15.6.7. Is Electron Fractionalization Relevant? 590
15.7. Coda: High Temperature Superconductivity is Delicate But Robust 590
Bibliography .. 592

16 Superconducting States on the Border of Itinerant Electron Magnetism

 Emma Pugh, Siddharth Saxena, and Gilbert Lonzarich

16.1. Introduction ... 597
16.2. Uncharted Territory: The New Frontier .. 597
16.3. Logarithmic Fermi Liquid .. 598
16.4. The Puzzle of MnSi ... 599
16.5. Superconductivity on the Border of Magnetism 600
16.6. Three Dimensional vs. Quasi-Two-Dimensional Structures 600
16.7. Density Mediated Superconductivity .. 601
16.8. The Search for Superconductivity on the Border of Itinerant Ferromagnetism 602
16.9. Why Don’t All Nearly Magnetic Materials Show Superconductivity? 605
16.10. From Weak to Strong Coupling ... 607
16.11. Superconductivity Without Inversion Symmetry 608
16.12. Quantum Tuning ... 608
16.13. Concluding Remarks .. 611
Bibliography .. 611

Index .. 615
List of Contributors

D.A. Bonn, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Rd., Vancouver, BC, Canada V6T 1Z1.

J.S. Brooks, Physics/NHMFL Florida State University, 1800 East Paul Dirac Drive Tallahassee, FL 32310 USA.

T. Cuk, Department of Physics, Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305, USA.

T. Devereaux, Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1.

R.A. Fisher, Department of Chemistry, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

E. Fradkin, Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080, USA.

T.H. Geballe, Department of Applied Physics and Department of Materials Science, Stanford University, Stanford, CA 94305, USA.

J.E. Gordon, Physics Department, Amherst College, Amherst, MA 01002, USA.

W.N. Hardy, Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Rd., Vancouver, BC, Canada V6T 1Z1.

N.E. Hussey, H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK.

J.R. Kirtley, IBM, T.J. Watson Research Center, Yorktown Heights, NY 10598, USA.

S.A. Kivelson, Department of Physics, Stanford University, Stanford CA 93105, USA; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095-1547, USA.

G. Koster, Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA.

P.A. Lee, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

G. Lonzarich, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.

K.A. Müller, University of Zürich, Winterthurerstr. 190, Ch-8057 Zürich, Switzerland.

N. Nagaosa, CREST, Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.

J. Orenstein, Physics Department, University of California, Berkeley, CA, 94720, USA Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
N.E. Phillips, Department of Chemistry, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

E. Pugh, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.

S. Saxena, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.

D.J. Scalapino, Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA.

J.S. Schilling, Department of Physics, Washington University, CB 1105, One Brookings Dr., St. Louis, MO 63130, USA.

Z.-X. Shen, Department of Physics, Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305, USA.

C.P. Slichter, Research Professor of Physics, Department of Physics, University of Illinois Urbana/Champaign, Urbana, IL 61801, USA.

F. Tafuri, Dip. Ingegneria dell’Informazione, Seconda Università di Napoli, 29-81031 Aversa (CE), Italy.

J.M. Tranquada, Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.

X.J. Zhou, Department of Physics, Applied Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305, USA; Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA; National Laboratory for Superconductivity, Institute of Physics & Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China.
Credit Lines

The Contributors are grateful to the Authors and Publishers for permission to reproduce figures that appear in the following chapters:

Chapter 1

Fig. 1.1. Reprinted with permission from [10]. Copyright (2002) by the Taylor & Francis Group.
Fig. 1.2. Reprinted with permission from [12]. Copyright (2001) by the American Institute of Physics.
Fig. 1.3. Reprinted with permission from [15]. Copyright (1996) by the American Physical Society.
Fig. 1.4. Reprinted with permission from [18]. Copyright (1997) by the American Physical Society.
Fig. 1.5. Reprinted with permission from [20]. Copyright (2001) by the American Physical Society.
Fig. 1.8. Reprinted from [28], with permission from Springer Science+Business Media.
Figs. 1.9, 1.10. Reprinted with permission from [29]. Copyright (2004) by the American Physical Society.
Fig. 1.11. Reprinted with permission from [31]. Copyright (2005) by the American Physical Society.
Figs. 1.12, 1.13. Reprinted from [32], with permission from IOP Publishing Limited.
Fig. 1.14. Reprinted from [35], with permission from Springer Science+Business Media.

Chapter 2

Fig. 2.7. Reprinted with permission from [44]. Copyright (1997) by the American Physical Society.
Fig. 2.8. Reprinted from [20], with permission from IOP Publishing Limited.
Fig. 2.13. Reprinted with permission from [177]. Copyright (2002) by the American Institute of Physics.
Fig. 2.14. Reprinted from [114], with permission from the Nature Publishing Group.
Fig. 2.15. Reprinted with permission from [57]. Copyright (1989) by the American Physical Society.
Fig. 2.16. Reprinted with permission from [204]. Copyright (1991) by the American Physical Society.
Fig. 2.17. Reprinted with permission from [206]. Copyright (1999) by Elsevier.
Fig. 2.18. Reprinted with permission from [208]. Copyright (2003) by the American Physical Society.
Fig. 2.19. Reprinted with permission from [215]. Copyright (1998) by the American Physical Society.
Fig. 2.20. Reprinted with permission from [202]. Copyright (1998) by the American Physical Society.
Fig. 2.21. Reprinted with permission from [220]. Copyright (1998) by the American Physical Society.
Fig. 2.22. Reprinted with permission from [219]. Copyright (1999) by the American Physical Society.
Fig. 2.23. Reprinted with permission from [223]. Copyright (2000) by the American Physical Society.
Fig. 2.24. Reprinted from [229], with permission from the Nature Publishing Group.
Fig. 2.25. Reprinted with permission from [76]. Copyright (2002) by the American Physical Society.
Fig. 2.26. Reprinted with permission from [232]. Copyright (2005) by the American Physical Society.
Fig. 2.27. Reprinted with permission from [235], with permission from the Nature Publishing Group.
Fig. 2.28. Reprinted with permission from [219]. Copyright (1999) by the American Physical Society.
Fig. 2.29. Reprinted with permission from [78]. Copyright (2005) by the American Physical Society.
Fig. 2.30. Reprinted with permission from [218]. Copyright (1998) by the American Physical Society.
Fig. 2.31. Reprinted with permission from [230]. Copyright (2001) by the American Physical Society.
Fig. 2.32a. Reprinted with permission from [301]. Copyright (2004) by the American Physical Society.
Fig. 2.32b. Reprinted with permission from [300]. Copyright (2001) by the American Physical Society.
Fig. 2.33. Reprinted with permission from [328]. Copyright (1990) by the American Physical Society.
Fig. 2.34. Reprinted with permission from [336]. Copyright (1993) by the American Physical Society.
Fig. 2.35. Reprinted with permission from [357]. Copyright (2004) by the American Physical Society.
Fig. 2.36. Reprinted with permission from [354]. Copyright (1997) by the American Physical Society.
Fig. 2.37. Reprinted with permission from [373]. Copyright (1998) by the American Physical Society.
Fig. 2.38. Reprinted from [404], with permission from the Nature Publishing Group.
Chapter 3

Fig. 3.4. Reprinted with permission from [25]. Copyright (2005) by the American Physical Society.

Fig. 3.5. Reprinted with permission from [27]. Copyright (2005) by Elsevier.

Fig. 3.6a. Reprinted with permission from [31]. Copyright (2002) by the American Physical Society.

Fig. 3.6b. Reprinted with permission from [24]. Copyright (1999) by the American Physical Society.

Fig. 3.7. Reprinted with permission from [35]. Copyright (2005) by the Taylor & Francis Group.

Fig. 3.9. Reprinted from [40], Courtesy of International Business Machines Corporation copyright 1989 © International Business Machines Corporation.

Fig. 3.10a. Reprinted with permission from [41]. Copyright (1987) by the American Physical Society.

Fig. 3.10b. Reprinted with permission from [49]. Copyright (2000) by the American Physical Society.

Fig. 3.10c. Reprinted with permission from [42]. Copyright (1991) by the American Physical Society.

Fig. 3.13. Reprinted with permission from [100]. Copyright (1993) by the American Physical Society.

Fig. 3.14. Reprinted with permission from [101]. Copyright (1998) by the American Physical Society.

Fig. 3.15. Reprinted with permission from [103]. Copyright (2003) by the American Physical Society.

Fig. 3.16a. Reprinted from [104], with permission from Wiley-VCH Verlag GmBH & Co.

Fig. 3.16b. Reprinted with permission from [108]. Copyright (1999) by the American Physical Society.

Fig. 3.17. Reprinted with permission from [106]. Copyright (1995) by the American Physical Society.

Fig. 3.18. Reprinted with permission from [109]. Copyright (2001) by the American Physical Society.

Fig. 3.19. Reprinted from [114], with permission from Wiley-VCH Verlag GmBH & Co.

Fig. 3.21. Reprinted from [128], with permission from the Nature Publishing Group.

Fig. 3.22. Reprinted from [132], with permission from the Nature Publishing Group.

Fig. 3.23. Reprinted with permission from [135]. Copyright (2006) by Elsevier.

Fig. 3.24. Reprinted from [133], with permission from the Nature Publishing Group.

Fig. 3.26. Reprinted with permission from [142]. Copyright (2005) by the American Physical Society.
Fig. 3.28. Reprinted with permission from [54]. Copyright (2003) by the American Physical Society.

Fig. 3.29. Reprinted with permission from [147]. Copyright (2004) by the American Physical Society.

Fig. 3.30. Reprinted with permission from [129]. Copyright (2001) by the American Physical Society.

Figs. 3.31-3.33. Reprinted with permission from [148]. Copyright (2004) by the American Physical Society.

Fig. 3.34a. Reprinted with permission from [158]. Copyright (1998) by the American Physical Society.

Fig. 3.34b. Reprinted with permission from [113]. Copyright (2004) by the American Physical Society.

Fig. 3.34c. Reprinted with permission from [167]. Copyright (2005) by the American Physical Society.

Fig. 3.34d. Reprinted with permission from [164]. Copyright (2002) by the American Physical Society.

Fig. 3.35a. Reprinted with permission from [162]. Copyright (2005) by the American Physical Society.

Fig. 3.35b. Reprinted from [51], with permission from IOP Publishing Limited.

Fig. 3.36. Reprinted with permission from [113]. Copyright (2004) by the American Physical Society.

Fig. 3.37. Reprinted with permission from [175]. Copyright (2004) by the American Physical Society.

Fig. 3.38. Reprinted with permission from [167]. Copyright (2005) by the American Physical Society.

Figs. 3.41-3.42. Reprinted with permission from [113]. Copyright (2004) by the American Physical Society.

Fig. 3.43. Reprinted with permission from [134]. Copyright (2004) by the American Physical Society.

Fig. 3.44. Reprinted with permission from [180] and [181]. Copyrights (2001) and (2001) by the American Physical Society.

Fig. 3.45. Reprinted from [163], with permission from the American Association for the Advancement of Science.

Chapter 4

Figs. 4.3-4.4. Reprinted with permission from [86]. Copyright (2002) by the Taylor & Francis Group

Fig. 4.5. Reprinted with permission from [76]. Copyright (1994) by the American Physical Society.

Fig. 4.7. Reprinted from [65], with permission from Springer Science+Business Media.

Fig. 4.8. Reprinted from [38], with permission from Springer Science+Business Media.

Fig. 4.9. Reprinted from [65], with permission from Springer Science+Business Media.
Fig. 4.10. Reprinted with permission from [181]. Copyright (1997) by the American Physical Society.

Fig. 4.12. Reprinted from [65], with permission from Springer Science+Business Media.

Fig. 4.15. Reprinted with permission from [120]. Copyright (1996) by the American Physical Society.

Fig. 4.16. Reprinted with permission from [27]. Copyright (1996) by the American Physical Society.

Fig. 4.17. Reprinted with permission from [149]. Copyright (1996) by the American Physical Society.

Fig. 4.19. Reprinted with permission from [84]. Copyright (2004) by the American Physical Society.

Fig. 4.21a. Reprinted with permission from [15]. Copyright (1992) by the American Physical Society.

Fig. 4.21b. Reprinted with permission from [94]. Copyright (1998) by the American Physical Society.

Fig. 4.23. Reprinted with permission from [141]. Copyright (1991) by the American Physical Society.

Fig. 4.24. Reprinted with permission from [67]. Copyright (2006) by the American Physical Society.

Figs. 4.25-4.28. Reprinted from [16], with permission from the World Scientific Publishing Co.

Fig. 4.29. Reprinted with permission from [145]. Copyright (2001) by the American Physical Society.

Fig. 4.30. Reprinted with permission from [90]. Copyright (1995) by the American Physical Society.

Figs. 4.31, 4.32. Reprinted with permission from [120]. Copyright (1996) by the American Physical Society.

Figs. 4.33, 4.34. Reprinted with permission from [27]. Copyright (1997) by Elsevier.

Fig. 4.35. Reprinted with permission from [175]. Copyright (1994) by the American Physical Society.

Figs. 4.36, 4.37. Reprinted with permission from [106]. Copyright (2000) by the American Physical Society.

Fig. 4.38. Reprinted with permission from [71]. Copyright (2004) by the American Physical Society.

Fig. 4.44. Reprinted with permission from [99]. Copyright (1998) by the American Physical Society.

Figs. 4.45, 4.46. Reprinted with permission from [92]. Copyright (1994) by the American Physical Society.

Fig. 4.49. Reprinted with author’s permission from [226].

Chapter 5

Fig. 5.1. Reprinted with permission from [26]. Copyright (1991) by the American Physical Society.

Fig. 5.2. Reprinted with permission from [27]. Copyright (1989) by the American Physical Society.
Fig. 5.3. Reprinted with permission from [22]. Copyright (1989) by the American Physical Society.
Fig. 5.4. Reprinted with permission from [29]. Copyright (1997) by the American Physical Society.
Fig. 5.5. Reprinted with permission from [31]. Copyright (1989) by the American Physical Society.
Fig. 5.6. Reprinted with permission from [32]. Copyright (1991) by the American Physical Society.
Fig. 5.7. Reprinted with permission from [36]. Copyright (1994) by the American Physical Society.
Figs. 5.8, 5.9. Reprinted with permission from [40]. Copyright (1991) by the American Physical Society.
Figs. 5.10, 5.11. Reprinted with permission from [28]. Copyright (1990) by the American Physical Society.
Fig. 5.13. Reprinted with permission from [45]. Copyright (1990) by the American Physical Society.
Fig. 5.14. Reprinted from [47], with permission from the Institute of Pure and Applied Physics.
Figs. 5.15, 5.16. Reprinted with permission from [49]. Copyright (1990) by the American Physical Society.
Fig. 5.17. Reprinted with permission from [51]. Copyright (1992) by the American Physical Society.
Fig. 5.18. Reprinted with permission from [52]. Copyright (1993) by the American Physical Society.
Fig. 5.19. Reprinted with permission from [53], with permission from the Institute of Pure and Applied Physics.
Fig. 5.20. Reprinted with permission from [55]. Copyright (1998) by the American Physical Society.
Fig. 5.22. Reprinted with permission from [36]. Copyright (1994) by the American Physical Society.
Fig. 5.23. Reprinted from [70], with permission from Springer Science+Business Media.
Fig. 5.24. Reprinted from [76], with permission from Springer Science+Business Media.
Figs. 5.25, 5.26. Reprinted with permission from [77]. Copyright (2002) by the American Physical Society.
Figs. 5.27, 5.28. Reprinted from [72], with permission from Springer Science+Business Media.
Fig. 5.29. Reprinted with permission from [78]. Copyright (1993) by the American Physical Society.
Figs. 5.30, 5.31. Reprinted with permission from [89]. Copyright (2001) by the American Physical Society.

Chapter 6

Fig. 6.5. Reprinted with permission from [40]. Copyright (2004) by the American Physical Society.
Fig. 6.7a. Reprinted with permission from [55]. Copyright (1999) by the American Physical Society.
Fig. 6.9. Reprinted with permission from [68]. Copyright (2001) by the American Physical Society.

Fig. 6.11. Reprinted with permission from [32]. Copyright (1996) by the American Physical Society.

Fig. 6.12. Reprinted with permission from [127]. Copyright (2002) by the American Physical Society.

Fig. 6.13b. Reprinted with permission from [150]. Copyright (2000) by the American Physical Society.

Fig. 6.15. Reprinted with permission from [41]. Copyright (2004) by the American Physical Society.

Fig. 6.16a. Reprinted with permission from [131]. Copyright (2002) by the American Physical Society.

Fig. 6.18a. Reprinted from [18], with permission from Wiley-VCH Verlag GmBH & Co.

Fig. 6.19. Reprinted with permission from [17]. Copyright (2001) by the American Physical Society.

Chapter 7

Fig. 7.1. Reprinted with permission from [3]. Copyright (1999) by the American Physical Society.

Fig. 7.2. Reprinted with permission from [17]. Copyright (2003) by the American Physical Society.

Figs. 7.3, 7.4. Reprinted with permission from [6]. Copyright (1996) by the American Physical Society.

Fig. 7.6. Reprinted with permission from [22]. Copyright (2002) by the American Physical Society.

Fig. 7.9. Reprinted from [8], with permission from Springer Science+Business Media.

Fig. 7.10. Reprinted with permission from [25]. Copyright (1999) by the American Physical Society.

Chapter 8

Fig. 8.2. Reprinted with permission from [43]. Copyright (2004) by the American Physical Society.

Fig. 8.4. Reprinted with permission from [107]. Copyright (1994) by the American Physical Society.

Fig. 8.5. Reprinted with permission from [25]. Copyright (2003) by the American Physical Society.

Figs. 8.6, 8.7. Reprinted with author’s permission from [62].

Fig. 8.8. Reprinted with permission from [92]. Copyright (2004) by the American Physical Society.
Chapter 9

Figs. 9.1, 9.2. We are grateful to F. Hardy for preparing these figures.

Fig. 9.25. Reprinted with permission from [16]. Copyright (1993) by the American Physical Society.

Fig. 9.26. Reprinted with permission from [258]. Copyright (1994) by Elsevier.

Chapter 10

Fig. 10.1a. Reprinted with permission from [11]. Copyright (1996) by the American Physical Society.

Fig. 10.1b. Reprinted with permission from [12]. Copyright (2004) by the American Physical Society.

Fig. 10.3a. Reprinted with permission from [23]. Copyright (2000) by the American Physical Society.

Fig. 10.3b. Reprinted with permission from [25]. Copyright (1998) by the American Physical Society.

Fig. 10.4a. Reprinted with permission from [35]. Copyright (1994) by Elsevier.

Fig. 10.4b. Reprinted with permission from [45]. Copyright (2001) by the American Physical Society.

Fig. 10.5a. Reprinted with permission from [55]. Copyright (1998) by the American Physical Society.

Fig. 10.5a. Reprinted with permission from [13]. Copyright (2000) by the American Physical Society.

Fig. 10.6. Reprinted from [73], with permission from the Nature Publishing Group.

Fig. 10.7. Reprinted with permission from [79]. Copyright (1994) by the American Physical Society.

Fig. 10.8. Reprinted with permission from [17]. Copyright (1997) by Elsevier.

Fig. 10.9a. Reprinted with permission from [90]. Copyright (2000) by the American Physical Society.

Fig. 10.9b. Reprinted with permission from [88]. Copyright (1991) by the American Physical Society.

Fig. 10.10. Reprinted with permission from [93]. Copyright (1995) by the American Physical Society.

Fig. 10.11. Reprinted with permission from [43]. Copyright (1996) by the American Physical Society.

Fig. 10.12. Reprinted from [129], with permission from Springer Science+Business Media.
Chapter 11

Figs. 11.3, 11.4. Reprinted with permission from [46]. Copyright (2003) by the American Physical Society.

Fig. 11.6. Reprinted with permission from [93]. Copyright (2003) by Elsevier.

Fig. 11.7. Reprinted with permission from [110]. Copyright (1996) by the American Physical Society.

Fig. 11.8 (left). Reprinted with permission from [9]. Copyright (1994) by the American Physical Society.

Fig. 11.8 (right). Reprinted with permission from [8]. Copyright (1994) by Elsevier.

Fig. 11.9. Reprinted with permission from [122]. Copyright (1991) by Elsevier.

Fig. 11.11. Reprinted with permission from [128]. Copyright (2000) by the American Physical Society.

Fig. 11.12. Reprinted with permission from [137]. Copyright (1991) by Elsevier.

Fig. 11.13. Reprinted with permission from [139]. Copyright (2005) by the American Physical Society.

Fig. 11.14. Reprinted with permission from [147]. Copyright (1997) by Elsevier.

Fig. 11.15. Reprinted from [134], with permission from IOP Publishing Limited.

Fig. 11.16. Reprinted from [127], with permission from Springer Science+Business Media.

Fig. 11.17. Reprinted from [174], with permission from Springer Science+Business Media.

Chapter 12

Figs. 12.7, 12.16. The author is grateful to J. Wosnitza and M. Lang for aid in the preparation of these two figures.

Chapter 13

Fig. 13.1. Reprinted from [19], with permission from the World Scientific Publishing Co.

Fig. 13.2. Reprinted with permission from [6]. Copyright (2005) by the American Physical Society.

Fig. 13.5. Reprinted with permission from [15] and [16]. Copyrights (1985) and (1989) by the American Physical Society.

Fig. 13.6. Reprinted with permission from [15] and [17]. Copyrights (1985) and (1990) by the American Physical Society.

Fig. 13.7. Reprinted with permission from [15] and [16]. Copyrights (1985) and (1989) by the American Physical Society.

Fig. 13.8. Reprinted with permission from [15] and [16]. Copyrights (1985) and (1989) by the American Physical Society.

Fig. 13.9. Reprinted with permission from [47]. Copyright (1990) by the American Physical Society.

Fig. 13.10. Reprinted with permission from [16]. Copyright (1989) by the American Physical Society.