
SAT-Based Scalable Formal
Verification Solutions

Series on Integrated Circuits and Systems

Series Editor: Anantha Chandrakasan
Massachusetts Institute of Technology
Cambridge, Massachusetts

SAT-Based Scalable Formal Verification Solutions
Malay Ganai and Aarti Gupta
ISBN 978-0-387-69166-4, 2007

Ultra-Low Voltage Nano-Scale Memories
Kiyoo Itoh, Masashi Horiguchi and Hitoshi Tanaka
ISBN 978-0-387-33398-4, 2007

Routing Congestion in VLSI Circuits: Estimation and Optimization
Prashant Saxena, Rupesh S. Shelar, Sachin Sapatnekar
ISBN 978-0-387-30037-5, 2007

Ultra-Low Power Wireless Technologies for Sensor Networks
Brian Otis and Jan Rabaey
ISBN 978-0-387-30930-9, 2007

Sub-Threshold Design for Ultra Low-Power Systems
Alice Wang, Benton H. Calhoun and Anantha Chandrakasan
ISBN 978-0-387-33515-5, 2006

High Performance Energy Efficient Microprocessor Design
Vojin Oklibdzija and Ram Krishnamurthy (Eds.)
ISBN 978-0-387-28594-8, 2006

Abstraction Refinement for Large Scale Model Checking
Chao Wang, Gary D. Hachtel, and Fabio Somenzi
ISBN 978-0-387-28594-2, 2006

A Practical Introduction to PSL
Cindy Eisner and Dana Fisman
ISBN 978-0-387-35313-5, 2006

Thermal and Power Management of Integrated Systems
Arman Vassighi and Manoj Sachdev
ISBN 978-0-387-25762-4, 2006

Leakage in Nanometer CMOS Technologies
Siva G. Narendra and Anantha Chandrakasan
ISBN 978-0-387-25737-2, 2005

Statistical Analysis and Optimization for VLSI: Timing and Power
Ashish Srivastava, Dennis Sylvester, and David Blaauw
ISBN 978-0-387-26049-9, 2005

Malay Ganai
Aarti Gupta

SAT-Based Scalable Formal
Verification Solutions

Malay Ganai Aarti Gupta
NEC Labs America NEC Labs America
4 Independence Way 4 Independence Way
Princeton, NJ 08540 Princeton, NJ 08540
USA USA

Series Editor:
Anantha Chandrakasan
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
USA

Library of Congress Control Number: 20077922183

ISBN 0-387-69166-9 e-ISBN 0-387-69167-7
ISBN 978-0-387-69166-4 e-ISBN 978-0-387-69167-1

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now know or hereafter developed is forbidden. The use in this
publication of trade names, trademarks, service marks and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

9 8 7 6 5 4 3 2 1

springer.com

Dedication

This book is dedicated to all
those who continuously strive to
produce better algorithmic and

engineering solutions to
complex verification problems.

Preface

Engineering is the profession in which a knowledge of the mathematical
and natural sciences gained by study, experience, and practice is applied
with judgment to develop ways to utilize, economically, the materials and
forces of nature for the benefit of mankind —Engineers Council for
Professional Development (1961/1979)

Functional verification has become an important aspect of the IC

(Integrated Chip) design process. Significant resources, both in industry and
academia, are devoted to bridge the gap between design complexity and
verification efforts. SAT-based verification techniques have attracted both
industry and academia equally. This book discusses in detail several latest
and interesting SAT-based techniques that have been shown to be scalable in
an industry context. Unlike other books on formal methods that emphasize
theoretical aspects with dense mathematical notation, this book provides
algorithmic and engineering insights into devising scalable approaches for
an effective and robust realization of verification solution. We also describe
specific strengths of the various approaches in regards to their applicability.
This books nicely complements other excellent books on introductory or
advanced formal verification primarily in two aspects:

First, with growing interest in SAT-based approaches for formal
verification, this book attempts to bring various emerging SAT-based
scalable verification techniques and trends under one hood. In the last few
years, several new SAT-based techniques have emerged. Not all of these are

“

”

covered by other books: Hybrid SAT Solver, Efficient Problem Repre-
sentation, Customized SAT-based Bounded Model Checking, Verification
using Efficient Memory Modeling, Distributed SAT and SAT-Bounded

viii

Second, and more importantly, due to the practical significance of these
techniques, they are appropriate for direct implementation in industry
settings. In this book, we describe how these techniques have been
architected into a verification platform called VeriSol (formerly DiVer)
which has been used successfully in the industry for the last four years. We

designs using this platform.
We strongly believe that the techniques described in this book will

continue to gain importance in the verification area, given that the
verification complexity is growing at an alarming rate with the design
complexity. We also believe that that this book will provide useful
information about foundation work for future verification technologies.

 The book expects the reader to have a basic understanding of formal
verification, model checking and issues inherent in model checking. The
book primarily targets researchers, scientists and verification engineers who
would like to get an in-depth understanding of scalable SAT-based
verification techniques that can be further improved. The book also targets
CAD tool developers who would like to incorporate various SAT-based
advanced techniques in their products. Currently, colleges do not emphasize
adequately the algorithmic and engineering aspects of designing a

Here is the outline of the book: With an introduction and background on
current design verification challenges for model checking techniques in
Chapters 1 and 2 respectively, we divide the rest of the book into five parts,
each with 1-4 chapters. Part I describes the underlying infrastructure —
efficient problem representation and SAT-solvers — to realize scalable
verification algorithms. Parts II-IV describe SAT-based model checking
algorithms for various verification tasks such as accelerated falsification,
robust proof methods, and iterative abstraction/refinement, respectively. Part
V gives detail of an industry tool VeriSol and several industry cases studies.
It also covers future trends in SAT-based model checking such as, synthesis
for verification paradigm, and high-level model checkers, to further improve
the scalability.

We would like to express our deep gratitude to NEC Laboratories
America, Princeton, NJ for providing the opportunities and the infrastructure
to carry out the research, and Central Research Laboratories, Tokyo Japan
for packaging and deploying our technology to the end-users. Individually

Model Checking, Proof-based Iterative Abstraction, High-level Bounded

also share our practical experiences and insights in verifying large industry

Model Checking, SAT-based Unbounded Model Checking, and Synthesis
for Verification Paradigm.

verification tool. Such practices should be encouraged, as a good infra-
structure is required to produce quality research. We strongly believe that
this book will motivate such activities in the future.

 Preface

 Preface ix

we would like to thank Dr. Pranav Ashar for his numerous and valuable
insights; Dr. Kazutoshi Wakabayashi and Akira Mukaiyama for stimulating
us with the verification challenges that are encountered in an industry
setting. We also acknowledge the support of other team members in building
the tool: Dr. James Yang, Dr. Lintao Zhang, Dr. Chao Wang, and Dr. Pankaj
Chauhan.

We also thank all those who are involved in the publication of the book,
especially Carl Harris and his colleagues of Springer Publishing Company.
Last, but not the least, we thank our families for their patience during the
project.

Dr. AARTI GUPTA

Princeton, New Jersey 2006

Dr. MALAY K. GANAI

Contents

1
1.1
1.2
1.3

1.3.1
1.4
1.5
1.6

1.6.1
1.6.2
1.6.3

1.7
2

2.1
2.1.1
2.1.2
2.1.3

2.2
2.3
2.4

LIST OF FIGURES.. XIX

LIST OF TABLES.. XXVII

DESIGN VERIFICATION CHALLENGES ..1
INTRODUCTION..1

FORMAL VERIFICATION...2
SIMULATION-BASED VERIFICATION...1

Model Checking...3
OVERVIEW...5
VERIFICATION TASKS ..6
VERIFICATION CHALLENGES..8

Design Features..8
Verification Techniques ...9
Verification Methodology..11

ORGANIZATION OF BOOK...13
BACKGROUND..17

MODEL CHECKING ..17
Correctness Properties..18
Explicit Model Checking ...19
Symbolic Model Checking...19

NOTATIONS ...20
BINARY DECISION DIAGRAMS ...22
BOOLEAN SATISFIABILITY PROBLEM...23

xii

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

2.5
2.5.1
2.5.2

2.6
2.7
2.8

3
3.1
3.2

3.2.1
3.2.2
3.2.3

3.3
3.3.1
3.3.2
3.3.3

3.4
3.5
3.6
3.7
3.8

4
4.1
4.2

4.2.1
4.3

4.3.1
4.3.2

4.4
4.4.1
4.4.2
4.4.3
4.4.4

4.5

 Contents

Decision Engine ...25
Deduction Engine...26
Diagnosis Engine ...28
Proof of Unsatisfiability...29
Further Improvements ..30

SAT-BASED BOUNDED MODEL CHECKING (BMC)32
BMC formulation: Safety and Liveness Properties..........................33
Clocked LTL Specifications ..36

SAT-BASED UNBOUNDED MODEL CHECKING...37
SMT-BASED BMC...39
NOTES ...40

PART I: BASIC INFRASTRUCTURE ..41

EFFICIENT BOOLEAN REPRESENTATION...43
INTRODUCTION..43
BRIEF SURVEY OF BOOLEAN REPRESENTATIONS.......................................45

Extended Boolean Decision Diagrams (XBDDs)45
Boolean Expression Diagrams (BEDs) ..45
AND/INVERTER Graph (AIG) ..46

FUNCTIONAL HASHING (REDUCED AIG)...49
Three-Input Case..50
Four-Input Case ...52
Example ...54

EXPERIMENTS..57
SIMPLIFICATION USING EXTERNAL CONSTRAINTS.....................................60
COMPARING FUNCTIONAL HASHING WITH BDD/SAT SWEEPING..............61
SUMMARY ...62
NOTES ...62

HYBRID DPLL-STYLE SAT SOLVER...63
INTRODUCTION..63
BCP ON CIRCUIT ...65

Comparing CNF- and Circuit-based BCP Algorithms.....................67
HYBRID SAT SOLVER..68

Proof of Unsatisfiability...69
Comparison with Chaff ..69

APPLYING CIRCUIT-BASED HEURISTICS.. 71
Justification Frontier Heuristics ...71
Implication Order...72
Gate Fanout Count ...73
Learning XOR/MUX Gates ...74

VERIFICATION APPLICATIONS OF HYBRID SAT SOLVER75

Contents xiii

4.6
4.7

5
5.1
5.2

5.2.1
5.2.2
5.2.3

5.3
5.4

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9

5.5
5.5.1
5.5.2
5.5.3

5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5

5.7
5.8

6
6.1
6.2
6.3

6.3.1
6.4

6.4.1
6.4.2 i

SUMMARY ...75
NOTES ...76

PART II: FALSIFICATION ...77

SAT-BASED BOUNDED MODEL CHECKING...79
INTRODUCTION..79
DYNAMIC CIRCUIT SIMPLIFICATION..81

Notation..82
Procedure Unroll ..83
Comparing Implicit with Explicit Unrolling84

SAT-BASED INCREMENTAL LEARNING AND SIMPLIFICATION86
BDD-BASED LEARNING ..90

Basic Idea...90
Procedure: BDD_learning_engine ...91
Seed Selection..92
Creation of BDDs...93
Generation of Learned Clauses ..94
Integrating BDD Learning with a Hybrid SAT Solver95
Adding Clauses Dynamically to a SAT Solver95
Heuristics for Adding Learned Clauses ...96
Application of BDD-based Learning ...97

CUSTOMIZED PROPERTY TRANSLATION ..98

Comparative Study of Various Techniques....................................105
Effect of Customized Translation and Incremental Learning108
Effect of BDD-based Learning on BMC..109
Static BDD Learning..109
Dynamic BDD Learning ..110

SUMMARY ...112
NOTES ...112

DISTRIBUTED SAT-BASED BMC..113
INTRODUCTION..113
DISTRIBUTED SAT-BASED BMC PROCEDURE ...114
TOPOLOGY-COGNIZANT DISTRIBUTED-BCP..116

Causal-effect Order ..117
DISTRIBUTED-SAT..118

Tasks of the Master ..119
Tasks of a Client C ..120

Customized Translation for F(p)..100
Customized Translation of G(q)...102
Customized Translation of F(p G(q)) ...103 ∧

EXPERIMENTS..104

xiv

6.5
6.6

6.6.1
6.6.2
6.6.3
6.6.4

6.7
6.8
6.9
6.10

7
7.1
7.2
7.3
7.4

7.4.1
7.4.2
7.4.3
7.4.4
7.4.5

7.5
7.6

7.6.1
7.6.2

7.7
7.8
7.9

8
8.1

8.1.1
8.1.2
8.1.3
8.1.4

8.2
8.3
8.4
8.5
8.6
8.7

8.7.1
8.7.2

 Contents

SAT-BASED DISTRIBUTED-BMC...120
OPTIMIZATIONS ...121

Memory Optimizations in Distributed-SAT...................................121
Tight Estimation of Communication Overhead121

Performance Optimization in SAT-based Distributed-BMC124
Performance Optimizations in Distributed-SAT............................123

EXPERIMENTS..124
RELATED WORK..128
SUMMARY ...129

NOTES ...129
EFFICIENT MEMORY MODELING IN BMC ..131

INTRODUCTION..131
BASIC IDEA..132
MEMORY SEMANTICS..134
EMM APPROACH ..135

Efficient Representation of Memory Modeling Constraints136
Comparison with ITE Representation...139
Non-uniform Initialization of Memory ..140
EMM for Multiple Memories, Read, and Write Ports....................141
Arbitrary Initial Memory State...143

EXPERIMENTS ON A SINGLE READ/WRITE PORT MEMORY......................144
EXPERIMENTS ON MULTI-PORT MEMORIES...149

Case Study on Quick Sort ..150
Case Study on Industry Design (Low Pass Filter)151

RELATED WORK..151
SUMMARY ...152
NOTES ...153

BMC FOR MULTI-CLOCK SYSTEMS ..155
INTRODUCTION..155

Nested Clock Specifications ..155
Verification Model for Multi-clock Systems156
Simplification of Verification Model...156
Clock Specification on Latches..157

EFFICIENT MODELING OF MULTI-CLOCK SYSTEMS.................................158
REDUCING UNROLLING IN BMC..160
REDUCING LOOP-CHECKS IN BMC ...161
DYNAMIC SIMPLIFICATION IN BMC ..162
CUSTOMIZATION OF CLOCKED SPECIFICATIONS IN BMC163
EXPERIMENTS..166

VGA/LCD Controller ..167
Tri-mode Ethernet MAC Controller...168

Contents xv

8.8
8.9
8.10

9
9.1
9.2
9.3
9.4
9.5

9.5.1
9.5.2

9.6
9.7

10
10.1
10.2
10.3

10.3.1
10.3.2
10.3.3

10.4
10.5

10.5.1
10.6

10.6.1
10.6.2
10.6.3
10.6.4

10.7
10.7.1
10.7.2

10.8
10.9
10.10
10.11

11

RELATED WORK..169
SUMMARY ...170

NOTES ...171
PART III: PROOF METHODS ..173

PROOF BY INDUCTION ..175
INTRODUCTION..175
BMC PROCEDURE FOR PROOF BY INDUCTION...176
INDUCTIVE INVARIANTS: REACHABILITY CONSTRAINTS177
PROOF OF INDUCTION WITH EMM...179
EXPERIMENTS..180

Use of Reachability Invaraints ...180
Case Study: Use of Induction proof with EMM.............................181

SUMMARY ...182
NOTES ...183

UNBOUNDED MODEL CHECKING..185
INTRODUCTION..185
MOTIVATION...187
CIRCUIT COFACTORING APPROACH ..188

Basic Idea ...188
The Procedure ..189
Comparing circuit cofactoring with cube-wise enumeration190

COFACTOR REPRESENTATION ...191
ENUMERATION USING HYBRID SAT..192

Heuristics to Enlarge the Satisfying State Set193
SAT-BASED UMC...197

SAT-based Existential Quantification using Circuit Cofactor198

EXPERIMENTS FOR SAFETY PROPERTIES ...203
Industry Benchmarks ...203
Public Verification Benchmarks ..206

EXPERIMENTS FOR LIVENESS PROPERTIES ..207
RELATED WORK..209
SUMMARY...211
NOTES ...212

PART IV: ABSTRACTION/REFINEMENT ..213

PROOF-BASED ITERATIVE ABSTRACTION...................................215

SAT-based UMC for F(p) ..198
SAT-based UMC for G(q) ...199
SAT-based UMC for F(p G(q)) ..202 ∧

xvi

11.1
11.2
11.3
11.4

11.4.1
11.4.2

11.5
11.6

11.6.1
11.7

11.7.1
11.7.2
11.7.3

11.8
11.9
11.10

11.10.1
11.10.2

11.11
11.11.1
11.11.2

11.12
11.13
11.14
11.15

12
12.1
12.2
12.3
12.4
12.5
12.6
12.7

13
13.1
13.2
13.3
13.4

13.4.1

 Contents

INTRODUCTION..215
PROOF-BASED ABSTRACTION (PBA): OVERVIEW...............................218
LATCH-BASED ABSTRACTION...219
PRUNING IN LATCH INTERFACE ABSTRACTION222

Environmental Constraints...223
Latch Interface Propagation Constraints ..224

ABSTRACT MODELS ..225
IMPROVING ABSTRACTION USING LAZY CONSTRAINTS226

Making Eager Constraints Lazy...227
ITERATIVE ABSTRACTION FRAMEWORK ...228

Inner Loop of the Framework ..228
Handling Counterexamples..229
Lazy Constraints in Iterative Framework.......................................230

APPLICATION OF PROOF-BASED ITERATIVE ABSTRACTION231
EMM WITH PROOF-BASED ABSTRACTION ..232
EXPERIMENTAL RESULTS OF LATCH-BASED ABSTRACTION................233

Results for Iterative Abstraction ..233
Results for Verification of Abstract Models235

EXPERIMENTAL RESULTS USING LAZY CONSTRAINTS236
Results for Use of Lazy Constraints ..236
Proofs on Final Abstract Models ...239

CASE STUDY: EMM WITH PBIA ...240
RELATED WORK..242
SUMMARY...243
NOTES ...243

PART V: VERIFICATION PROCEDURE ...245

SAT-BASED VERIFICATION FRAMEWORK...................................247
INTRODUCTION..247
VERIFICATION MODEL AND PROPERTIES...248
VERIFICATION ENGINES ..250
VERIFICATION ENGINE ANALYSIS...254
VERIFICATION STRATEGIES: CASE STUDIES..256
SUMMARY...261
NOTES ...261

SYNTHESIS FOR VERIFICATION ..263
INTRODUCTION..263
CURRENT METHODOLOGY ..265
SYNTHESIS FOR VERIFICATION PARADIGM ...267
HIGH-LEVEL VERIFICATION MODELS..269

High-level Synthesis (HLS) ...269

Contents xvii

13.4.2
13.4.3

13.5
13.6
13.7

13.7.1
13.7.2
13.7.3

13.8
13.8.1
13.8.2
13.8.3
13.8.4

13.9
13.9.1
13.9.2

13.10
13.10.1
13.10.2
13.10.3
13.10.4

13.11
13.12

Extended Finite State Machine (EFSM) Model269
Flow Graphs...271

“BMC-FRIENDLY” MODELING ISSUES ..272
SYNTHESIZING “BMC-FRIENDLY” MODELS..273
EFSM LEARNING..274

Extraction: Control State Reachability (CSR)................................274
On-the-Fly Simplification ..275
Unreachablility of Control States...277

EFSM TRANSFORMATIONS ...277
Property-based EFSM Reduction...278
Balancing Re-convergence...278
Balancing Re-convergence without Loops.....................................280
Balancing Re-convergence with Loops..282

HIGH-LEVEL BMC ON EFSM..285
Expression Simplifier...286
Incremental Learning in High-level BMC287

EXPERIMENTS ...287
Controlled Case Study ...287
Experiments on Industry Software bc-1.06289
Experiments on Industry Embedded System Software..............292
Experiments on System-level Model ...293

SUMMARY AND FUTURE WORK ...294
NOTES ...295

REFERENCES ...297

GLOSSARY ..309

INDEX ...317

ABOUT THE AUTHORS..325

List of Figures

Fig. 2.2: Effect of variable ordering on BDD size: (a) with ordering a1<
b1 < a2 < b2 < a3 < b3, and (b) with ordering a1< a2 < a3 < b1 < b2
< b3. A solid line ⎯ denotes a then-branch and a dashed line ⎯

Fig. 2.1: Symbolic forward traversal algorithm for safety property.........................20

denotes an else-branch...23

Fig. 2.3: DPLL-style SAT Solver..24

Fig. 2.4: Lazy update of a CNF clause during BCP ..27

Fig. 2.5: Example for Conflict Analysis..28

Fig. 2.6: BMC check (a) No loop (b) Loop..33

Fig. 2.8: Example: Timing diagram for clocked specification37

Fig. 2.9: SAT-based existential quantification using cube enumeration38

Fig. 2.10: Least fixed-point computation using SAT ..39

Fig. 2.11: SMT-based BMC..40

Fig. 2.7: Debug trace for G(p→F(¬q)) with fairness f ...34

xx

 (b) equivalent BED representation. The symbol ¬

Fig. 3.3: Example for circuit graph construction: (a) a functionally
redundant Miter structure generated to check functional equivalence
of outputs x and y, (b) circuit graph using structural hashing
constructed according to [135] with two-input vertices, (c) circuit

Fig. 3.6: A 3-input example: (a) pre-lookup structure sigf = 〈10100110〉
h

Fig. 3.8: Local reduction of output of the netlist in Figure 3.1 using

Fig. 3.9: Example of Figure 3.3 for circuit graph construction using
multi-level hashing: (a) vertices 1−5 are identical to Figure 3.3(b),
(b) vertices 6 and 7 yield more compact structures, (c) vertices
8−10 yield no compaction, (d) vertices 5’, 1’’’, and 7’ are merged

Fig. 3.12: AIG size comparison using multi-level vs 2-input hashing:
(a) Compression ratio (ratio of the size of circuit built by multi-level
to that by 2-input), (b) Time overhead (ratio of the time taken for

Fig. 3.1: Example for graph comparison: (a) a netlist with output
g=(a∨ b)∧abc,

procedure And_4 of Figure 3.7, (a) reduction of using case 144,

(b) with two-input (or 2-level) hashing scheme (c) with multi-level
Fig. 3.10: Miter structure of Industry Example (a) without hashing

 List of Figures

denotes negation ..46

Fig. 3.2: Pseudo-code for 2-input structural hashing...47

graph with four-input vertices. ..48

Fig. 3.4: Pseudo-code for And using functional hashing...50

Fig. 3.5: Pseudo-code for 3_input_signature and And_3 ..51

and sig =〈11100001〉 (b) post-lookup structure f=b and h=¬b52

Fig. 3.7: Pseudo-code for 4_input_signature and And_4 ..53

(b) reduction of using case 245 and then recursively using case 14454

with vertices 5, 1, and 7, respectively ..55

hashing scheme. ...56

Fig. 3.11: Distribution of circuit sizes ...57

circuit building by multi-level hashing to that by 2-input).58

 List of Figures xxi

Fig. 3.13: Graph size comparison AIG with BEDs: (a) Reduction ratio

(ratio of the size of circuit built by multi-level hashing to that by
BEDs), (b) Time overhead (ratio of the time taken for circuit

Fig. 3.14: Fraction of Miters solved: (a) comparison between multi-
level and 2-input hashing (for the example indicated, two-input
hashing solves 31% while multi-level hashing solves 86% Miters),
(b) comparison between multi-level and BEDs (for the example
indicated, BED solves 29% while multi-level hashing solves 87%

Fig. 4.4: Comparison of BCP time per million implications of gate
clauses between CNF-based using lazy update and Circuit-based

Fig. 4.6: Comparison of total solver time of Chaff and hybrid solver

Fig. 5.2: A small design example. The initial values for X1 and X2 are

Fig. 4.5: Comparison of BCP time per million implications of gate and

Fig. 4.7: Comparison of SAT time of Chaff and hybrid solver using

Fig. 4.9: Learning of CNF-clauses in Hybrid SAT (a) XOR gate,

building by multi-level hashing to that by BEDs) ...59

Miters) ...60

Fig. 4.1: a) Circuit-based SAT, b) Circuit-based learning65

Fig. 3.15: Pseudo-code for structural merging ..61

Fig. 4.3: 2-input AND Lookup Table for Fast Implication Procedure67

Fig. 4.2: Circuit-based BCP ..66

Solver using fast table lookup..68

learned clauses between CNF-based solver, Chaff and hybrid solver70

(both using same decision heuristics) ..70

justification frontier heuristics (jft)..72

Fig. 4.8: Example of counting literals in Clauses...74

(b) MUX gate...74

Fig. 5.1: Iterative array model of synchronous circuit ..80

both 0. ..83

Fig. 5.3: Pseudo-code for Unroll Procedure..84

xxii

Fig. 5.4: Comparison of unrolled graph sizes between explicit and
implicit approach on following examples: (a) m_ciu, (b) ifpf,

1 2

k

Fig. 5.7: Use of Incremental SAT techniques on an example formula
Φ

1 2 3

Fig. 5.15: Cumulative improvements of BMC using various techniques

Fig. 5.17: Dynamic Learning: a) Depth limit with normalized time for

Fig. 5.16: Static Learning a) with time limit 3hrs for D1, D2, and D4,

 List of Figures

(c) larx, (d) b17..85

Fig. 5.5: Constraint sharing of SAT instances S and S ..87

 Fig. 5.6: L3 Learning: Merging unsatisfiable F to const_0 for 0≤ k≤ d....................88

= ϕ ∨(¬ϕ ∧ϕ) ..89

Fig. 5.8: Example for BDD Learning..91

Fig. 5.9: BDD-based Learning Technique ..92

Fig. 5.10: BDD from seed a) Fanin Cone, b) Region around the seed94

Fig. 5.11: Unrolling of property tree node p ...100

Fig. 5.12: BMC Customization for F(p) ...101

Fig. 5.13: BMC Customization for G(q) with fairness constraints B102

Fig. 5.14: BMC Customization for F(p∧G(q)) with fairness constraints................104

on HD3 ..108

b) with BMC bound limit and normalized time for D3, D5, and D6.................110

D1-D6, b) Time limit on D1, D2 and D4...111

Fig. 6.1: Partitioning of Unrolled Circuit ..114

Fig. 6.2: Distribtued DPLL-style SAT Solver...115

Fig. 6.3: Distributed-SAT and SAT-based Distributed-BMC.................................119

Fig. 6.4: Timeline for a tight estimation of communication overhead122

Fig. 7.1: Design with embedded memory ...132

 List of Figures xxiii

Fig. 9.1: BMC-based inductive proof steps (a) Base (b) Induction on

0

0

Fig. 9.3: BDD traversal: (a) backward from the bad states B ,

Fig. 7.2: Unrolled design with embedded memory ...133

Fig. 7.3: Typical memory access timing diagram ...134

Fig. 7.4: Conventional way of adding constraints using ITE operator135

Fig. 7.5: BMC augmented with EMM constraints ..137

Fig. 7.6: Efficient Modeling of Memory Constraint ...138

Fig. 7.7: Quadratic growth of EMM with BMC depth k ...140

Fig. 7.8: Stack implementation using RAM..144

Fig. 7.9: Software programs with embedded stack used in experiments.................145

Fig. 8.1: (a) Multi-clock system, (b) Single-clock model159

Fig. 8.2: Enable clock signal circuit ..159

Fig. 8.3: Modeling complex clock constructs ...160

Fig. 8.4: Ticks of global clock gclk ...161

Fig. 8.5: Procedure to get next clock tick depth..164

Fig. 8.6: Unrolling of clocked property tree node p ..165

Fig. 8.7: BMC Customization for clocked Property (F(p))@clk)165

¬F(p) ...175

Fig. 9.2: Customized BMC with Induction Proof ...176

(b) forward from Initial states F ..178

Fig. 9.4: BDD to circuit structure..179

Fig. 9.5: Induction Proof using reachability constraints..179

Fig. 10.1: An example circuit..187

xxiv

Fig. 10.2: Cofactor-based quantification with minterm (a) {u1=1, u2=1}
1 2

Fig. 10.3: Example of circuit-graph reuse in circuit-based cofactor

Fig. 10.15: a) CC vs BDD on VVB, b) CC vs BC on VVB, c) CC vs

 List of Figures

quantification...192

(b) {u =1,u =0}...190

Fig. 10.4: Circuit-based cofactor quantification using heuristic H1........................194

Fig. 10.5: Procedure Get_more_frontiers ..195

Fig. 10.6: Circuit-based cofactor quantification using heuristic H2196

Fig. 10.7: Circuit-based cofactor quantification using heuristic H3196

Fig. 10.8: SAT-based existential quantification using circuit cofactor...................198

Fig. 10.9: Least fixed-point computation using circuit cofactor199

Fig. 10.10: Least fixed-point computation using unrolling.....................................199

Fig. 10.11: Pre-image computation using unrolling ...200

Fig. 10.12: Greatest fixed-point computation using circuit cofactoring201

Fig. 10.13: Greatest fixed-point computation using unrolling202

Fig. 10.14: Customized translation for F(p∧G(q))..203

BMC on VVB, d) CC vs BC vs BDD on swap ..207

Fig. 11.1: Customized BMC with PBA for F(p) ..219

Fig. 11.2: Latch-based abstraction ...221

Fig. 11.3: Example for pruning the set R(k) ...223

Fig. 11.4: Example of PI logic ..225

Fig. 11.5: Iterative abstraction framework ...228

Fig. 11.6: Handling counterexamples ...229

List of Figures xxv

Fig. 13.7: Execution steps of Balancing Re-convergence on an
example: a) Reducible Flow graph G(V,E,v1) where i represents the
node vi, b) DAG G(V,Ef,v1) with edge weights (=1 if not shown)
after executing Balance_path procedure, c) weights on the back-
edges after balancing loops, d) final balanced flow graph after

Fig. 12.1: Verification Framework: VeriSol ...248

Fig. 12.2: Combinational-Loop Breaker ...249

Fig. 12.3: Modeling multi-clock system ..250

Fig. 12.4: Wheel of verification engine ..251

Fig. 12.5: Verification flow without (a) / with (b) embedded memory257

Fig. 12.6: Verification flow for example Industry I..258

Fig. 12.7: Verification flow on example Industry II ...259

Fig. 12.8: Verification flow on design Industry III...260

Fig. 12.9: Verification flow on example Quicksort ..260

Fig. 13.1: Current Methodology: HLS with Verification267

Fig. 13.2: Another dimension to HLS: Verification ...267

Fig. 13.3: Synthesis for Verification Paradigm ..268

Fig. 13.4: STG of EFSM M ..271

Fig. 13.5: STG of transformed EFSM M’ ..280

Fig. 13.6: Pseudo-code of Balance_path ...282

inserting n-1 NOP states for edge with weight n...285

Fig. 13.8: Accelerated High-level BMC (HMC) ..286

Fig. 13.9: Integrating HLS with verification at high-level295

List of Tables

Table 6.3: Comparison of non-distributed (mono) and distributed BMC

Table 7.2: Comparison of memory modeling on Fibonacci model

Table 7.3: Comparison of memory modeling on 3n+1 model (AW=12,

Table 7.4: Comparison of memory modeling on Towers-of-Hanoi

Table 7.5: Comparison of memory modeling on industrial design

Table 5.1: Customized BMC Verification Results ..106

Table 5.2: Effect of Incremental Learning and BMC Customization108

Table 5.3: Effect of Incremental Learning and BMC Customization109

Table 6.1: Memory Utilization in distributed SAT-based BMC............................125

Table 6.2: Performance evauation in distributed SAT-based BMC.......................126

on Industry designs...128

Table 7.1: Comparison of # clauses and gates in EMM constraints140

(AW=12, DW=32)..147

DW=2)..148

(AW=12, DW=22)..148

(AW=12, DW=12)..149

xxviii

Table 7.6: Comparison of memory modeling (for 3n+1) with DW=12

Table 7.7: Comparision of EMM vs Explicit memory modeling on

Table 9.1: Results of proof by induction using BDD-based reachability

Table 11.4: Abstraction using lazy constraints (subsequent iteration,

Table 11.5: Verification on final abstraction model using lazy

Table 8.2: Comparative evaluation of BMC for clocked properties on

Table 8.3: Comparative evaluation of BMC for clocked properties on

 List of Tables

and varying AW...149

Quick Sort ...150

Table 8.1: Unrolled circuit nodes for the multi-clock Example 8.1(a)163

VGA_LCD..168

Ethernet MAC ..169

invariant ..181

Table 10.1: Performance summary of SAT-based UMC methods203

Table 10.2: Performance comparison of UMC methods: CC vs/ BC205

Table 10.3: Comparison of heuristics in CC on D2 and proof206

Table 10.4: Completeness Bounds for F(p∧G(q) ..208

Table 10.5: BMC with Completeness Bounds. ..209

Table 11.1: Results for iterative abstraction ..234

Table 11.2: Results for verification on abstract models ...235

Table 11.3: Abstraction using lazy constraints (first iteration, i=1)238

i>0) ...239

constraints ...240

Table 11.6: Results of abstraction using EMM with PBA241

Table 12.1: Description of memory interface signals ..249

xxix

Table 13.4: Evaluating the effectiveness of EFSM transformation in

List of Tables

Table 13.1: Control State Reachability on EFSM (a) M and (b) M’280

Table 13.2: Impact of HLS parameters on Verification ...288

Table 13.3: Comparison of high-level BMC accelerators291

SMT-based BMC ..293

1 DESIGN VERIFICATION CHALLENGES

1.1 Introduction

Verification ensures that the design meets the specification and has
become an indispensable part of a product development cycle of a digital

complexity of digital hardware, functional verification has become
increasingly on the critical path of the cycle [1], requiring expensive and
time-consuming efforts, as much as 70% of the product development cycle.
As per the 2002/2004 functional verification study conducted by Collett
International Research (as reported by EETimes.com [2]), functional/logic
flaws account for 75% causes for respins of more than two-thirds of
IC/ASIC designs to reach volume. Of these 75% flaws, more than 80% are
due to design errors and remaining are due to incorrect/incomplete
specification, internal and external IPs. Market forces mandate scalable
verification solutions and radical shifts in design methodology to overcome
the difficulty in verifying complex designs. Not surprisingly, traditional
“black-box” verification methodology is giving way to “white-box”
verification methodology, where more than half of the engineers in the
design team are verification engineers who are getting involved in the early
phase of design and specification.

1.2 Simulation-based Verification

Conventionally, designs are verified using extensive simulation. A model
of the design is built in software, to which small monitors are added. These

hardware design. Cost of chip failure is enormous due to high cost of res-
pins and delayed tape-out, resulting in loss of opportunity to launch pro-
duct on time in a highly competitive market. With the increasing design

2

monitors check for failures of the design assertions. Large numbers of input
sequences, called tests, are applied to this model; these tests are generated by
(possibly biased) random test pattern generators, or by hand. If for a given
test the assertion is violated, the corresponding monitor enters a “violation”
state, flagging the failure. The effectiveness of simulation sequences, i.e., the
test-bench, is assessed using several coverage metrics: code coverage [3, 4],
tag coverage [5], event coverage [6], and state machine coverage [7-10].
Code-based coverage includes statement, branch, sub-expression, and path
coverage. Tag coverage evaluates the observability of possible incorrect
evaluation represented as tags at the circuit outputs. Event coverage is
measured by activating the coverage models on the event trace. State
machine coverage is based on the number of distinct states visited and
transitions occurred in an abstracted design.

A simulation-based verification approach is simple, scales well with
design size and has traditionally been the de facto workhorse for functional
verification. However, it cannot guarantee completeness of coverage and
hence, design correctness. More disturbingly, for practical designs, the

undetected in the design even after substantial simulation efforts [11].
Besides diminished coverage, development and debugging of test-benches is
a non-trivial time-consuming process, often mandating the verification team

interpreting the simulation results.

1.3 Formal Verification

 Formal Verification (FV) refers to mathematical analysis of proving or
disproving the correctness of a hardware or software system with respect to a
certain unambiguous specification or property. The methods for analysis are

1

1 Other mathematical models also used are Petri nets, timed automata, hybrid
automata, process algebra, operational semantics, denotation semantics,
and Hoare’s Logic.

SAT-Based Scalable Formal Verification Solutions

fraction of design space which can be covered by simulation is vanish-

members to understand the design behaviors, features to be tested, and

ing small; resulting in a significant probability of respin severity bugs

known as formal verification methods, and unambiguous specifications are
referred as formal specifications. Formal verification complements simulation
but with higher complexity of analysis, where mathematical analysis is done

labeled transition systems . Formal verification can provide complete coverage
on an abstract model of the system, modeled using finite state machines or

specified, without requiring any test-bench. However, one should not
and can therefore, ensure design correctness with respect to the properties

 Design Verification Challenges

construe the formal verification to produce a “defect-free” design as it is
impossible to formally specify what defect-free really means. To reiterate,
formal verification can ensure the correctness of a design only with respect
to certain properties that it is able to prove.

Formal verification can be broadly classified into two methods: Model
Checking and Theorem Proving. Model Checking [12] consists of a

“defect” states in the model. Theorem Provers [13, 14], on the other hand,
use mathematical reasoning and logical inference to prove the correctness of
the systems and often, require a “theorem prover guru” with substantial
understanding of the system-under-verification.

1.3.1 Model Checking

Model checking is an automated technique and hence, more popular in
the industry as an alternate verification strategy to simulation. The
applications of model checking are typically classified as equivalence
checking and property checking. In equivalence checking, a “golden model”

a “defect”. In property checking, the correctness properties describing the
desirable/undesirable features of the design are specified using some formal
logic (e.g. temporal logic) and verification is performed by proving or
disproving that the property is satisfied by the model. In this book, we will
focus our discussion on efficient property checking techniques that make
formal verification practical and realizable.

Model checking techniques, in practice, are inherently limited by the
state-explosion problem, i.e., the fact that the number of states is exponential
in the number of state elements (e.g. registers, latches) in the design. Model
checking approaches are broadly classified into two, based on state
enumerations techniques employed: explicit and implicit (or symbolic).
Explicit model checking techniques [15, 16] store the explored states in a
large hash table, where each entry corresponds to a single system state. A
system with as few as a hundred state elements amounts to a state space with
~1011 states. Understandably, model checkers need to pay special attention to
scalability of the techniques used. Symbolic model checking techniques [17]
store sets of explored states symbolically by using characteristic functions
represented by canonical/semi-canonical structures, and traverse the state
space symbolically by exploring a set of states in a single operation.
Canonical structures such as Binary Decision Diagrams (BDDs) [18, 19]
allow constant time satisfiability checks of Boolean expressions, and are

3

systematic exhaustive exploration of all states and transitions in a model.

is used as a reference model to check if the given implementation model has

It is implemented using explicit or implicit state enumeration techniques on
a suitably abstracted model, and proving or disproving the existence of

4

used to perform symbolic Boolean function manipulations [17, 20-22].
Though these BDD-based methods have greatly improved scalability in
comparison to explicit state enumeration techniques, by and large, they are
limited to designs with a few hundred state holding elements, which is not
even at the level of an individual designer subsystem. This is mainly due to
frequent space-outs and severe performance degradation [23] as BDDs
constructed in the course of symbolic traversal grow extremely large, and
BDD size is critically dependent on variable ordering. Though several

application; however, in practice, they have not scaled adequately for
industry applications.

In a quest for robust and scalable approaches, research has been heavily
directed toward separating Boolean reasoning and representation. Boolean
Satisfiability (SAT), which has been studied over several decades, has
emerged [34] as a workhorse for Boolean reasoning primarily due to many
recent advances in DPLL-style [35] SAT-solvers [35-41]. Efficient Boolean
representation [42, 43] such as semi-canonical representations, that are
simple and reduced, are also emerging [44] as a de facto structure due to
their less sensitivity to variable ordering and compact representation
compared to BDDs. SAT, together with efficient representation, have
become a viable alternative to BDDs for model checking applications. This
helped to make SAT-based symbolic model checking techniques both
realizable and practical.

With emerging power of Boolean reasoning, various robust and scalable
SAT-based techniques are simultaneously developed to

• target specific verification tasks such as falsification, proofs, and

abstraction/refinements;
• address current design features such as embedded memories and multiple

clocks domains;
• address complex specifications due to the presence of nested clocks;
• overcome limitation of computation resources of a single workstation.

We see a clear preference in verification communities: BDD-based
Methodists are becoming SAT-based Methodists.

SAT-Based Scalable Formal Verification Solutions

[24-27], in many cases BDDs are hard to optimize [28, 29]. Several varia-
tions of BDDs such as Free BDDs [30], zBDDs [31], partitioned-BDDs [32]
and subset-BDDs [33] have also been proposed to target domain-specific

variable ordering heuristics to reduce BDD sizes have been proposed

1.4 Overview

methods that we have developed and applied in an industry setting,
especially to address the scalability and performance issues that have been

[45, 46], proof techniques such as induction and unbounded model checking
(UMC) [47], and improved abstraction and refinement approaches [48, 49].
These methods efficiently handle designs with complex features such as
embedded memories [50, 51], and multiple clock-domains [52], with
complex clocked specifications. These methods are implemented in our
verification platform VeriSol (formerly DiVer) [53], and have been applied
successfully in industry for the last four years (as of 2006) to verify large
hardware designs. Specifically, VeriSol drives the Property Checker in
NEC’s CyberWorkBench (CWB) [54, 55], a high level design and synthesis
environment that automatically generates RTL (Register Transfer Level)
designs and properties from high-level behavioral descriptions. Based on this
verification platform, we share our practical experiences and insights in

model checking workhorse in our software verification platform, F-Soft [56].
Scalability of formal verification tools will always remain an open

research problem, as design complexity continues to grow. In this book, we
discuss the following two trends that have shown some potential in
mitigating this problem: Synthesis-For-Verification, and High-level Model
Checkers.

Synthesis-For-Verification (SFV) paradigm [57, 58] addresses generation
of “verification aware” models to improve the effectiveness of verification
techniques. In particular, we discuss how a high-level synthesis (HLS) tool
can be guided within its existing infrastructure to obtain “verification-
friendly” models that are relatively easy to model check. Such an approach
also leverages off the various advancements in verification techniques as
discussed in this book.

High-level model checkers [59-62] are applied at word-level models to
cope with inherent limitations of formal techniques at the bit level — due to

potential to scale up to industry designs. We discuss later how the
performance of high-level model checkers can be improved using high-level
information extracted from the high-level models, on-the-fly simplification
and model transformations.

5 Design Verification Challenges

Boolean reasoning [41], efficient problem representation [42, 45], acce-
lerated bug finding techniques such as bounded model checking (BMC)

of high-level design information. Thus, high-level model checkers have
requirement of finite datapaths, inefficient translations into SAT, and loss

In this book, we discuss various SAT-based formal verification

major limitations in BDD-based methods. These techniques comprise robust

verifying large industry designs. We also use VeriSol as the primary

