SEMI-MARKOV RISK MODELS FOR FINANCE, INSURANCE AND RELIABILITY

SEMI-MARKOV RISK MODELS FOR FINANCE, INSURANCE AND RELIABILITY

By
JACQUES JANSSEN
Solvay Business School, Brussels, Belgium
RAIMONDO MANCA
Università di Roma "La Sapienza," Italy

Library of Congress Control Number: 2006940397

ISBN-10: 0-387-70729-8 e-ISBN: 0-387-70730-1
ISBN-13: 978-0-387-70729-7

Printed on acid-free paper.

AMS Subject Classifications: 60K15, 60K20, 65C50, 90B25, 91B28, 91 B 30

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

987654321

springer.com

Contents

Preface XV
1 Probability Tools for Stochastic Modelling 1
1 The Sample Space 1
2 Probability Space 2
3 Random Variables 6
4 Integrability, Expectation and Independence 8
5 Main Distribution Probabilities 14
5.1 The Binomial Distribution 15
5.2 The Poisson Distribution 16
5.3 The Normal (or Laplace-Gauss) Distribution 16
5.4 The Log-Normal Distribution 19
5.5 The Negative Exponential Distribution 20
5.6 The Multidimensional Normal Distribution 20
6 Conditioning (From Independence to Dependence) 22
6.1 Conditioning: Introductory Case 22
6.2 Conditioning: General Case 26
6.3 Regular Conditional Probability 30
7 Stochastic Processes 34
8 Martingales 37
9 Brownian Motion 40
2 Renewal Theory and Markov Chains 43
1 Purpose of Renewal Theory 43
2 Main Definitions 44
3 Classification of Renewal Processes 45
4 The Renewal Equation 50
5 The Use of Laplace Transform 55
5.1 The Laplace Transform 55
5.2 The Laplace-Stieltjes (L-S) Transform 55
6 Application of Wald's Identity 56
7 Asymptotical Behaviour of the $N(t)$-Process 57
8 Delayed and Stationary Renewal Processes 57
9 Markov Chains 58
9.1 Definitions 58
9.2 Markov Chain State Classification 62
9.3 Occupation Times 66
9.4 Computations of Absorption Probabilities 67
9.5 Asymptotic Behaviour 67
9.6 Examples 71
9.7 A Case Study in Social Insurance (Janssen (1966)) 74
3 Markov Renewal Processes, Semi-Markov Processes And Markov Random Walks 77
1 Positive (J-X) Processes 77
2 Semi-Markov and Extended Semi-Markov Chains 78
3 Primary Properties 79
4 Examples 83
5 Markov Renewal Processes, Semi-Markov and Associated Counting Processes 85
6 Markov Renewal Functions 87
7 Classification of the States of an MRP 90
8 The Markov Renewal Equation 91
9 Asymptotic Behaviour of an MRP 92
9.1 Asymptotic Behaviour of Markov Renewal Functions 92
9.2 Asymptotic Behaviour of Solutions of Markov Renewal Equations 93
10 Asymptotic Behaviour of SMP 94
10.1 Irreducible Case 94
10.2 Non-irreducible Case 96
10.2.1 Uni-Reducible Case 96
10.2.2 General Case 97
11 Delayed and Stationary MRP 98
12 Particular Cases of MRP 102
12.1 Renewal Processes and Markov Chains 102
12.2 MRP of Zero Order (PYKE (1962)) 102
12.2.1 First Type of Zero Order MRP 102
12.2.2 Second Type of Zero Order MRP 103
12.3 Continuous Markov Processes 104
13 A Case Study in Social Insurance (Janssen (1966)) 104
13.1 The Semi-Markov Model 104
13.2 Numerical Example 105
14 (J-X) Processes 106
15 Functionals of (J-X) Processes 107
16 Functionals of Positive (J-X) Processes 111
17 Classical Random Walks and Risk Theory 112
17.1 Purpose 112
17.2 Basic Notions on Random Walks 112
17.3 Classification of Random Walks 115
18 Defective Positive (J-X) Processes 117
19 Semi-Markov Random Walks 121
20 Distribution of the Supremum for Semi-Markov Random Walks 123
21 Non-Homogeneous Markov and Semi-Markov Processes 124
21.1 General Definitions 124
21.1.1 Completely Non-Homogeneous Semi-Markov Processes 124
21.1.2 Special Cases 128
4 Discrete Time and Reward SMP and their Numerical Treatment 131
1 Discrete Time Semi-Markov Processes 131
1.1 Purpose 131
1.2 DTSMP Definition 131
2 Numerical Treatment of SMP 133
3 DTSMP and SMP Numerical Solutions 137
4 Solution of DTHSMP and DTNHSMP in the Transient Case: a Transportation Example 142
4.1. Principle of the Solution 142
4.2. Semi-Markov Transportation Example 143
4.2.1 Homogeneous Case 143
4.2.2 Non-Homogeneous Case 147
5 Continuous and Discrete Time Reward Processes 149
5.1 Classification and Notation 150
5.1.1 Classification of Reward Processes 150
5.1.2 Financial Parameters 151
5.2 Undiscounted SMRWP 153
5.2.1 Fixed Permanence Rewards 153
5.2.2 Variable Permanence and Transition Rewards 154
5.2.3 Non-Homogeneous Permanence and Transition Rewards 155
5.3 Discounted SMRWP 156
5.3.1 Fixed Permanence and Interest Rate Cases 156
5.3.2 Variable Interest Rates, Permanence and Transition Cases 158
5.3.3 Non-Homogeneous Interest Rate, Permanence and Transition Case 159
6 General Algorithms for DTSMRWP 159
7 Numerical Treatment of SMRWP 161
7.1 Undiscounted Case 161
7.2 Discounted Case 163
8 Relation Between DTSMRWP and SMRWP Numerical Solutions 165
8.1 Undiscounted Case 166
8.2 Discounted Case 168
5 Semi-Markov Extensions of the Black-Scholes Model 171
1 Introduction to Option Theory 171
2 The Cox-Ross-Rubinstein (CRR) or Binomial Model 174
2.1 One-Period Model 175
2.1.1 The Arbitrage Model 176
2.1.2 Numerical Example 177
2.2 Multi-Period Model 178
2.2.1 Case of Two Periods 178
2.2.2 Case of n Periods 179
2.2.3 Numerical Example 180
3 The Black-Scholes Formula as Limit of the Binomial Model 181
3.1 The Log-Normality of the Underlying Asset 181
3.2. The Black-Scholes Formula 183
4 The Black-Scholes Continuous Time Model 184
4.1 The Model 184
4.2 The Itô or Stochastic Calculus 184
4.3 The Solution of the Black-Scholes-Samuelson Model 186
4.4 Pricing the Call with the Black-Scholes-Samuelson Model 188
4.4.1 The Hedging Portfolio 188
4.4.2 The Risk Neutral Measure and the Martingale Property 190
4.4.3 The Call-Put Parity Relation 191
5 Exercise on Option Pricing 192
6 The Greek Parameters 193
6.1 Introduction 193
6.2 Values of the Greek Parameters 195
6.3 Exercises 196
7 The Impact of Dividend Distribution 198
8 Estimation of the Volatility 199
8.1 Historic Method 199
8.2 Implicit Volatility Method 200
9 Black and Scholes on the Market 201
9.1 Empirical Studies 201
9.2 Smile Effect 201
10 The Janssen-Manca Model 201
10.1 The Markov Extension of the One-Period CRR Model 202
10.1.1 The Model 202
10.1.2 Computational Option Pricing Formula for the One-Period Model 206
10.1.3 Examples 207
10.2 The Multi-Period Discrete Markov Chain Model 209
10.3 The Multi-Period Discrete Markov Chain Limit Model 211
10.4 The Extension of the Black-Scholes Pricing Formula with Markov Environment: The Janssen-Manca Formula 213
11 The Extension of the Black-Scholes Pricing Formula with Markov Environment: The Semi-Markovian Janssen-Manca-Volpe formula 216
11.1 Introduction 216
11.2 The Janssen-Manca-Çinlar Model 216
11.2.1 The JMC (Janssen-Manca-Çinlar) Semi- Markov Model $(1995,1998)$ 217
11.2.2 The Explicit Expression of S(t) 218
11.3 Call Option Pricing 219
11.4 Stationary Option Pricing Formula 221
12 Markov and Semi-Markov Option Pricing Models with Arbitrage Possibility 222
12.1 Introduction to the Janssen-Manca-Di Biase Models 222
12.2 The Homogeneous Markov JMD (Janssen-Manca- Di Biase) Model for the Underlying Asset 223
12.3 Particular Cases 224
12.4 Numerical Example for the JMD Markov Model 225
12.5 The Continuous Time Homogeneous Semi-Markov JMD Model for the Underlying Asset 227
12.6 Numerical Example for the Semi-Markov JMD Model 228
12.7 Conclusion 229
6 Other Semi-Markov Models in Finance and Insurance 231
1 Exchange of Dated Sums in a Stochastic Homogeneous Environment 231
1.1 Introduction 231
1.2 Deterministic Axiomatic Approach to Financial Choices 232
1.3 The Homogeneous Stochastic Approach 234
1.4 Continuous Time Models with Finite State Space 235
1.5 Discrete Time Model with Finite State Space 236
1.6 An Example of Asset Evaluation 237
1.7 Two Transient Case Examples 238
1.8 Financial Application of Asymptotic Results 244
2 Discrete Time Markov and Semi-Markov Reward Processes and Generalised Annuities 245
2.1 Annuities and Markov Reward Processes 246
2.2 HSMRWP and Stochastic Annuities Generalization 248
3 Semi-Markov Model for Interest Rate Structure 251
3.1 The Deterministic Environment 251
3.2 The Homogeneous Stochastic Interest Rate Approach 252
3.3 Discount Factors 253
3.4 An Applied Example in the Homogeneous Case 255
3.5 A Factor Discount Example in the Non-Homogeneous Case 257
4 Future Pricing Model 259
4.1 Description of Data 260
4.2 The Input Model 261
4.3 The Results 262
5 A Social Security Application with Real Data 265
5.1 The Transient Case Study 265
5.2 The Asymptotic Case 267
6 Semi-Markov Reward Multiple-Life Insurance Models 269
7 Insurance Model with Stochastic Interest Rates 276
7.1 Introduction 276
7.2 The Actuarial Problem 276
7.3 A Semi-Markov Reward Stochastic Interest Rate Model 277
7 Insurance Risk Models 281
1 Classical Stochastic Models for Risk Theory and Ruin Probability 281
1.1 The G/G or E.S. Andersen Risk Model 282
1.1.1 The Model 282
1.1.2 The Premium 282
1.1.3 Three Basic Processes 284
1.1.4 The Ruin Problem 285
1.2 The P/G or Cramer-Lundberg Risk Model 287
1.2.1 The Model 287
1.2.2 The Ruin Probability 288
1.2.3 Risk Management Using Ruin Probability 293
1.2.4 Cramer's Estimator 294
2 Diffusion Models for Risk Theory and Ruin Probability 301
2.1 The Simple Diffusion Risk Model 301
2.2 The ALM-Like Risk Model (Janssen (1991), (1993)) 302
2.3 Comparison of ALM-Like and Cramer-Lundberg Risk Models 304
2.4 The Second ALM-Like Risk Model 305
3 Semi-Markov Risk Models 309
3.1 The Semi-Markov Risk Model (or SMRM) 309
3.1.1 The General SMR Model 309
3.1.2 The Counting Claim Process 312
3.1.3 The Accumulated Claim Amount Process 314
3.1.4 The Premium Process 315
3.1.5 The Risk and Risk Reserve Processes 316
3.2 The Stationary Semi-Markov Risk Model 316
3.3 Particular SMRM with Conditional Independence 316
3.3.1 The SM/G Model 317
3.3.2 The G/SM Model 317
3.3.3 The P/SM Model 317
3.3.4 The M/SM Model 318
3.3.5 The M'/SM Model 318
3.3.6 The $\operatorname{SM}(0) / \mathrm{SM}(0)$ Model 318
3.3.7 The SM' (0)/SM' (0) Model 318
3.3.8 The Mixed Zero Order SM' (0)/SM(0) and SM(0)/SM' (0) Models 319
3.4 The Ruin Problem for the General SMRM 320
3.4.1 Ruin and Non-Ruin Probabilities 320
3.4.2 Change of Premium Rate 321
3.4.3 General Solution of the Asymptotic Ruin Probability Problem for a General SMRM 322
3.5 The Ruin Problem for Particular SMRM 324
3.5.1 The Zero Order Model SM(0)/SM(0) 324
3.5.2 The Zero Order Model SM '(0)/SM '(0) 325
3.5.3 The Model M/SM 325
3.5.4 The Zero Order Models as Special Case of the Model M/SM 328
3.6 The M'/SM Model 329
3.6.1 General Solution 329
3.6.2 Particular Cases: the M / M and M^{\prime} / M Models 332
8 Reliability and Credit Risk Models 335
1 Classical Reliability Theory 335
1.1 Basic Concepts 335
1.2 Classification of Failure Rates 336
1.3 Main Distributions Used in Reliability 338
1.4 Basic Indicators of Reliability 339
1.5 Complex and Coherent Structures 340
2 Stochastic Modelling in Reliability Theory 343
2.1 Maintenance Systems 343
2.2 The Semi-Markov Model for Maintenance Systems 346
2.3 A Classical Example 348
3 Stochastic Modelling for Credit Risk Management 351
3.1 The Problem of Credit Risk 351
3.2 Construction of a Rating Using the Merton Model for the Firm 352
3.3 Time Dynamic Evolution of a Rating 355
3.3.1 Time Continuous Model 355
3.3.2 Discrete Continuous Model 356
3.3.3 Example 358
3.3.4 Rating and Spreads on Zero Bonds 360
4 Credit Risk as a Reliability Model 361
4.1 The Semi-Markov Reliability Credit Risk Model 361
4.2 A Homogeneous Case Example 362
4.3 A Non-Homogeneous Case Example 365
9 Generalised Non-Homogeneous Models for Pension Funds and Manpower Management 373
1 Application to Pension Funds Evolution 373
1.1 Introduction 374
1.2 The Non-homogeneous Semi-Markov Pension Fund Model 375
1.2.1 The DTNHSM Model 376
1.2.2 The States of DTNHSMPFM 379
1.2.3 The Concept of Seniority in the DTNHSPFM 379
1.3 The Reserve Structure 382
1.4 The Impact of Inflation and Interest Variability 383
1.5 Solving Evolution Equations 385
1.6 The Dynamic Population Evolution of the Pension Funds 389
1.7 Financial Equilibrium of the Pension Funds 392
1.8 Scenario and Data 395
1.8.1 Internal Scenario 396
1.8.2 Historical Data 396
1.8.3 Economic Scenario 397
1.9 Usefulness of the NHSMPFM 398
2 Generalized Non-Homogeneous Semi-Markov Model for Manpower Management 399
2.1 Introduction 399
2.2 GDTNHSMP for the Evolution of Salary Lines 400
2.3 The GDTNHSMRWP for Reserve Structure 402
2.4 Reserve Structure Stochastic Interest Rate 403
2.5 The Dynamics of Population Evolution 404
2.6 The Computation of Salary Cost Present Value 405

Contents XIII
References 407
Author index 423
Subject index 425

PREFACE

This book aims to give a complete and self-contained presentation of semiMarkov models with finitely many states, in view of solving real life problems of risk management in three main fields: Finance, Insurance and Reliability providing a useful complement to our first book (Janssen and Manca (2006)) which gives a theoretical presentation of semi-Markov theory. However, to help assure the book is self-contained, the first three chapters provide a summary of the basic tools on semi-Markov theory that the reader will need to understand our presentation. For more details, we refer the reader to our first book (Janssen and Manca (2006)) whose notations, definitions and results have been used in these four first chapters.
Nowadays, the potential for theoretical models to be used on real-life problems is severely limited if there are no good computer programs to process the relevant data. We therefore systematically propose the basic algorithms so that effective numerical results can be obtained. Another important feature of this book is its presentation of both homogeneous and non-homogeneous models. It is well known that the fundamental structure of many real-life problems is nonhomogeneous in time, and the application of homogeneous models to such problems gives, in the best case, only approximated results or, in the worst case, nonsense results.
This book addresses a very large public as it includes undergraduate and graduate students in mathematics and applied mathematics, in economics and business studies, actuaries, financial intermediaries, engineers and operation researchers, but also researchers in universities and rd departments of banking, insurance and industry.
Readers who have mastered the material in this book will see how the classical models in our three fields of application can be extended in a semi-Markov environment to provide better new models, more general and able to solve problems in a more adapted way. They will indeed have a new approach giving a more competitive knowledge related to the complexity of real-life problems.
Let us now give some comments on the contents of the book.
As we start from the fact that the semi-Markov processes are the children of a successful marriage between renewal theory and Markov chains, these two topics are presented in Chapter 2.
The full presentation of Markov renewal theory, Markov random walks and semi-Markov processes, functionals of (J-X) processes and semi-Markov random walks is given in Chapter 3 along with a short presentation of non-homogeneous Markov and semi-Markov processes.

Chapter 4 is devoted to the presentation of discrete time semi-Markov processes, reward processes both in undiscounted and discounted cases, and to their numerical treatment.
Chapter 5 develops the Cox-Ross-Rubinstein or binomial model and semiMarkov extension of the Black and Scholes formula for the fundamental problem of option pricing in finance, including Greek parameters. In this chapter, we must also mention the presence of an option pricing model with arbitrage possibility, thus showing how to deal with a problem stock brokers are confronted with daily. Chapter 6 presents other general finance and insurance semi-Markov models with the concepts of exchange and dated sums in stochastic homogeneous and nonhomogeneous environments, applications in social security and multiple life insurance models.
Chapter 7 is entirely devoted to insurance risk models, one of the major fields of actuarial science; here, too, semi-Markov processes and diffusion processes lead to completely new risk models with great expectations for future applications, particularly in ruin theory.
Chapter 8 presents classical and semi-Markov models for reliability and credit risk, including the construction of rating, a fundamental tool for financial intermediaries.
Finally, Chapter 9 concerns the important present day problem of pension evolution, which is clearly a time non-homogeneous problem. As we need here more than one time variable, we introduce the concept of generalised nonhomogeneous semi-Markov processes. A last section develops generalised non homogeneous semi-Markov models for salary line evolution.
Let us point out that whenever we present a semi-Markov model for solving an applied problem, we always summarise, before giving our approach, the classical existing models. Therefore the reader does not have to look elsewhere for supplementary information; furthermore, both approaches can be compared and conclusions reached as to the efficacy of the semi-Markov approach developed in this book.
It is clear that this book can be read by sections in a variety of sequences, depending on the main interest of the reader. For example, if the reader is interested in the new approaches for finance models, he can read the first four chapters and then immediately Chapters 5 and 6 , and similarly for other topics in insurance or reliability.
The authors have presented many parts of this book in courses at several universities: Université Libre de Bruxelles, Vrije Universiteit Brussel, Université de Bretagne Occidentale (EURIA), Universités de Paris 1 (La Sorbonne) and Paris VI (ISUP), ENST-Bretagne, Université de Strasbourg, Universities of Roma (La Sapienza), Firenze and Pescara.
Our common experience in the field of solving some real problems in finance, insurance and reliability has joined to create this book, taking into account the remarks of colleagues and students in our various lectures. We hope to convince
potential readers to use some of the proposed models to improve the way of modelling real-life applications.

Jacques Janssen Raimondo Manca

Keywords :

Semi-Markov processes, Homogeneous, Non homogeneous, Risk Management, Finance, Insurance, Reliability, Models, Numerical results, Real Applications.

AMS Classification

$60 K 05,60 J 10,60 K 15,60 K 10,60 K 20,62 P 05,65 C 40,65 C 99,90 B 25,90 C 40$, 91B30, 91B28, 91B70

Chapter 1

PROBABILITY TOOLS FOR STOCHASTIC MODELLING

In this chapter, the reader will find a short summary of the basic probability tools useful for understanding of the following chapters. A more detailed version including proofs can be found in Janssen and Manca (2006). We will focus our attention on stochastic processes in discrete time and continuous time defined by sequences of random variables.

1 THE SAMPLE SPACE

The basic concrete notion in probability theory is that of the random experiment, that is to say an experiment for which we cannot predict in advance the outcome. With each random experiment, we can associate the so-called elementary events ω, and the set of all these events Ω is called the sample space. Some other subsets of Ω will represent possible events. Let us consider the following examples.

Example 1.1 If the experiment consists in the measurement of the lifetime of an integrated circuit, then the sample space is the set of all non-negative real numbers \mathbb{R}^{+}. Possible events are $[a, b],(a, b),[a, b),(a, b]$ where for example the event $[a, b)$ means that the lifetime is at least a and strictly inferior to b.

Example 1.2 An insurance company is interested in the number of claims per year for its portfolio. In this case, the sample space is the set of natural numbers \mathbb{N}.

Example 1.3 A bank is to invest in some shares; so the bank looks to the history of the value of different shares. In this case, the sample space is the set of all nonnegative real numbers \mathbb{R}^{+}.

To be useful, the set of all possible events must have some properties of stability so that we can generate new events such as:
(i) the complement $A^{c}: A^{c}=\{\omega \in \Omega: \omega \notin A\}$,
(ii) the union $A \cup B: A \cup B=\{\omega: \omega \in A$ or $\omega \in B\}$,
(iii) the intersection $A \cap B: A \cap B=\{\omega: \omega \in A, \omega \in B\}$.

More generally, if ($A_{n}, n \geq 1$) represents a sequence of events, we can also consider the following events:

$$
\begin{equation*}
\bigcup_{n \geq 1} A_{n}, \bigcap_{n \geq 1} A_{n} \tag{1.4}
\end{equation*}
$$

representing respectively the union and the intersection of all the events of the given sequence. The first of these two events occurs iff at least one of these events occurs and the second iff all the events of the given sequence occur. The set Ω is called the certain event and the set \varnothing the empty event. Two events A and B are said to be disjoint or mutually exclusive iff

$$
\begin{equation*}
A \cap B=\varnothing . \tag{1.5}
\end{equation*}
$$

Event A implies event B iff

$$
\begin{equation*}
A \subset B . \tag{1.6}
\end{equation*}
$$

In Example 1.3, the event "the value of the share is between " $50 \$$ and $75 \$$ " is given by the set $[50,75]$.

2 PROBABILITY SPACE

Given a sample space Ω, the set of all possible events will be noted by \mathfrak{I}, supposed to have the structure of a σ-field or a σ-algebra.

Definition 2.1 The family \mathfrak{J} of subsets of Ω is called $a \sigma$-field or a σ algebra iff the following conditions are satisfied:
(i) Ω, \varnothing belong to \mathfrak{I},
(ii) Ω is stable under denumerable intersection:

$$
\begin{equation*}
A_{n} \in \mathfrak{I}, \forall n \geq 1 \Rightarrow \bigcap_{n \geq 1} A_{n} \in \mathfrak{I}, \tag{2.1}
\end{equation*}
$$

(iii) \mathfrak{J} is stable for the complement set operation

$$
\begin{equation*}
A \in \mathfrak{I} \Rightarrow A^{c} \in \mathfrak{I}, A^{c}=\Omega-A . \tag{2.2}
\end{equation*}
$$

Then, using the well-known de Morgan's laws saying that

$$
\begin{equation*}
\left(\bigcup_{n \geq 1} A_{n}\right)^{c}=\bigcap_{n \geq 1} A_{n}^{c},\left(\bigcap_{n \geq 1} A_{n}\right)^{c}=\bigcup_{n \geq 1} A_{n}^{c}, \tag{2.3}
\end{equation*}
$$

it is easy to prove that a σ-algebra \mathfrak{J} is also stable under denumerable union:

$$
\begin{equation*}
A_{n} \in \mathfrak{I}, \forall n \geq 1 \Rightarrow \bigcup_{n \geq 1} A_{n} \in \mathfrak{I} \tag{2.4}
\end{equation*}
$$

Any couple (Ω, \mathfrak{I}) where \mathfrak{I} is a σ-algebra is called a measurable space.
The next definition concerning the concept of probability measure or simply probability is an idealization of the concept of the frequency of an event. Let us consider a random experiment called E with which is associated the couple
(Ω, \mathfrak{J}); if the set A belongs to \mathfrak{I} and if we can repeat the experiment $E n$ times, under the same conditions of environment, we can count how many times A occurs. If $n(A)$ represents this number of occurrences, the frequency of the event A is defined as

$$
\begin{equation*}
f(A)=\frac{n(A)}{n} \text {. } \tag{2.5}
\end{equation*}
$$

In general, this number tends to become stable for large values of n.
The notion of frequency satisfies the following elementary properties:
(i) $(A, B \in \mathfrak{I}, A \cap B=\varnothing \Rightarrow f(A \cup B)=f(A)+f(B)$,
(ii) $f(\Omega)=1$,
(iii) $A, B \in \mathfrak{I}, \Rightarrow f(A \cup B)=f(A)+f(B)-f(A \cap B)$,
(iv) $A \in \mathfrak{I} \Rightarrow f\left(A^{c}\right)=1-f(A)$.

To have a useful mathematical model for the theoretical idealization of the notion of frequency, we now introduce the following definition.

Definition 2.2 a) The triplet $(\Omega, \mathfrak{J}, P)$ is called a probability space if Ω is a nonvoid set of elements, \mathfrak{J} a σ-algebra of subsets of Ω and P an application from \mathfrak{J} to $[0,1]$ such that:

$$
\begin{equation*}
\left(A_{n}, n \geq 1\right), A_{n} \in \mathfrak{I}, n \geq 1:\left(i \neq j \Rightarrow A_{i} \cap A_{j}=\phi\right) \tag{2.10}
\end{equation*}
$$

(i) $\Rightarrow P\left(\bigcup_{n \geq 1} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)(\sigma-$ additivity of $P)$,
(ii) $P(\Omega)=1$.
b) The application P satisfying conditions (2.10) and (2.11) is called a probability measure or simply probability.

Remark 2.1 1) The sequence of events $\left(A_{n}, n \geq 1\right)$ satisfying the condition that

$$
\begin{equation*}
\left(A_{n}, n \geq 1\right), A_{n} \in \mathfrak{I}, n \geq 1: i \neq j \Rightarrow A_{i} \cap A_{j}=\varnothing \tag{2.12}
\end{equation*}
$$

is called mutually exclusive.
2) The relation (2.11) assigns the value 1 for the probability of the entire sample space Ω. There may exist events A^{\prime} strictly subsets of Ω such that

$$
\begin{equation*}
P\left(A^{\prime}\right)=1 . \tag{2.13}
\end{equation*}
$$

In this case, we say that A is almost sure or that the statement defining A is true almost surely (in short a.s.) or holds for almost all ω.
From axioms (2.10) and (2.11), we can deduce the following properties:
Property 2.1 (i) If $A, B \in \mathfrak{I}$, then

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B)-P(A \cap B) . \tag{2.14}
\end{equation*}
$$

(ii) If $A \in \mathfrak{I}$, then

$$
\begin{equation*}
P\left(A^{c}\right)=1-P(A) \tag{2.15}
\end{equation*}
$$

(iii) $P(\varnothing)=0$.
(iv) If $\left(B_{n}, n \geq 1\right)$ is a sequence of disjoint elements of \mathfrak{J} forming a partition of Ω, then for all A belonging to \mathfrak{J},

$$
\begin{equation*}
P(A)=\sum_{n=1}^{\infty} P\left(A \bigcap B_{n}\right) \tag{2.17}
\end{equation*}
$$

(v) Continuity property of P : if $\left(A_{n}, n \geq 1\right)$ is an increasing (decreasing) sequence of elements of \mathfrak{J}, then

$$
\begin{equation*}
P\left(\bigcup_{n \geq 1} A_{n}\right)=\lim _{n} P\left(A_{n}\right) ;\left(P\left(\bigcap_{n \geq 1} A_{n}\right)=\lim _{n} P\left(A_{n}\right)\right) \tag{2.18}
\end{equation*}
$$

Remark 2.2 a) Boole's inequality asserts that if $\left(A_{n}, n \geq 1\right)$ is a sequence of events, then

$$
\begin{equation*}
P\left(\bigcup_{n \geq 1} A_{n}\right) \leq \sum_{n \geq 1} P\left(A_{n}\right) \tag{2.19}
\end{equation*}
$$

b) From (2.14), it is clear that we also have

$$
\begin{equation*}
A \subset B \Rightarrow P(A) \leq P(B) \tag{2.20}
\end{equation*}
$$

Example 2.1 a) The discrete case
When the sample space Ω is finite or denumerable, we can set

$$
\begin{equation*}
\Omega=\left\{\omega_{1}, \ldots, \omega_{j}, \ldots\right\} \tag{2.21}
\end{equation*}
$$

and select for \mathfrak{J} the set of all the subsets of Ω, represented by 2^{Ω}.
Any probability measure P can be defined with the following sequence:

$$
\begin{equation*}
\left(p_{j}, j \geq 1\right), p_{j} \geq 0, j \geq 1, \sum_{j \geq 1} p_{j}=1 \tag{2.22}
\end{equation*}
$$

so that

$$
\begin{equation*}
P\left(\left\{w_{j}\right\}\right)=p_{j}, j \geq 1 \tag{2.23}
\end{equation*}
$$

On the probability space $\left(\Omega, 2^{\Omega}, P\right)$, the probability assigned for an arbitrary event $\mathrm{A}=\left\{\omega_{k_{1}}, \ldots, \omega_{k_{l}}\right\}, k_{j} \geq 1, j=1, \ldots, l, k_{i} \neq k_{j}$ if $i \neq j$ is given by

$$
\begin{equation*}
P(A)=\sum_{j=1}^{l} p_{k_{j}} \tag{2.24}
\end{equation*}
$$

b) The continuous case

Let Ω be the real set \mathbb{R}; It can be proven (Halmos (1974)) that there exists a minimal σ-algebra generated by the set of intervals:

$$
\begin{equation*}
\beta=\{(a, b),[a, b],[a, b),(a, b], a, b \in \mathbb{R}, a \leq b\} . \tag{2.25}
\end{equation*}
$$

It is called the Borel σ-algebra represented by β and the elements of β are called Borel sets.
Given a probability measure P on (Ω, β), we can define the real function F, called the distribution function related to P, as follows.

Definition 2.3 The function F from \mathbb{R} to $[0,1]$ defined by

$$
\begin{equation*}
P((-\infty, x])=F(x), x \in \mathbb{R} \tag{2.26}
\end{equation*}
$$

is called the distribution function related to the probability measure P.
From this definition and the basic properties of P, we easily deduce that:

$$
\begin{align*}
& P((a, b])=F(b)-F(a), P((a, b))=F(b-)-F(a), \\
& P([a, b))=F(b-)-F(a-), P([a, b])=F(b)-F(a-) . \tag{2.27}
\end{align*}
$$

Moreover, from (2.26), any function F from \mathbb{R} to $[0,1]$ is a distribution function (in short d.f.) iff it is a non-decreasing function satisfying the following conditions:
F is right continuous at every point x_{0},

$$
\begin{equation*}
\lim _{x \nmid x_{0}} F(x)=F\left(x_{0}\right), \tag{2.28}
\end{equation*}
$$

and moreover

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} F(x)=1, \lim _{x \rightarrow-\infty} F(x)=0 . \tag{2.2}
\end{equation*}
$$

If the function F is derivable on \mathbb{R} with f as derivative, we have

$$
\begin{equation*}
F(x)=\int_{-\infty}^{x} f(y) d y, x \in \mathbb{R} . \tag{2.30}
\end{equation*}
$$

The function f is called the density function associated with the d.f. F and in the case of the existence of such a Lebesgue integrable function on \mathbb{R}, F is called absolutely continuous.
From the definition of the concept of integral, we can give the intuitive interpretation of f as follows; given the small positive real number Δx, we have

$$
\begin{equation*}
P(\{x, x+\Delta x\}) \approx f(x) \Delta x . \tag{2.31}
\end{equation*}
$$

Using the Lebesgue-Stieltjes integral, it can be seen that it is possible to define a probability measure P on (\mathbb{R}, β) starting from a d.f. F on \mathbb{R} by the following definition of P :

$$
\begin{equation*}
P(A)=\int_{A} d F(x), \forall A \in \mathfrak{I} . \tag{2.3}
\end{equation*}
$$

In the absolutely continuous case, we get

$$
\begin{equation*}
P(A)=\int_{A} f(y) d y \tag{2.33}
\end{equation*}
$$

Remark 2.3 In fact, it is also possible to define the concept of d.f. in the discrete case if we set, without loss of generality, on $\left(N_{0}, 2^{N_{0}}\right)$, the measure P defined from the sequence (2.22). Indeed, if for every positive integer k, we set

$$
\begin{equation*}
F(k)=\sum_{j=1}^{k} p_{j} \tag{2.34}
\end{equation*}
$$

and generally, for any real x,

$$
F(x)=\left\{\begin{array}{c}
0, x \leq 0 \tag{2.35}\\
F(k), x \in[k, k+1)
\end{array}\right.
$$

then, for any positive integer k, we can write

$$
\begin{equation*}
P(\{1, \ldots, k\})=F(k) \tag{2.36}
\end{equation*}
$$

and so calculate the probability of any event.

3 RANDOM VARIABLES

Let us suppose the probability space $(\Omega, \mathfrak{I}, P)$ and the measurable space (E, ψ) are given.

Definition 3.1 A random variable (in short r.v.) with values in E is an application X from Ω to E such that

$$
\begin{equation*}
\forall B \in \psi: X^{-1}(B) \in \mathfrak{I} \tag{3.1}
\end{equation*}
$$

where $X^{-1}(B)$ is called the inverse image of the set B defined by

$$
\begin{equation*}
X^{-1}(B)=\{\omega: X(\omega) \in B\}, X^{-1}(B) \in \mathfrak{J} \tag{3.2}
\end{equation*}
$$

Particular cases

a) If $(E, \psi)=(\mathbb{R}, \beta), X$ is called a real random variable.
b) $\operatorname{If}(E, \psi)=(\overline{\mathbb{R}}, \bar{\beta})$, where $\overline{\mathbb{R}}$ is the extended real line defined by $\mathbb{R} \cup\{+\infty\} \cup\{-\infty\}$ and $\bar{\beta}$ the extended Borel σ-field of $\overline{\mathbb{R}}$, that is the minimal σ-field containing all the elements of β and the extended intervals

$$
\begin{align*}
& {[-\infty, a),(-\infty, a],[-\infty, a],(-\infty, a)} \\
& {[a,+\infty),(a,+\infty],[a,+\infty],(a,+\infty), a \in \mathbb{R}} \tag{3.3}
\end{align*}
$$

then X is called a real extended value random variable.
c) If $E=\mathbb{R}^{n}(n>1)$ with the product σ-field $\beta^{(n)}$ of β, X is called an n dimensional real random variable.
d) If $E=\overline{\mathbb{R}}^{(n)}(\mathrm{n}>1)$ with the product σ-field $\bar{\beta}^{(n)}$ of $\bar{\beta}, X$ is called a real extended n-dimensional real random variable.

A random variable X is called discrete or continuous according as X takes at most a denumerable or a non-denumerable infinite set of values.

Remark 3.1 In measure theory, the only difference is that condition (2.11) is no longer required and in this case the definition of a r.v. given above gives the notion of measurable function. In particular a measurable function from (\mathbb{R}, β) to (\mathbb{R}, β) is called a Borel function.

Let X be a real r.v. and let us consider, for any real x, the following subset of Ω : $\{\omega: X(\omega) \leq x\}$.
As, from relation (3.2),

$$
\begin{equation*}
\{\omega: X(\omega) \leq x\}=X^{-1}((-\infty, x]), \tag{3.4}
\end{equation*}
$$

it is clear from relation (3.1) that this set belongs to the σ-algebra \mathfrak{J}. Conversely, it can be proved that the condition

$$
\begin{equation*}
\{\omega: X(\omega) \leq x\} \in \mathfrak{I}, \tag{3.5}
\end{equation*}
$$

valid for every x belonging to a dense subset of \mathbb{R}, is sufficient for X being a real random variable defined on Ω. The probability measure P on (Ω, \mathfrak{J}) induces a probability measure μ on $(\mathbb{R}, \beta$) defined as

$$
\begin{equation*}
\forall B \in \beta: \mu(B)=P(\{\omega: X(\omega) \in B\}) . \tag{3.6}
\end{equation*}
$$

We say that μ is the induced probability measure on (\mathbb{R}, β), called the probability distribution of the r.v. X. Introducing the distribution function related to μ, we get the next definition.

Definition 3.2 The distribution function of the r.v. X, represented by F_{X}, is the function from $\mathbb{R} \rightarrow[0,1]$ defined by

$$
\begin{equation*}
F_{X}(x)=\mu((-\infty, x])=P(\{\omega: X(\omega) \leq x\}) . \tag{3.7}
\end{equation*}
$$

In short, we write

$$
\begin{equation*}
F_{X}(x)=P(X \leq x) . \tag{3.8}
\end{equation*}
$$

This last definition can be extended to the multi-dimensional case with a r.v. X being an n -dimensional real vector: $X=\left(X_{1}, \ldots, X_{n}\right)$, a measurable application from $(\Omega, \mathfrak{I}, P)$ to $\left(\mathbb{R}^{n}, \beta^{n}\right)$.

Definition 3.3 The distribution function of the r.v. $X=\left(X_{1}, \ldots, X_{n}\right)$, represented by F_{X}, is the function from \mathbb{R}^{n} to $[0,1]$ defined by

$$
\begin{equation*}
F_{X}\left(x_{1}, \ldots, x_{n}\right)=P\left(\left\{\omega: X_{1}(\omega) \leq x_{1}, \ldots, X_{n}(\omega) \leq x_{n}\right\}\right) . \tag{3.9}
\end{equation*}
$$

In short, we write

$$
\begin{equation*}
F_{X}\left(x_{1}, \ldots, x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right) \tag{3.10}
\end{equation*}
$$

Each component $X_{i}(i=1, \ldots, n)$ is itself a one-dimensional real r.v. whose d.f., called the marginal d.f., is given by

$$
\begin{equation*}
F_{X_{i}}\left(x_{i}\right)=F_{X}\left(+\infty, \ldots,+\infty, x_{i},+\infty, \ldots,+\infty\right) \tag{3.11}
\end{equation*}
$$

The concept of random variable is stable under a lot of mathematical operations; so any Borel function of a r.v. X is also a r.v.
Moreover, if X and Y are two r.v., so are

$$
\begin{equation*}
\inf \{X, Y\}, \sup \{X, Y\}, X+Y, X-Y, X \cdot Y, \frac{X}{Y} \tag{3.12}
\end{equation*}
$$

provided, in the last case, that Y does not vanish.
Concerning the convergence properties, we must mention the property that, if $\left(X_{n}, n \geq 1\right)$ is a convergent sequence of r.v. - that is, for all $\omega \in \Omega$, the sequence $\left(X_{n}(\omega)\right)$ converges to $X(\omega)$-, then the limit X is also a r.v. on Ω. This convergence, which may be called the sure convergence, can be weakened to give the concept of almost sure (in short a.s.) convergence of the given sequence.

Definition 3.4 The sequence $\left(X_{n}(\omega)\right)$ converges a.s. to $X(\omega)$ if

$$
\begin{equation*}
P\left(\left\{\omega: \lim X_{n}(\omega)=X(\omega)\right\}\right)=1 \tag{3.13}
\end{equation*}
$$

This last notion means that the possible set where the given sequence does not converge is a null set, that is a set N belonging to \mathfrak{J} such that

$$
\begin{equation*}
P(N)=0 . \tag{3.14}
\end{equation*}
$$

In general, let us remark that, given a null set, it is not true that every subset of it belongs to \mathfrak{I} but of course if it belongs to \mathfrak{I}, it is clearly a null set (see relation (2.20)).

To avoid unnecessary complications, we will suppose from now on that any considered probability space is complete, This means that all the subsets of a null set also belong to \mathfrak{J} and thus that their probability is zero.

4 INTEGRABILITY, EXPECTATION AND INDEPENDENCE

Let us consider a complete measurable space $(\Omega, \mathfrak{I}, \mu)$ and a real measurable variable X defined on Ω. To any set A belonging to \mathfrak{J}, we associate the r.v. I_{A}, called the indicator of A, defined as

$$
I_{A}(\omega)=\left\{\begin{array}{l}
1, \omega \in A \tag{4.1}\\
0, \omega \notin A .
\end{array}\right.
$$

If there exists partition $\left(A_{n}, n \geq 1\right)$ with all its sets measurable such that

$$
\begin{equation*}
\omega \in A_{n} \Rightarrow X(\omega)=a_{n}\left(a_{n} \in \mathbb{R}\right), n \geq 1 \tag{4.2}
\end{equation*}
$$

then X is called a discrete variable. If moreover, the partition is finite, it is said to be finite. It follows that we can write X in the following form:

$$
\begin{equation*}
X(\omega)=\sum_{n=1}^{\infty} a_{n} I_{A_{n}}(\omega) \tag{4.3}
\end{equation*}
$$

Definition 4.1 The integral of the discrete variable X is defined by

$$
\begin{equation*}
\int_{\Omega} X d \mu=\sum_{n=1}^{\infty} a_{n} \mu\left(A_{n}\right) \tag{4.4}
\end{equation*}
$$

provided that this series is absolutely convergent.

Of course, if X is integrable, we have the integrability of $|X|$ too and

$$
\begin{equation*}
\int_{\Omega}|X| d \mu=\sum_{n=1}^{\infty}\left|a_{n}\right| \mu\left(A_{n}\right) . \tag{4.5}
\end{equation*}
$$

To define in general the integral of a measurable function X, we first restrict ourselves to the case of a non-negative measurable variable X for which we can construct a monotone sequence $\left(X_{n}, n \geq 1\right)$ of discrete variables converging to X as follows:

$$
\begin{equation*}
X_{n}(\omega)=\sum_{k=1}^{\infty} \frac{k}{2^{n}} I_{\left\{\omega: \frac{k}{2^{n}} \leq X<\frac{k+1}{2^{n}}\right\}} . \tag{4.6}
\end{equation*}
$$

Since for each n,

$$
\begin{align*}
& X_{n}(\omega) \leq X_{n+1}(\omega) \\
& 0 \leq X(\omega)-X_{n}(\omega) \leq \frac{1}{2^{n}} \tag{4.7}
\end{align*}
$$

the sequence $\left(X_{n}, n \geq 1\right)$ of discrete variables converges monotonically to X on Ω.

Definition 4.2 The non-negative measurable variable X is integrable on Ω iff the elements of the sequence $\left(X_{n}, n \geq 1\right)$ of discrete variables defined by relation (4.6) are integrable and if the sequence $\left(\int_{\Omega} X_{n} d P\right)$ converges.

From this last definition, it follows that

$$
\begin{equation*}
E(X)=\lim E\left(X_{n}\right), \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{\Omega} X_{n}(\omega) d \mu=\sum_{k=1}^{\infty} \frac{k}{2^{n}} \mu\left(I_{\left\{\omega: \frac{k}{2^{n}} \leq X<\frac{k+1}{2^{n}}\right\}}\right) \tag{4.9}
\end{equation*}
$$

To extend the last definition without the non-negativity condition on X, let us introduce for an arbitrary variable X, the variables X^{+}and X^{-}defined by

$$
\begin{equation*}
X^{+}(\omega)=\sup \{X(\omega), 0\}, X^{-}(\omega)=-\inf \{X(\omega), 0\} \tag{4.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
X=X^{+}-X^{-} \tag{4.11}
\end{equation*}
$$

Definition 4.3 The measurable variable X is integrable on Ω iff the nonnegative variables X^{+}and X^{-}defined by relation (4.10) are integrable and in this case

$$
\begin{equation*}
\int_{\Omega} X d \mu=\int_{\Omega} X^{+} d \mu-\int_{\Omega} X^{-} d \mu \tag{4.12}
\end{equation*}
$$

Remark 4.1 a) If the integral of X does not exist, it may however happen that

$$
\begin{equation*}
\int_{\Omega} X^{+} d \mu<\infty\left(\int_{\Omega} X^{-} d \mu<\infty\right), \int_{\Omega} X^{-} d \mu=\infty\left(\int_{\Omega} X^{+} d \mu=\infty\right) . \tag{4.13}
\end{equation*}
$$

In these two cases, we say that the integral of X is infinite; more precisely, we have

$$
\begin{equation*}
\int_{\Omega} X d \mu=-\infty\left(\int_{\Omega} X d \mu=+\infty\right) \tag{4.14}
\end{equation*}
$$

If A is an element of the σ-algebra \mathfrak{J}, the integral on A is simply defined by

$$
\begin{equation*}
\int_{A} X d \mu=\int_{A} X I_{A} d \mu \tag{4.15}
\end{equation*}
$$

Of course, X being a non-negative measurable variable with an infinite integral, it means that the approximation sequence (4.6) diverges to $+\infty$ for almost all ω.

Now let us consider a probability space $(\Omega, \mathfrak{I}, P)$ and a real random variable X defined on Ω. In this case, the concept of integrability is designed by expectation represented by

$$
\begin{equation*}
E(X)=\int_{\Omega} X d P\left(=\int X d P\right) \tag{4.16}
\end{equation*}
$$

provided that this integral exists. The computation of the integral

$$
\begin{equation*}
\int_{\Omega} X d P\left(=\int X d P\right) \tag{4.17}
\end{equation*}
$$

can be done using the induced measure μ on (\mathbb{R}, β), defined by relation (3.6) and then using the distribution function F of X. Indeed, we can write

$$
\begin{equation*}
E(X)\left(=\int_{\Omega} X d P\right)=\int_{R} X d \mu \tag{4.18}
\end{equation*}
$$

and if F_{X} is the d.f. of X, it can be shown that

$$
\begin{equation*}
E(X)=\int_{R} x d F_{X}(x) \tag{4.19}
\end{equation*}
$$

this last integral being a Lebesgue-Stieltjes integral. Moreover, if F_{X} is absolutely continuous with f_{X} as density, we get

$$
\begin{equation*}
E(X)=\int_{-\infty}^{+\infty} x f_{x}(x) d x \tag{4.20}
\end{equation*}
$$

If g is a Borel function, we also have (see for example Chung (2000), Royden (1963), Loeve (1963))

$$
\begin{equation*}
E(g(X))=\int_{-\infty}^{+\infty} g(x) d F_{X} \tag{4.21}
\end{equation*}
$$

and with a density for X,

$$
\begin{equation*}
E(g(X))=\int_{-\infty}^{+\infty} g(x) f_{X}(x) d x \tag{4.22}
\end{equation*}
$$

The most important properties of the expectation are given in the next proposition.

Proposition 4.1 (i) Linearity property of the expectation: If X and Y are two integrable r.v. and a, b two real numbers, then the r.v. $a X+b Y$ is also integrable and

$$
\begin{equation*}
E(a X+b Y)=a E(X)+b E(Y) \tag{4.23}
\end{equation*}
$$

(ii) If $\left(A_{n}, n \geq 1\right)$ is a partition of Ω, then

$$
\begin{equation*}
E(X)=\sum_{n=1}^{\infty} \int_{A_{n}} X d P \tag{4.24}
\end{equation*}
$$

(iii) The expectation of a non-negative r.v. is non-negative.
(iv) If X and Y are integrable r.v., then

$$
\begin{equation*}
X \leq Y \Rightarrow E(X) \leq E(Y) \tag{4.25}
\end{equation*}
$$

(v) If X is integrable, so is $|X|$ and

$$
\begin{equation*}
|E(X)| \leq E|X| \tag{4.26}
\end{equation*}
$$

(vi) Dominated convergence theorem (Lebesgue: Let $\left(X_{n}, n \geq 1\right)$ be a sequence of r.v. converging a.s. to the r.v. X integrable, then all the r.v. X_{n} are integrable and moreover

$$
\begin{equation*}
\lim E\left(X_{n}\right)=E\left(\lim X_{n}\right)(=E(X)) \tag{4.27}
\end{equation*}
$$

(vii) Monotone convergence theorem (Lebesgue): Let $\left(X_{n}, n \geq 1\right)$ be a nondecreasing sequence of non-negative r.v; then relation (4.27) is still true provided that $+\infty$ is a possible value for each member.
(viii) If the sequence of integrable r.v. $\left(X_{n}, n \geq 1\right)$ is such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} E\left(\left|X_{n}\right|\right)<\infty \tag{4.28}
\end{equation*}
$$

then the random series $\sum_{n=1}^{\infty} X_{n}$ converges absolutely a.s. and moreover

$$
\begin{equation*}
\sum_{n=1}^{\infty} E\left(X_{n}\right)=E\left(\sum_{n=1}^{\infty} X_{n}\right)(=E(X)), \tag{4.29}
\end{equation*}
$$

where the r.v. is defined as the sum of the convergent series.
Given a r.v. X, moments are special cases of expectation.
Definition 4.4 Let a be a real number and r a positive real number, then the expectation

$$
\begin{equation*}
E\left(|X-a|^{r}\right) \tag{4.30}
\end{equation*}
$$

is called the absolute moment of X, of order r, centred on a.
The moments are said to be centred moments of order r if $a=E(X)$. In particular, for $r=2$, we get the variance of X represented by $\sigma^{2}(\operatorname{var}(X))$,

$$
\begin{equation*}
\sigma^{2}=E\left(|X-m|^{2}\right) \tag{4.31}
\end{equation*}
$$

Remark 4.2 From the linearity of the expectation (see relation (4.23)), it is easy to prove that

$$
\begin{equation*}
\sigma^{2}=E\left(X^{2}\right)-(E(X))^{2} \tag{4.32}
\end{equation*}
$$

and so

$$
\begin{equation*}
\sigma^{2} \leq E\left(X^{2}\right) \tag{4.33}
\end{equation*}
$$

and more generally, it can be proven that the variance is the smallest moment of order 2 whatever the number a is.

The next property recalls inequalities for moments.
Proposition 4.2 (Inequalities of Hölder and Minkowski) (i) Let X and Y be two r.v. such that $|X|^{p},|Y|^{q}$ are integrable with

$$
\begin{equation*}
1<p<\infty, \frac{1}{p}+\frac{1}{q}=1 \tag{4.34}
\end{equation*}
$$

then:

$$
\begin{equation*}
|E(X Y)| \leq\left(E\left(\left|X^{p}\right|\right)\right)^{1 / p} \cdot\left(E\left(\left|Y^{q}\right|\right)\right)^{1 / q} \tag{4.35}
\end{equation*}
$$

(ii) Let X and Y be two r.v. such that $|X|^{p},|Y|^{p}, 1 \leq p<\infty$, are integrable, then

$$
\begin{equation*}
E\left(|X+Y|^{p}\right)^{1 / p} \leq\left(E\left(|X|^{p}\right)\right)^{1 / p}+\left(E\left(|Y|^{p}\right)\right)^{1 / p} \tag{4.36}
\end{equation*}
$$

If $p=2$ in the first part of this last proposition, then relation (4.36) gives the Cauchy-Schwarz inequality

$$
\begin{equation*}
|E(X Y)| \leq\left(E\left(|X|^{2}\right)\right)^{1 / 2} \cdot\left(E\left(|Y|^{2}\right)\right)^{1 / 2} \tag{4.37}
\end{equation*}
$$

The last fundamental concept we will now introduce in this section is that of stochastic independence, or more simply independence.

Definition 4.5 The events $A_{1}, \ldots, A_{n},(n>1)$ are stochastically independent or independent iff

$$
\begin{equation*}
\forall m=2, \ldots, n, \forall n_{k}=1, \ldots, n: n_{1} \neq n_{2} \neq \cdots \neq n_{k}: P\left(\bigcap_{k=1}^{m} A_{n_{k}}\right)=\prod_{k=1}^{m} P\left(A_{n_{k}}\right) . \tag{4.38}
\end{equation*}
$$

For $n=2$, relation (4.38) reduces to

$$
\begin{equation*}
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right) . \tag{4.39}
\end{equation*}
$$

Let us remark that piecewise independence of the events $A_{1}, \ldots, A_{n},(n>1)$ does not necessarily imply the independence of these sets and thus not the stochastic independence of these n events. As a counter example, let us suppose we drew a ball from an urn containing four balls called $b_{1}, b_{2}, b_{3}, b_{4}$ and let us consider the three following events:

$$
\begin{equation*}
A_{1}=\left\{b_{1}, b_{2}\right\}, A_{2}=\left\{b_{1}, b_{3}\right\}, A_{3}=\left\{b_{1}, b_{4}\right\} . \tag{4.40}
\end{equation*}
$$

Then assuming that the probability of having one ball is $1 / 4$, we get

$$
\begin{equation*}
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1} \cap A_{3}\right)=P\left(A_{2} \cap A_{3}\right)=\frac{1}{4}, \tag{4.41}
\end{equation*}
$$

but as

$$
\begin{equation*}
P\left(A_{1} \cap A_{2} \cap A_{3}\right)=\frac{1}{4} \tag{4.42}
\end{equation*}
$$

too, we do not have the relation

$$
\begin{equation*}
P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right) \tag{4.43}
\end{equation*}
$$

and so we have proved that independence in pairs does not imply the independence of these three events.
We will now extend the concept of independence to random variables.

Definition 4.6 (i) The n real r.v. $X_{1}, X_{2}, \ldots, X_{n}$ defined on the probability space $(\Omega, \mathfrak{J}, P)$ are said to be stochastically independent, or simply independent, iff for any Borel sets $B_{1}, B_{2}, \ldots, B_{n}$, we have

$$
\begin{equation*}
P\left(\bigcap_{k=1}^{n}\left\{\omega: X_{k}(\omega) \in B_{k}\right\}\right)=\prod_{k=1}^{n} P\left(\left\{\omega: X_{k}(\omega) \in B_{k}\right\}\right) \tag{4.44}
\end{equation*}
$$

(ii) For an infinite family of r.v., independence means that the members of every finite subfamily are independent. It is clear that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent, so are the r.v. $X_{i_{1}}, \ldots, X_{i_{k}}$ with $i_{1} \neq \cdots \neq i_{k}, i_{k}=1, \ldots, n, k=2, \ldots, n$.

From relation (4.44), we find that

$$
\begin{equation*}
P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=P\left(X_{1} \leq x_{1}\right) \cdots P\left(X_{n} \leq x_{n}\right), \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \tag{4.45}
\end{equation*}
$$

If the functions $F_{X}, F_{X_{1}}, \ldots, F_{X_{n}}$ are the distribution functions of the r.v. $X=\left(X_{1}, \ldots, X_{n}\right), X_{1}, \ldots, X_{n}$, we can write the preceding relation under the form

$$
\begin{equation*}
F_{X}\left(x_{1}, \ldots, x_{n}\right)=F_{X_{1}}\left(x_{1}\right) \cdots \cdots F_{X_{n}}\left(x_{n}\right), \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \tag{4.46}
\end{equation*}
$$

It can be shown that this last condition is also sufficient for the independence of $X=\left(X_{1}, \ldots, X_{n}\right), X_{1}, \ldots, X_{n}$. If these d.f. have densities $f_{X}, f_{X_{1}}, \ldots, f_{X_{n}}$, relation (4.46) is equivalent to

$$
\begin{equation*}
f_{X}\left(x_{1}, \ldots, x_{n}\right)=f_{X_{1}}\left(x_{1}\right) \cdots f_{X_{n}}\left(x_{n}\right), \forall\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \tag{4.47}
\end{equation*}
$$

In case of the integrability of the n real r.v $X_{1}, X_{2}, \ldots, X_{n}$, a direct consequence of relation (4.46) is that we have a very important property for the expectation of the product of n independent r.v.:

$$
\begin{equation*}
E\left(\prod_{k=1}^{n} X_{k}\right)=\prod_{k=1}^{n} E\left(X_{k}\right) \tag{4.48}
\end{equation*}
$$

The notion of independence gives the possibility to prove the result called the strong law of large numbers which says that if $\left(X_{n}, n \geq 1\right)$ is a sequence of integrable independent and identically distributed r.v., then

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} X_{k} \xrightarrow{\text { a.s. }} E(X) \tag{4.49}
\end{equation*}
$$

The next section will present the most useful distribution functions for stochastic modelling.

5 MAIN DISTRIBUTION PROBABILITIES

Here we shall restrict ourselves to presenting the principal distribution probabilities related to real random variables.

5.1 The Binomial Distribution

Let us consider a random experiment E such that only two results are possible: a "success" (S) with probability p and a "failure (F) with probability $q=1-p$. If n independent trials are made in exactly the same experimental environment, the total number of trials in which the event S occurs may be represented by a random variable X whose distribution $\left(p_{i}, i=0, \ldots, n\right)$ with

$$
\begin{equation*}
p_{i}=P(X=i), i=1, \ldots, n \tag{5.1}
\end{equation*}
$$

is called a binomial distribution with parameters (n, p). From basic axioms of probability theory seen before, it is easy to prove that

$$
\begin{equation*}
p_{i}=\binom{n}{i} p^{i} q^{n-i}, i=0, \ldots, n, \tag{5.2}
\end{equation*}
$$

a result from which we get

$$
\begin{equation*}
E(X)=n p, \operatorname{var}(X)=n p q . \tag{5.3}
\end{equation*}
$$

The characteristic function and the generating function, when it exists, of X respectively defined by

$$
\begin{align*}
\varphi_{X}(t) & =E\left(e^{i t X}\right), \tag{5.4}\\
g_{X}(t) & =E\left(e^{t X}\right)
\end{align*}
$$

are given by

$$
\begin{align*}
& \varphi_{X}(t)=\left(p e^{i t}+q\right)^{n}, \\
& g_{X}(t)=\left(p e^{t}+q\right)^{n} . \tag{5.5}
\end{align*}
$$

Example 5.1 (The Cox and Rubinstein financial model) Let us consider a financial asset observed on n successive discrete time periods so that at the beginning of the first period, from time 0 to time 1 , the asset starts from value S_{0} and has at the end of this period only two possible values, $u S_{0}$ and $d S_{0}$ ($0<d<1, u>1)$ respectively with probabilities p and $q=1-p$. The asset has the same type of evolution on each period and independently of the past. In period i, from time $i-1$ to time i, let us associate the r.v. $\xi_{i}, i=1, \ldots, n$ defined as follows:

$$
\xi_{i}=\left\{\begin{array}{l}
1, \text { with probability } p \tag{5.6}\\
0, \text { with probability } q .
\end{array}\right.
$$

The value of the asset at the end of period n is given by the r.v. Y_{n} defined as

$$
\begin{equation*}
Y_{n}=u^{X_{n}} d^{n-X_{n}} \tag{5.7}
\end{equation*}
$$

with

$$
\begin{equation*}
X_{n}=\xi_{1}+\cdots+\xi_{n} . \tag{5.8}
\end{equation*}
$$

It is clear that the r.v. X_{n} has a binomial distribution of parameters (n, p) and consequently, we get the distribution probability of Y_{n} :

