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Preface 

Engineering is the profession in which a knowledge of the mathematical 
and natural sciences gained by study, experience, and practice is applied 
with judgment to develop ways to utilize, economically, the materials and 
forces of nature for the benefit of mankind —Engineers Council for 
Professional Development (1961/1979) 

 
Functional verification has become an important aspect of the IC 

(Integrated Chip) design process. Significant resources, both in industry and 
academia, are devoted to bridge the gap between design complexity and 
verification efforts. SAT-based verification techniques have attracted both 
industry and academia equally.  This book discusses in detail several latest 
and interesting SAT-based techniques that have been shown to be scalable in 
an industry context. Unlike other books on formal methods that emphasize 
theoretical aspects with dense mathematical notation, this book provides 
algorithmic and engineering insights into devising scalable approaches for 
an effective and robust realization of verification solution. We also describe 
specific strengths of the various approaches in regards to their applicability. 
This books nicely complements other excellent books on introductory or 
advanced formal verification primarily in two aspects: 

First, with growing interest in SAT-based approaches for formal 
verification, this book attempts to bring various emerging SAT-based 
scalable verification techniques and trends under one hood. In the last few 
years, several new SAT-based techniques have emerged. Not all of these are 

“

”

covered by other books: Hybrid SAT Solver, Efficient Problem Repre-
sentation, Customized SAT-based Bounded Model Checking, Verification
using Efficient Memory Modeling, Distributed SAT and SAT-Bounded



viii 
 

Second, and more importantly, due to the practical significance of these 
techniques, they are appropriate for direct implementation in industry 
settings. In this book, we describe how these techniques have been 
architected into a verification platform called VeriSol (formerly DiVer) 
which has been used successfully in the industry for the last four years. We 

designs using this platform. 
We strongly believe that the techniques described in this book will 

continue to gain importance in the verification area, given that the 
verification complexity is growing at an alarming rate with the design 
complexity. We also believe that that this book will provide useful 
information about foundation work for future verification technologies.  

 The book expects the reader to have a basic understanding of formal 
verification, model checking and issues inherent in model checking. The 
book primarily targets researchers, scientists and verification engineers who 
would like to get an in-depth understanding of scalable SAT-based 
verification techniques that can be further improved. The book also targets 
CAD tool developers who would like to incorporate various SAT-based 
advanced techniques in their products. Currently, colleges do not emphasize 
adequately the algorithmic and engineering aspects of designing a 

Here is the outline of the book: With an introduction and background on 
current design verification challenges for model checking techniques in 
Chapters 1 and 2 respectively, we divide the rest of the book into five parts, 
each with 1-4 chapters. Part I describes the underlying infrastructure —
efficient problem representation and SAT-solvers — to realize scalable 
verification algorithms. Parts II-IV describe SAT-based model checking 
algorithms for various verification tasks such as accelerated falsification, 
robust proof methods, and iterative abstraction/refinement, respectively. Part 
V gives detail of an industry tool VeriSol and several industry cases studies. 
It also covers future trends in SAT-based model checking such as, synthesis 
for verification paradigm, and high-level model checkers, to further improve 
the scalability. 

We would like to express our deep gratitude to NEC Laboratories 
America, Princeton, NJ for providing the opportunities and the infrastructure 
to carry out the research, and Central Research Laboratories, Tokyo Japan 
for packaging and deploying our technology to the end-users.  Individually 

Model Checking, Proof-based Iterative Abstraction, High-level Bounded 

also share our practical experiences and insights in verifying large industry 

Model Checking, SAT-based Unbounded Model Checking, and Synthesis
for Verification Paradigm. 

verification tool. Such practices should be encouraged, as a good infra- 
structure is required to produce quality research. We strongly believe that
this book will motivate such activities in the future. 

 Preface 
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1  DESIGN VERIFICATION CHALLENGES 

 

1.1 Introduction 

Verification ensures that the design meets the specification and has 
become an indispensable part of a product development cycle of a digital 

complexity of digital hardware, functional verification has become 
increasingly on the critical path of the cycle [1], requiring expensive and 
time-consuming efforts, as much as 70% of the product development cycle. 
As per the 2002/2004 functional verification study conducted by Collett 
International Research (as reported by EETimes.com [2]), functional/logic 
flaws account for 75% causes for respins of more than two-thirds of 
IC/ASIC designs to reach volume. Of these 75% flaws, more than 80% are 
due to design errors and remaining are due to incorrect/incomplete 
specification, internal and external IPs. Market forces mandate scalable 
verification solutions and radical shifts in design methodology to overcome 
the difficulty in verifying complex designs. Not surprisingly, traditional 
“black-box” verification methodology is giving way to “white-box” 
verification methodology, where more than half of the engineers in the 
design team are verification engineers who are getting involved in the early 
phase of design and specification.  

1.2 Simulation-based Verification 

Conventionally, designs are verified using extensive simulation. A model 
of the design is built in software, to which small monitors are added. These 

hardware design. Cost of chip failure is enormous due to high cost of res-
pins and delayed tape-out, resulting in loss of opportunity to launch pro-
duct on time in a highly competitive market. With the increasing design
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monitors check for failures of the design assertions. Large numbers of input 
sequences, called tests, are applied to this model; these tests are generated by 
(possibly biased) random test pattern generators, or by hand. If for a given 
test the assertion is violated, the corresponding monitor enters a “violation” 
state, flagging the failure. The effectiveness of simulation sequences, i.e., the 
test-bench, is assessed using several coverage metrics: code coverage [3, 4], 
tag coverage [5], event coverage [6], and state machine coverage [7-10]. 
Code-based coverage includes statement, branch, sub-expression, and path 
coverage. Tag coverage evaluates the observability of possible incorrect 
evaluation represented as tags at the circuit outputs. Event coverage is 
measured by activating the coverage models on the event trace.  State 
machine coverage is based on the number of distinct states visited and 
transitions occurred in an abstracted design. 

A simulation-based verification approach is simple, scales well with 
design size and has traditionally been the de facto workhorse for functional 
verification. However, it cannot guarantee completeness of coverage and 
hence, design correctness. More disturbingly, for practical designs, the 

undetected in the design even after substantial simulation efforts [11]. 
Besides diminished coverage, development and debugging of test-benches is 
a non-trivial time-consuming process, often mandating the verification team 

interpreting the simulation results.  

1.3 Formal Verification 

 Formal Verification (FV) refers to mathematical analysis of proving or 
disproving the correctness of a hardware or software system with respect to a 
certain unambiguous specification or property. The methods for analysis are 

1

 
 

1 Other mathematical models also used are Petri nets, timed automata, hybrid 
automata, process algebra, operational semantics, denotation semantics, 
and Hoare’s Logic. 
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fraction of design space which can be covered by simulation is vanish-

members to understand the design behaviors, features to be tested, and 

ing small; resulting in a significant probability of respin severity bugs

known as formal verification methods, and unambiguous specifications are 
referred as formal specifications. Formal verification complements simulation 
but with higher complexity of analysis, where  mathematical analysis is done 

labeled transition systems . Formal verification can provide complete coverage 
on an abstract model of the system, modeled using finite state machines or 

specified, without requiring any test-bench. However, one should not 
and can therefore, ensure design correctness with respect to the properties 
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construe the formal  verification to produce a “defect-free” design as it is 
impossible to formally specify what defect-free really means. To reiterate, 
formal verification can ensure the correctness of a design only with respect 
to certain properties that it is able to prove.  

Formal verification can be broadly classified into two methods: Model 
Checking and Theorem Proving. Model Checking [12] consists of a 

“defect” states in the model. Theorem Provers [13, 14], on the other hand, 
use mathematical reasoning and logical inference to prove the correctness of 
the systems and often, require a “theorem prover guru” with substantial 
understanding of the system-under-verification.  

1.3.1 Model Checking 

Model checking is an automated technique and hence, more popular in 
the industry as an alternate verification strategy to simulation. The 
applications of model checking are typically classified as equivalence 
checking and property checking. In equivalence checking, a “golden model” 

a “defect”. In property checking, the correctness properties describing the 
desirable/undesirable features of the design are specified using some formal 
logic (e.g. temporal logic) and verification is performed by proving or 
disproving that the property is satisfied by the model. In this book, we will 
focus our discussion on efficient property checking techniques that make 
formal verification practical and realizable. 

Model checking techniques, in practice, are inherently limited by the 
state-explosion problem, i.e., the fact that the number of states is exponential 
in the number of state elements (e.g. registers, latches) in the design. Model 
checking approaches are broadly classified into two, based on state 
enumerations techniques employed: explicit and implicit (or symbolic). 
Explicit model checking techniques [15, 16] store the explored states in a 
large hash table, where each entry corresponds to a single system state. A 
system with as few as a hundred state elements amounts to a state space with 
~1011 states. Understandably, model checkers need to pay special attention to 
scalability of the techniques used. Symbolic model checking techniques [17] 
store sets of explored states symbolically by using characteristic functions 
represented by canonical/semi-canonical structures, and traverse the state 
space symbolically by exploring a set of states in a single operation. 
Canonical structures such as Binary Decision Diagrams (BDDs) [18, 19] 
allow constant time satisfiability checks of Boolean expressions, and are 

3

systematic exhaustive exploration of all states and transitions in a model.

is used as a reference model to check if the given implementation model has 

It is implemented using explicit or implicit state enumeration techniques on 
a suitably abstracted model, and proving or disproving the existence of
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used to perform symbolic Boolean function manipulations [17, 20-22]. 
Though these BDD-based methods have greatly improved scalability in 
comparison to explicit state enumeration techniques, by and large, they are 
limited to designs with a few hundred state holding elements, which is not 
even at the level of an individual designer subsystem. This is mainly due to 
frequent space-outs and severe performance degradation [23] as BDDs 
constructed in the course of symbolic traversal grow extremely large, and 
BDD size is critically dependent on variable ordering. Though several 

application; however, in practice, they have not scaled adequately for 
industry applications.  

In a quest for robust and scalable approaches, research has been heavily 
directed toward separating Boolean reasoning and representation. Boolean 
Satisfiability (SAT), which has been studied over several decades, has 
emerged [34] as a workhorse for Boolean reasoning primarily due to many 
recent advances in DPLL-style [35] SAT-solvers [35-41]. Efficient Boolean 
representation [42, 43] such as semi-canonical representations, that are 
simple and reduced, are also emerging [44] as a de facto structure due to 
their less sensitivity to variable ordering and compact representation 
compared to BDDs. SAT, together with efficient representation, have 
become a viable alternative to BDDs for model checking applications. This 
helped to make SAT-based symbolic model checking techniques both 
realizable and practical.   

With emerging power of Boolean reasoning, various robust and scalable 
SAT-based techniques are simultaneously developed to  

 
• target specific verification tasks such as falsification, proofs, and 

abstraction/refinements;  
• address current design features such as embedded memories and multiple 

clocks domains; 
• address complex specifications due to the presence of nested clocks; 
• overcome limitation of computation resources of a single workstation. 
 
We see a clear preference in verification communities: BDD-based 
Methodists are becoming SAT-based Methodists. 

SAT-Based Scalable Formal Verification Solutions

[24-27], in many cases BDDs are hard to optimize [28, 29]. Several varia-
tions of BDDs such as Free BDDs [30], zBDDs [31], partitioned-BDDs [32]
and subset-BDDs [33] have also been proposed to target domain-specific

variable ordering heuristics to reduce BDD sizes have been proposed



 
1.4 Overview 

methods that we have developed and applied in an industry setting, 
especially to address the scalability and performance issues that have been 

[45, 46], proof techniques such as induction and unbounded model checking 
(UMC) [47], and  improved abstraction and refinement approaches [48, 49]. 
These methods efficiently handle designs with complex features such as 
embedded memories [50, 51], and multiple clock-domains [52], with 
complex clocked specifications.  These methods are implemented in our 
verification platform VeriSol (formerly DiVer) [53], and have been applied 
successfully in industry for the last four years (as of 2006) to verify large 
hardware designs. Specifically, VeriSol drives the Property Checker in 
NEC’s CyberWorkBench (CWB) [54, 55], a high level design and synthesis 
environment that automatically generates RTL (Register Transfer Level) 
designs and properties from high-level behavioral descriptions. Based on this 
verification platform, we share our practical experiences and insights in 

model checking workhorse in our software verification platform, F-Soft [56]. 
Scalability of formal verification tools will always remain an open 

research problem, as design complexity continues to grow.  In this book, we 
discuss the following two trends that have shown some potential in 
mitigating this problem: Synthesis-For-Verification, and High-level Model 
Checkers. 

Synthesis-For-Verification (SFV) paradigm [57, 58] addresses generation 
of “verification aware” models to improve the effectiveness of verification 
techniques. In particular, we discuss how a high-level synthesis (HLS) tool 
can be guided within its existing infrastructure to obtain “verification-
friendly” models that are relatively easy to model check. Such an approach 
also leverages off the various advancements in verification techniques as 
discussed in this book.  

High-level model checkers [59-62] are applied at word-level models to 
cope with inherent limitations of formal techniques at the bit level — due to 

potential to scale up to industry designs. We discuss later how the 
performance of high-level model checkers can be improved using high-level 
information extracted from the high-level models, on-the-fly simplification 
and model transformations. 

5 Design Verification Challenges 

Boolean reasoning [41], efficient problem representation [42, 45], acce- 
lerated bug finding techniques such as bounded model checking (BMC)  

of high-level design information. Thus, high-level model checkers have 
requirement of finite datapaths, inefficient translations into SAT, and loss

In this book, we discuss various SAT-based formal verification 

major limitations in BDD-based methods. These techniques comprise robust 

verifying large industry designs. We also use VeriSol as the primary 


