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PREFACE 
 
 
This book aims to give a complete and self-contained presentation of semi-
Markov models with finitely many states, in view of solving real life problems of 
risk management in three main fields: Finance, Insurance and Reliability 
providing a useful complement to our first book (Janssen and Manca (2006)) 
which gives a theoretical presentation of semi-Markov theory. However, to help 
assure the book is self-contained, the first three chapters provide a summary of 
the basic tools on semi-Markov theory that the reader will need to understand our 
presentation. For more details, we refer the reader to our first book (Janssen and 
Manca (2006)) whose notations, definitions and results have been used in these 
four first chapters. 
Nowadays, the potential for theoretical models to be used on real-life problems is 
severely limited if there are no good computer programs to process the relevant 
data. We therefore systematically propose the basic algorithms so that effective 
numerical results can be obtained. Another important feature of this book is its 
presentation of both homogeneous and non-homogeneous models. It is well 
known that the fundamental structure of many real-life problems is non-
homogeneous in time, and the application of homogeneous models to such 
problems gives, in the best case, only approximated results or, in the worst case, 
nonsense results. 
This book addresses a very large public as it includes undergraduate and graduate 
students in mathematics and applied mathematics, in economics and business 
studies, actuaries, financial intermediaries, engineers and operation researchers, 
but also researchers in universities and rd departments of banking, insurance and 
industry.  
Readers who have mastered the material in this book will see how the classical 
models in our three fields of application can be extended in a semi-Markov 
environment to provide better new models, more general and able to solve 
problems in a more adapted way. They will indeed have a new approach giving a 
more competitive knowledge related to the complexity of real-life problems. 
Let us now give some comments on the contents of the book. 
As we start from the fact that the semi-Markov processes are the children of a 
successful marriage between renewal theory and Markov chains, these two topics 
are presented in Chapter 2.  
The full presentation of Markov renewal theory, Markov random walks and 
semi-Markov processes, functionals of (J-X) processes and semi-Markov random 
walks is given in Chapter 3 along with a short presentation of non-homogeneous 
Markov and semi-Markov processes.  
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Chapter 4 is devoted to the presentation of discrete time semi-Markov processes, 
reward processes both in undiscounted and discounted cases, and to their 
numerical treatment.  
Chapter 5 develops the Cox-Ross-Rubinstein or binomial model and semi-
Markov extension of the Black and Scholes formula for the fundamental problem 
of option pricing in finance, including Greek parameters. In this chapter, we must 
also mention the presence of an option pricing model with arbitrage possibility, 
thus showing how to deal with a problem stock brokers are confronted with daily. 
Chapter 6 presents other general finance and insurance semi-Markov models with 
the concepts of exchange and dated sums in stochastic homogeneous and non-
homogeneous environments, applications in social security and multiple life 
insurance models. 
Chapter 7 is entirely devoted to insurance risk models, one of the major fields of 
actuarial science; here, too, semi-Markov processes and diffusion processes lead 
to completely new risk models with great expectations for future applications, 
particularly in ruin theory. 
Chapter 8 presents classical and semi-Markov models for reliability and credit 
risk, including the construction of rating, a fundamental tool for financial 
intermediaries. 
Finally, Chapter 9 concerns the important present day problem of pension 
evolution, which is clearly a time non-homogeneous problem. As we need here 
more than one time variable, we introduce the concept of generalised non-
homogeneous semi-Markov processes. A last section develops generalised non 
homogeneous semi-Markov models for salary line evolution. 
Let us point out that whenever we present a semi-Markov model for solving an 
applied problem, we always summarise, before giving our approach, the classical 
existing models. Therefore the reader does not have to look elsewhere for 
supplementary information; furthermore, both approaches can be compared and 
conclusions reached as to the efficacy of the semi-Markov approach developed in 
this book. 
It is clear that this book can be read by sections in a variety of sequences, 
depending on the main interest of the reader. For example, if the reader is 
interested in the new approaches for finance models, he can read the first four 
chapters and then immediately Chapters 5 and 6, and similarly for other topics in 
insurance or reliability. 
The authors have presented many parts of this book in courses at several 
universities: Université Libre de Bruxelles, Vrije Universiteit Brussel, Université 
de Bretagne Occidentale (EURIA), Universités de Paris 1 (La Sorbonne) and 
Paris VI (ISUP), ENST-Bretagne, Université de Strasbourg, Universities of 
Roma (La Sapienza), Firenze and Pescara. 
Our common experience in the field of solving some real problems in finance, 
insurance and reliability has joined to create this book, taking into account the 
remarks of colleagues and students in our various lectures. We hope to convince 
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potential readers to use some of the proposed models to improve the way of 
modelling real-life applications.  
 
Jacques Janssen     Raimondo Manca 
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Chapter 1 
 
PROBABILITY TOOLS FOR STOCHASTIC 
MODELLING 
 
In this chapter, the reader will find a short summary of the basic probability tools 
useful for understanding of the following chapters. A more detailed version 
including proofs can be found in Janssen and Manca (2006). We will focus our 
attention on stochastic processes in discrete time and continuous time defined by 
sequences of random variables. 
 
1 THE SAMPLE SPACE 
 
The basic concrete notion in probability theory is that of the random experiment, 
that is to say an experiment for which we cannot predict in advance the outcome. 
With each random experiment, we can associate the so-called elementary events 
ω , and the set of all these events Ω  is called the sample space. Some other 
subsets of Ω  will represent possible events. Let us consider the following 
examples. 
 
Example 1.1 If the experiment consists in the measurement of the lifetime of an 
integrated circuit, then the sample space is the set of all non-negative real 
numbers +\ . Possible events are [ ] ( ) [ ) ( ], , , , , , ,a b a b a b a b  where for example the 
event [ ),a b  means that the lifetime is at least a and strictly inferior to b. 
 
Example 1.2 An insurance company is interested in the number of claims per 
year for its portfolio. In this case, the sample space is the set of natural numbers 
` .  
 
Example 1.3 A bank is to invest in some shares; so the bank looks to the history 
of the value of different shares. In this case, the sample space is the set of all non-
negative real numbers +\ . 
 
To be useful, the set of all possible events must have some properties of stability 
so that we can generate new events such as: 
(i)    the complement cA : { }:cA Aω ω= ∈Ω ∉ , (1.1) 
(ii)   the union A B∪  : { }:  or  A B A Bω ω ω= ∈ ∈∪ , (1.2) 
(iii)  the intersection A B∩ : { }: ,A B A Bω ω ω= ∈ ∈∩ . (1.3) 
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More generally, if ( , 1)nA n ≥  represents a sequence of events, we can also 
consider the following events: 
 

1 1

,n n
n n

A A
≥ ≥
∪ ∩  (1.4) 

representing respectively the union and the intersection of all the events of the 
given sequence. The first of these two events occurs iff at least one of these 
events occurs and the second iff all the events of the given sequence occur. The 
set Ω  is called the certain event and the set ∅  the empty event. Two events A 
and B are said to be disjoint or mutually exclusive iff  
 A B =∅∩ . (1.5) 
Event A implies event B iff 
 A B⊂ . (1.6) 
 
In Example 1.3, the event “the value of the share is between “50$ and 75$” is 
given by the set [ ]50,75 . 
 
2 PROBABILITY SPACE  
 
Given a sample space Ω , the set of all possible events will be noted by ℑ , 
supposed to have the structure of a σ -field or a σ -algebra. 
 
Definition 2.1 The family ℑ  of subsets of Ω  is called a σ -field or a σ -
algebra iff the following conditions are satisfied: 
(i)  ,Ω ∅  belong to ℑ , 
(ii) Ω  is stable under denumerable intersection: 
 

1

, 1 ,n n
n

A n A
≥

∈ℑ ∀ ≥ ⇒ ∈ℑ∩  (2.1) 

(iii) ℑ  is stable for the complement set operation 
 , .c cA A A A∈ℑ⇒ ∈ℑ = Ω −  (2.2) 
Then, using the well-known de Morgan’s laws saying that 

 
1 1 1 1

,  ,
c c

c c
n n n n

n n n n

A A A A
≥ ≥ ≥ ≥

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∪ ∩ ∩ ∪  (2.3) 

it is easy to prove that a σ -algebra ℑ  is also stable under denumerable union: 
 

1

, 1 .n n
n

A n A
≥

∈ℑ ∀ ≥ ⇒ ∈ℑ∪  (2.4) 

Any couple ( , )Ω ℑ where ℑ  is a σ -algebra is called a measurable space. 
 
The next definition concerning the concept of probability measure or simply 
probability is an idealization of the concept of the frequency of an event. Let us 
consider a random experiment called E with which is associated the couple 
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( , )Ω ℑ ; if the set A belongs to ℑ  and if we can repeat the experiment E n times, 
under the same conditions of environment, we can count how many times A 
occurs. If n(A) represents this number of occurrences, the frequency of the event 
A is defined as  

 ( )( ) .n Af A
n

=  (2.5) 

In general, this number tends to become stable for large values of n. 
The notion of frequency satisfies the following elementary properties: 
(i)   ( , , ( ) ( ) ( ),A B A B f A B f A f B∈ℑ =∅⇒ = +∩ ∪  (2.6) 
(ii)  ( ) 1f Ω = ,  (2.7) 
(iii) , , ( ) ( ) ( ) ( ),A B f A B f A f B f A B∈ℑ ⇒ = + −∪ ∩  (2.8) 
(iv) ( ) 1 ( ).cA f A f A∈ℑ⇒ = −   (2.9) 
To have a useful mathematical model for the theoretical idealization of the notion 
of frequency, we now introduce the following definition. 
 
Definition 2.2 a) The triplet ( , , )PΩ ℑ is called a probability space if Ω  is a non-
void set of elements, ℑ  a σ -algebra of subsets of Ω and P an application from 
ℑ  to [ ]0,1  such that: 

(i)   
( )

11

( , 1), , 1:

( ) ( ),

n n i j

n n
nn

A n A n i j A A

P A P A additivity of P

φ

σ
∞

=≥

≥ ∈ℑ ≥ ≠ ⇒ =

⎛ ⎞
⇒ = −⎜ ⎟

⎝ ⎠
∑

∩

∪
 (2.10) 

 (ii)  ( ) 1.P Ω =   (2.11) 
b) The application P satisfying conditions (2.10) and (2.11) is called a 
probability measure or simply probability. 
 
Remark 2.1 1) The sequence of events ( , 1)nA n ≥ satisfying the condition that 
 ( , 1), , 1:n n i jA n A n i j A A≥ ∈ℑ ≥ ≠ ⇒ =∅∩  (2.12) 
is called mutually exclusive. 
2) The relation (2.11) assigns the value 1 for the probability of the entire sample 
space Ω . There may exist events 'A  strictly subsets of Ω  such that 
 ( )' 1P A = . (2.13) 
In this case, we say that A is almost sure or that the statement defining A is true 
almost surely (in short a.s.) or holds for almost all ω .  
From axioms (2.10) and (2.11), we can deduce the following properties: 
 
Property 2.1 (i) If , ,A B∈ℑ then 
 ( ) ( ) ( ) ( ).P A B P A P B P A B= + −∪ ∩  (2.14) 
(ii) If ,A∈ℑ then 
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 ( ) 1 ( ).cP A P A= −  (2.15) 
(iii) ( ) 0.P ∅ =   (2.16) 
(iv) If ( , 1)nB n ≥  is a sequence of disjoint elements of ℑ forming a partition of 
Ω , then for all A belonging to ℑ , 

 
1

( ) ( )n
n

P A P A B
∞

=

=∑ ∩ . (2.17) 

(v) Continuity property of P: if ( , 1)nA n ≥  is an increasing (decreasing) sequence 
of elements of ℑ , then  

 
1

lim ( )n nn
n

P A P A
≥

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∪ ; 

1

lim ( )n nn
n

P A P A
≥

⎛ ⎞⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∩ . (2.18) 

 
Remark 2.2 a) Boole’s inequality asserts that if ( , 1)nA n ≥ is a sequence of 
events, then 

 
11

( ).n n
nn

P A P A
≥≥

⎛ ⎞
≤⎜ ⎟

⎝ ⎠
∑∪  (2.19) 

b) From (2.14), it is clear that we also have 
 ( ) ( ).A B P A P B⊂ ⇒ ≤  (2.20) 
 
Example 2.1 a) The discrete case 
When the sample space Ω  is finite or denumerable, we can set 
 { }1,..., ,...jω ωΩ =  (2.21) 

and select for ℑ the set of all the subsets of Ω , represented by 2 .Ω  
 
Any probability measure P can be defined with the following sequence: 
 

1
( , 1),  0, 1,  1j j j

j
p j p j p

≥

≥ ≥ ≥ =∑  (2.22) 

so that  
 { }( ) , 1.j jP w p j= ≥  (2.23) 

On the probability space ( ,2 , )PΩΩ , the probability assigned for an arbitrary 

event A = { }1
,..., , 1, 1,..., ,  if 

lk k j i jk j l k k i jω ω ≥ = ≠ ≠  is given by 

 
1

( ) .
j

l

k
j

P A p
=

=∑  (2.24) 

 
b) The continuous case 
Let Ω  be the real set \ ; It can be proven (Halmos (1974)) that there exists a 
minimal σ -algebra generated by the set of  intervals: 
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 ( ) [ ] [ ) ( ]{ }, , , , , , , , , ,a b a b a b a b a b a bβ = ∈ ≤\ . (2.25) 
It is called the Borel σ -algebra represented by β  and the elements of β  are 
called Borel sets. 
Given a probability measure P on ( , )βΩ , we can define the real function F, 
called the distribution function related to P, as follows. 
 
Definition 2.3 The function F from \  to [ ]0,1  defined by 

 ( ]( ), ( ),P x F x x−∞ = ∈\  (2.26) 
is called the distribution function related to the probability measure P. 
 
From this definition and the basic properties of P, we easily deduce that: 

 
( ]( ) ( )( )
[ )( ) [ ]( )

, ( ) ( ),  , ( ) ( ),

, ( ) ( ),  , ( ) ( ).

P a b F b F a P a b F b F a

P a b F b F a P a b F b F a

= − = − −

= − − − = − −
 (2.27) 

Moreover, from (2.26), any function F from \  to [ ]0,1  is a distribution function 
(in short d.f.) iff it is a non-decreasing function satisfying the following 
conditions: 
F is right continuous at every point x0, 
 

0
0lim ( ) ( ),

x x
F x F x

↑
=  (2.28) 

and moreover 
 lim ( ) 1, lim ( ) 0

x x
F x F x

→+∞ →−∞
= = . (2.29) 

If the function F is derivable on \with f as derivative, we have 

 ( ) ( ) , .
x

F x f y dy x
−∞

= ∈∫ \  (2.30) 

The function f is called the density function associated with the d.f. F and in the 
case of the existence of such a Lebesgue integrable function on\ , F is called 
absolutely continuous. 
From the definition of the concept of integral, we can give the intuitive 
interpretation of f as follows; given the small positive real number xΔ , we have 
 { }( ), ( )P x x x f x x+ Δ ≈ Δ . (2.31) 
Using the Lebesgue-Stieltjes integral, it can be seen that it is possible to define a 
probability measure P on ( , )β\ starting from a d.f. F on \  by the following 
definition of P: 
 ( ) ( ), .

A

P A dF x A= ∀ ∈ℑ∫  (2.32) 

In the absolutely continuous case, we get 
 ( ) ( ) .

A

P A f y dy= ∫  (2.33) 
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Remark 2.3 In fact, it is also possible to define the concept of d.f. in the discrete 
case if we set, without loss of generality, on 0

0( ,2 )NN , the measure P defined 
from the sequence (2.22). Indeed, if for every positive integer k, we set 

 
1

( )
k

j
j

F k p
=

=∑  (2.34) 

and generally, for any real x, 

 [ )
0, 0,

( )
( ), , 1 ,

x
F x

F k x k k
≤⎧

= ⎨ ∈ +⎩
 (2.35) 

then, for any positive integer k, we can write 
 { }( )1,..., ( )P k F k=  (2.36) 
and so calculate the probability of any event. 
 
3 RANDOM VARIABLES  
 
Let us suppose the probability space ( , , )PΩ ℑ  and the measurable space ( , )E ψ  
are given. 
 
Definition 3.1 A random variable (in short r.v.) with values in E is an 
application X from Ω  to E such that 
 1: ( )B X Bψ −∀ ∈ ∈ℑ , (3.1) 
where X-1(B) is called the inverse image of the set B defined by 
 { }1 1( ) : ( ) , ( )X B X B X Bω ω− −= ∈ ∈ℑ . (3.2) 
 
Particular cases 
a)   If ( , )E ψ = ( , )β\ , X is called a real random variable. 
b) If ( , ) ( , )E ψ β= \ , where \  is the extended real line defined by 

{ } { }+∞ −∞\∪ ∪ and β  the extended Borel σ -field of \ , that is the minimal 
σ -field containing all the elements of β  and the extended intervals 

 
[ ) ( ] [ ] ( )
[ ) ( ] [ ] ( )

, , , , , , , ,

, , , , , , , ,  ,

a a a a

a a a a a

−∞ −∞ −∞ −∞

+∞ +∞ +∞ +∞ ∈\
 (3.3) 

then X is called a real extended value random variable. 
c) If ( 1)nE n= >\ with the product σ -field ( )nβ of β , X is called an n-
dimensional real random variable. 
d) If ( )nE = \ (n>1) with the product σ -field ( )nβ of β , X is called a real 
extended n-dimensional real random variable. 
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A random variable X is called discrete or continuous according as X takes at most 
a denumerable or a non-denumerable infinite set of values.  
 
Remark 3.1 In measure theory, the only difference is that condition (2.11) is no 
longer required and in this case the definition of a r.v. given above gives the 
notion of measurable function. In particular a measurable function from ( , )β\  
to ( , )β\  is called a Borel function.  
 
Let X be a real r.v. and let us consider, for any real x, the following subset of Ω : 
{ }: ( )X xω ω ≤ . 
As, from relation (3.2), 
 { } ( ]1: ( ) ( , ),X x X xω ω −≤ = −∞  (3.4) 
it is clear from relation (3.1) that this set belongs to the σ -algebra ℑ . 
Conversely, it can be proved that the condition 
 { }: ( )X xω ω ≤ ∈ℑ , (3.5) 
valid for every x belonging to a dense subset of \ , is sufficient for X being a real 
random variable defined on Ω . The probability measure P on ( , )Ω ℑ  induces a 
probability measure μ  on ( , )β\  defined as 
 { }( ): ( ) : ( ) .B B P X Bβ μ ω ω∀ ∈ = ∈  (3.6) 
We say that μ  is the induced probability measure on ( , )β\ , called the 
probability distribution of the r.v. X. Introducing the distribution function related 
to μ , we get the next definition. 
 
Definition 3.2 The distribution function of the r.v. X, represented by XF , is the 
function from [ ]0,1→\  defined by 

 ( ]( ) { }( )( ) , : ( ) .XF x x P X xμ ω ω= −∞ = ≤  (3.7) 
In short, we write 
 ( )( )XF x P X x= ≤ . (3.8) 
 
This last definition can be extended to the multi-dimensional case with a r.v. X 
being an n-dimensional real vector: 1( ,..., )nX X X= , a measurable application 
from ( , , )PΩ ℑ  to ( , )n nβ\ . 
 
Definition 3.3 The distribution function of the r.v. 1( ,..., )nX X X= , represented 
by XF , is the function from n\ to [ ]0,1  defined by  
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 { }( )1 1 1( ,..., ) : ( ) ,..., ( )X n n nF x x P X x X xω ω ω= ≤ ≤ . (3.9) 
 
In short, we write 
 1 1 1( ,..., ) ( ,..., )X n n nF x x P X x X x= ≤ ≤ . (3.10) 
Each component Xi (i=1,…,n) is itself a one-dimensional real r.v. whose d.f., 
called the marginal d.f., is given by 
 ( ) ( ,..., , , ,..., )

iX i X iF x F x= +∞ +∞ +∞ +∞ . (3.11) 
The concept of random variable is stable under a lot of mathematical operations; 
so any Borel function of a r.v. X is also a r.v. 
Moreover, if X and Y are two r.v., so are 

 { } { }inf , ,sup , , , , , XX Y X Y X Y X Y X Y
Y

+ − ⋅ , (3.12) 

provided, in the last case, that Y does not vanish. 
Concerning the convergence properties, we must mention the property that, if 
( , 1)nX n ≥  is a convergent sequence of r.v. −  that is, for allω∈Ω , the sequence 
( ( ))nX ω converges to ( )X ω − , then the limit X is also a r.v. on Ω . This 
convergence, which may be called the sure convergence, can be weakened to 
give the concept of almost sure (in short a.s.) convergence of the given sequence. 
 
Definition 3.4 The sequence ( ( ))nX ω converges a.s. to ( )X ω  if 
 { }( ): lim ( ) ( ) 1nP X Xω ω ω= = . (3.13) 
 
This last notion means that the possible set where the given sequence does not 
converge is a null set, that is a set N belonging to ℑ  such that  
 ( ) 0P N = . (3.14) 
In general, let us remark that, given a null set, it is not true that every subset of it 
belongs to ℑ  but of course if it belongs to ℑ , it is clearly a null set (see relation 
(2.20)). 
To avoid unnecessary complications, we will suppose from now on that any 
considered probability space is complete, This means that all the subsets of a null 
set also belong to ℑ  and thus that their probability is zero. 
 
4 INTEGRABILITY, EXPECTATION AND  
INDEPENDENCE  
 
Let us consider a complete measurable space ( , , )μΩ ℑ and a real measurable 
variable X defined on Ω . To any set A belonging to ℑ , we associate the r.v. AI , 
called the indicator of A, defined as 
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1, ,

( )
0, .A

A
I

A
ω

ω
ω
∈⎧

= ⎨ ∉⎩
 (4.1) 

If there exists partition ( , 1)nA n ≥  with all its sets measurable such that  
 ( ) ( ), 1n n nA X a a nω ω∈ ⇒ = ∈ ≥\ , (4.2) 
then X is called a discrete variable. If moreover, the partition is finite, it is said to 
be finite. It follows that we can write X in the following form: 

 )()(
1

ωω
nA

n
n IaX ∑

∞

=

= .  (4.3) 

 
Definition 4.1 The integral of the discrete variable X is defined by 

 
1

( )n n
n

Xd a Aμ μ
∞

=Ω

=∑∫ , (4.4) 

provided that this series is absolutely convergent. 
 
Of course, if X is integrable, we have the integrability of X  too and 

 
1

( )n n
n

X d a Aμ μ
∞

=Ω

=∑∫ . (4.5) 

To define in general the integral of a measurable function X, we first restrict 
ourselves to the case of a non-negative measurable variable X for which we can 
construct a monotone sequence ( , 1)nX n ≥  of discrete variables converging to X 
as follows: 

 
⎭
⎬
⎫

⎩
⎨
⎧ +

<≤

∞

=
∑=

nn
kXk

k
nn IkX

2
1

2
:1 2

)(
ω

ω . (4.6) 

Since for each n, 

 
1( ) ( ),

10 ( ) ( ) ,
2

n n

n n

X X

X X

ω ω

ω ω

+≤

≤ − ≤
 (4.7) 

the sequence ( , 1)nX n ≥  of discrete variables converges monotonically to X on 
Ω . 
 
Definition 4.2 The non-negative measurable variable X is integrable on Ω  iff 
the elements of the sequence ( , 1)nX n ≥  of discrete variables defined by relation 

(4.6) are integrable and if the sequence nX dP
Ω

⎛ ⎞
⎜ ⎟
⎝ ⎠
∫ converges. 

From this last definition, it follows that 
 ( ) lim ( )nE X E X= , (4.8) 
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where 

 1:1 2 2

( )
2 n n

n k kn Xk

kX d I
ω

ω μ μ
∞

+⎧ ⎫≤ <⎨ ⎬=Ω ⎩ ⎭

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∑∫ . (4.9) 

To extend the last definition without the non-negativity condition on X, let us 
introduce for an arbitrary variable X, the variables X + and X −  defined by 
 { } { }( ) sup ( ),0 ,  ( ) inf ( ),0 ,X X X Xω ω ω ω+ −= = −  (4.10) 
so that 
 X X X+ −= − . (4.11) 
 
Definition 4.3 The measurable variable X is integrable on Ω  iff the non-
negative variables X +  and X −  defined by relation (4.10) are integrable and in 
this case 
 Xd X d X dμ μ μ+ −

Ω Ω Ω

= −∫ ∫ ∫ . (4.12) 

 
Remark 4.1 a) If the integral of X does not exist, it may however happen that 

  ,  X d X d X d X dμ μ μ μ+ − − +

Ω Ω Ω Ω

⎛ ⎞ ⎛ ⎞
< ∞ < ∞ = ∞ = ∞⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫ ∫ ∫ . (4.13) 

In these two cases, we say that the integral of X is infinite; more precisely, we 
have 

 Xd Xdμ μ
Ω Ω

⎛ ⎞
= −∞ = +∞⎜ ⎟

⎝ ⎠
∫ ∫ . (4.14) 

If A is an element of the σ -algebra ℑ , the integral on A is simply defined by 
 A

A A

Xd X I dμ μ=∫ ∫ . (4.15) 

Of course, X being a non-negative measurable variable with an infinite integral, it 
means that the approximation sequence (4.6) diverges to +∞ for almost all ω . 
 
Now let us consider a probability space ( , , )PΩ ℑ  and a real random variable X 
defined on Ω . In this case, the concept of integrability is designed by expectation 
represented by 
 ( )( )E X XdP XdP

Ω

= =∫ ∫ , (4.16) 

provided that this integral exists. The computation of the integral 

 XdP XdP
Ω

⎛ ⎞
=⎜ ⎟
⎝ ⎠

∫ ∫  (4.17) 

can be done using the induced measure μ  on ( , )β\ ,defined by relation (3.6) 
and then using the distribution function F of X. Indeed, we can write 
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 ( )
R

E X XdP Xdμ
Ω

⎛ ⎞
= =⎜ ⎟
⎝ ⎠
∫ ∫ , (4.18) 

and if FX is the d.f. of X, it can be shown that 
 ( ) ( )X

R

E X xdF x= ∫ , (4.19) 

this last integral being a Lebesgue-Stieltjes integral. Moreover, if FX is absolutely 
continuous with fX as density, we get 

 ( ) ( ) .xE X xf x dx
+∞

−∞

= ∫  (4.20) 

If g is a Borel function, we also have (see for example Chung (2000), Royden 
(1963), Loeve (1963)) 

 ( ( )) ( ) XE g X g x dF
+∞

−∞

= ∫  (4.21) 

and with a density for X, 

 ( ( )) ( ) ( )XE g X g x f x dx
+∞

−∞

= ∫ . (4.22) 

The most important properties of the expectation are given in the next 
proposition. 
 
Proposition 4.1 (i)   Linearity property of the expectation: If X and Y are two 
integrable r.v. and a,b two real numbers, then the r.v. aX+bY is also integrable 
and  
  ( ) ( ) ( ).E aX bY aE X bE Y+ = +  (4.23) 
(ii)  If ( , 1)nA n ≥ is a partition of Ω , then 

  
1

( )
n

n A

E X XdP
∞

=

=∑ ∫ . (4.24) 

(iii) The expectation of a non-negative r.v. is non-negative. 
(iv)  If X and Y are integrable r.v., then 
  ( ) ( ).X Y E X E Y≤ ⇒ ≤  (4.25) 
(v)   If X is integrable, so is X  and 
  ( )E X E X≤ . (4.26) 
(vi)  Dominated convergence theorem (Lebesgue: Let ( , 1)nX n ≥  be a sequence 
of r.v. converging a.s. to the r.v. X integrable, then all the r.v. Xn are integrable 
and moreover 
  lim ( ) (lim ) ( ( ))n nE X E X E X= = . (4.27) 
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(vii)  Monotone convergence theorem (Lebesgue): Let ( , 1)nX n ≥  be a non-
decreasing sequence of non-negative r.v; then relation (4.27) is still true 
provided that ∞+  is a possible value for each member. 
(viii) If the sequence of integrable r.v. ( , 1)nX n ≥  is such that 

  ( )
1

n
n

E X
∞

=

< ∞∑ , (4.28) 

then the random series 
1

n
n

X
∞

=
∑  converges absolutely a.s. and moreover 

  
1 1

( )  ( ( ))n n
n n

E X E X E X
∞ ∞

= =

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∑ ∑ , (4.29) 

where the r.v. is defined as the sum of the convergent series. 
 
Given a r.v. X, moments are special cases of expectation. 
 
Definition 4.4 Let a be a real number and r a positive real number, then the 
expectation 
 ( )rE X a−  (4.30) 

is called the absolute moment of X, of order r, centred on a. 
 
The moments are said to be centred moments of order r if a=E(X). In particular, 
for r=2, we get the variance of X represented by 2 (var( ))Xσ , 

 ( )22 E X mσ = − . (4.31) 

 
Remark 4.2 From the linearity of the expectation (see relation (4.23)), it is easy 
to prove that 
 2 2 2( ) ( ( ))E X E Xσ = − , (4.32) 
and so 
 2 2( )E Xσ ≤ , (4.33) 
and more generally, it can be proven that the variance is the smallest moment of 
order 2 whatever the number a is. 
 
The next property recalls inequalities for moments. 
 
Proposition 4.2 (Inequalities of Hölder and Minkowski) (i)    Let X and Y be two 
r.v. such that 

qp YX , are integrable with 

 1 11 , 1,p
p q

< < ∞ + =  (4.34) 
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then: 

 ( )( ) ( )( )
1 1

( ) p qp qE XY E X E Y≤ ⋅ . (4.35) 

(ii)   Let X and Y be two r.v. such that , ,1 ,p pX Y p≤ < ∞ are integrable, then 

 ( ) ( )( ) ( )( )
1 11

.
p pp p ppE X Y E X E Y+ ≤ +  (4.36) 

If p=2 in the first part of this last proposition, then relation (4.36) gives the 
Cauchy-Schwarz inequality 

 ( )( ) ( )( )
1 1

2 22 2( )E XY E X E Y≤ ⋅ . (4.37) 

 
The last fundamental concept we will now introduce in this section is that of 
stochastic independence, or more simply independence. 
 
Definition 4.5 The events 1,..., , ( 1)nA A n > are stochastically independent or 
independent iff 

 1 2
11

2,..., , 1,..., : : ( )
k k

m m

k k n n
kk

m n n n n n n P A P A
==

⎛ ⎞
∀ = ∀ = ≠ ≠ ≠ =⎜ ⎟

⎝ ⎠
∏" ∩ . (4.38) 

For n=2, relation (4.38) reduces to 
 1 2 1 2( ) ( ) ( )P A A P A P A=∩ . (4.39) 
Let us remark that piecewise independence of the events 1,..., , ( 1)nA A n >  does 
not necessarily imply the independence of these sets and thus not the stochastic 
independence of these n events. As a counter example, let us suppose we drew a 
ball from an urn containing four balls called b1, b2, b3, b4 and let us consider the 
three following events: 
 { } { } { }1 1 2 2 1 3 3 1 4, , , , ,A b b A b b A b b= = = . (4.40) 

Then assuming that the probability of having one ball is 1
4 , we get 

 1 2 1 3 2 3
1( ) ( ) ( )
4

P A A P A A P A A= = =∩ ∩ ∩ , (4.41) 

but as 

 1 2 3
1( )
4

P A A A =∩ ∩  (4.42) 

too, we do not have the relation 
 1 2 3 1 2 3( ) ( ) ( ) ( )P A A A P A P A P A=∩ ∩ , (4.43) 
and so we have proved that independence in pairs does not imply the 
independence of these three events. 
We will now extend the concept of independence to random variables. 
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Definition 4.6 (i)    The n real r.v. X1,X2,…,Xn defined on the probability space 
( ), , PΩ ℑ are said to be stochastically independent, or simply independent, iff for 
any Borel sets B1,B2,…,Bn, we have 

 { } { }( )
11

: ( ) : ( )
n n

k k k k
kk

P X B P X Bω ω ω ω
==

⎛ ⎞
∈ = ∈⎜ ⎟

⎝ ⎠
∏∩ . (4.44) 

(ii)    For an infinite family of r.v., independence means that the members of 
every finite subfamily are independent. It is clear that if X1,X2,…,Xn are 
independent, so are the r.v. 

1
,...,

ki iX X  with 1 ,  1,..., , 2,...,k ki i i n k n≠ ≠ = =" . 
 
From relation (4.44), we find that 
 1 1 1 1 1( ,..., ) ( ) ( ), ( ,..., ) n

n n n n nP X x X x P X x P X x x x≤ ≤ = ≤ ≤ ∀ ∈" \ . (4.45) 
If the functions 

1
, ,...,

nX X XF F F  are the distribution functions of the r.v. 

1 1( ,..., ), ,...,n nX X X X X= , we can write the preceding relation under the form  
 

11 1 1( ,...., ) ( ) ( ), ( ,..., )
n

n
X n X X n nF x x F x F x x x= ⋅ ⋅ ∀ ∈" \ . (4.46) 

It can be shown that this last condition is also sufficient for the independence 
of 1 1( ,..., ), ,...,n nX X X X X= . If these d.f. have densities 

1
, ,...,

nX X Xf f f , relation 
(4.46) is equivalent to 
 

11 1 1( , , ) ( ) ( ), ( ,..., )
n

n
X n X X n nf x x f x f x x x= ∀ ∈… " \ . (4.47) 

In case of the integrability of the n real r.v X1,X2,…,Xn, a direct consequence of 
relation (4.46) is that we have a very important property for the expectation of 
the product of n independent r.v.: 

 
1 1

( )
n n

k k
k k

E X E X
= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∏ ∏ . (4.48) 

The notion of independence gives the possibility to prove the result called the 
strong law of large numbers which says that if ( , 1)nX n ≥ is a sequence of 
integrable independent and identically distributed r.v., then 

 . .

1

1 ( )
n

a s
k

k
X E X

n =

⎯⎯→∑ . (4.49) 

The next section will present the most useful distribution functions for stochastic 
modelling. 
 
5 MAIN DISTRIBUTION PROBABILITIES 
 
Here we shall restrict ourselves to presenting the principal distribution 
probabilities related to real random variables. 
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5.1 The Binomial Distribution 
 
Let us consider a random experiment E such that only two results are possible: a 
“success”(S) with probability p and a “failure (F) with probability 1 .q p= −  If n 
independent trials are made in exactly the same experimental environment, the 
total number of trials in which the event S occurs may be represented by a 
random variable X whose distribution ( , 0,..., )ip i n=  with  
 ( ), 1,...,ip P X i i n= = =  (5.1) 
is called a binomial distribution with parameters (n,p). From basic axioms of 
probability theory seen before, it is easy to prove that 

 , 0,...,i n i
i

n
p p q i n

i
−⎛ ⎞

= =⎜ ⎟
⎝ ⎠

, (5.2) 

a result from which we get 
 ( ) , var( ) .E X np X npq= =  (5.3) 
The characteristic function and the generating function, when it exists, of X 
respectively defined by 

 
( ) ( ),

( ) ( )

itX
X

tX
X

t E e

g t E e

ϕ =

=
 (5.4) 

are given by  

 
( ) ( ) ,

( ) ( ) .

it n
X

t n
X

t pe q

g t pe q

ϕ = +

= +
 (5.5) 

 
 
Example 5.1 (The Cox and Rubinstein financial model) Let us consider a 
financial asset observed on n successive discrete time periods so that at the 
beginning of the first period, from time 0 to time 1, the asset starts from value S0 
and has at the end of this period only two possible values, uS0 and dS0 ( 
0<d<1,u>1) respectively with probabilities p and q=1-p. The asset has the same 
type of evolution on each period and independently of the past. In period i, from 
time i–1 to time i, let us associate the r.v. , 1,...,i i nξ =  defined as follows: 

 
1, with probability ,
0, with probability .i

p
q

ξ
⎧

= ⎨
⎩

 (5.6) 

The value of the asset at the end of period n is given by the r.v. Yn defined as 
 n nX n X

nY u d −=  (5.7) 
with 
 1n nX ξ ξ= + +" . (5.8) 
It is clear that the r.v. Xn has a binomial distribution of parameters (n,p) and 
consequently, we get the distribution probability of Yn: 


