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Preface

This book was written slowly over the course of the last five years. During
that time, a number of advances have been made in Bayesian statistics and
Markov chain Monte Carlo (MCMC) methods, but, in my opinion, the market
still lacks a truly introductory book written explicitly for social scientists
that thoroughly describes the actual process of Bayesian analysis using these
methods. To be sure, a variety of introductory books are available that cover
the basics of the Bayesian approach to statistics (e.g., Gill 2002 and Gelman
et al. 1995) and several that cover the foundation of MCMC methods (e.g.,
beginning with Gilks et al. 1996). Yet, a highly applied book showing how to
use MCMC methods to complete a Bayesian analysis involving typical social
science models applied to typical social science data is still sorely lacking. The
goal of this book is to fill this niche.

The Bayesian approach to statistics has a long history in the discipline of
statistics, but prior to the 1990s, it held a marginal, almost cult-like status in
the discipline and was almost unheard of in social science methodology. The
primary reasons for the marginal status of the Bayesian approach include (1)
philosophical opposition to the use of “prior distributions” in particular and
the subjective approach to probability in general, and (2) the lack of com-
puting power for completing realistic Bayesian analyses. In the 1990s, several
events occurred simultaneously to overcome these concerns. First, the explo-
sion in computing power nullified the second limitation of conducting Bayesian
analyses, especially with the development of sampling based methods (e.g.,
MCMC methods) for estimating parameters of Bayesian models. Second, the
growth in availability of longitudinal (panel) data and the rise in the use of
hierarchical modeling made the Bayesian approach more appealing, because
Bayesian statistics offers a natural approach to constructing hierarchical mod-
els. Third, there has been a growing recognition both that the enterprise of
statistics is a subjective process in general and that the use of prior distribu-
tions need not influence results substantially. Additionally, in many problems,
the use of a prior distribution turns out to be advantageous.
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The publication of Gelfand and Smith’s 1990 paper describing the use of
MCMC simulation methods for summarizing Bayesian posterior distributions
was the watershed event that launched MCMC methods into popularity in
statistics. Following relatively closely on the heels of this article, Gelman et
al.’s (1995) book, Bayesian Data Analysis, and Gilks et al.’s (1996) book,
Markov Chain Monte Carlo in Practice, placed the Bayesian approach in
general, and the application of MCMC methods to Bayesian statistical models,
squarely in the mainstream of statistics. I consider these books to be classics
in the field and rely heavily on them throughout this book.

Since the mid-1990s, there has been an explosion in advances in Bayesian
statistics and especially MCMC methodology. Many improvements in the re-
cent past have been in terms of (1) monitoring and improving the performance
of MCMC algorithms and (2) the development of more refined and complex
Bayesian models and MCMC algorithms tailored to specific problems. These
advances have largely escaped mainstream social science.

In my view, these advances have gone largely unnoticed in social science,
because purported introductory books on Bayesian statistics and MCMC
methods are not truly introductory for this audience. First, the mathematics
in introductory books is often too advanced for a mainstream social science
audience, which begs the question: “introductory for whom?” Many social sci-
entists do not have the probability theory and mathematical statistics back-
ground to follow many of these books beyond the first chapter. This is not to
say that the material is impossible to follow, only that more detail may be
needed to make the text and examples more readable for a mainstream social
science audience.

Second, many examples in introductory-level Bayesian books are at best
foreign and at worst irrelevant to social scientists. The probability distribu-
tions that are used in many examples are not typical probability distributions
used by social scientists (e.g., Cauchy), and the data sets that are used in ex-
amples are often atypical of social science data. Specifically, many books use
small data sets with a limited number of covariates, and many of the models
are not typical of the regression-based approaches used in social science re-
search. This fact may not seem problematic until, for example, one is faced
with a research question requiring a multivariate regression model for 10,000
observations measured on 5 outcomes with 10 or more covariates. Nonethe-
less, research questions involving large-scale data sets are not uncommon in
social science research, and methods shown that handle a sample of size 100
measured on one or two outcomes with a couple of covariates simply may not
be directly transferrable to a larger data set context. In such cases, the ana-
lyst without a solid understanding of the linkage between the model and the
estimation routine may be unable to complete the analysis. Thus, some dis-
cussion tailored to the practicalities of real social science data and computing
is warranted.

Third, there seems to be a disjunction between introductory books on
Bayesian theory and introductory books on applied Bayesian statistics. One
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of the greatest frustrations for me, while I was learning the basics of Bayesian
statistics and MCMC estimation methods, was (and is) the lack of a book
that links the theoretical aspects of Bayesian statistics and model develop-
ment with the application of modern estimation methods. Some examples in
extant books may be substantively interesting, but they are often incomplete
in the sense that discussion is truncated after model development without
adequate guidance regarding how to estimate parameters. Often, suggestions
are made concerning how to go about implementing only certain aspects of
an estimation routine, but for a person with no experience doing this, these
suggestions are not enough.

In an attempt to remedy these issues, this book takes a step back from
the most recent advances in Bayesian statistics and MCMC methods and tries
to bridge the gap between Bayesian theory and modern Bayesian estimation
methods, as well as to bridge the gap between Bayesian statistics books writ-
ten as “introductory” texts for statisticians and the needs of a mainstream
social science audience. To accomplish this goal, this book presents very little
that is new. Indeed, most of the material in this book is now “old-hat” in
statistics, and many references are a decade old (In fact, a second edition of
Gelman et al.’s 1995 book is now available). However, the trade-off for not pre-
senting much new material is that this book explains the process of Bayesian
statistics and modern parameter estimation via MCMC simulation methods in
great depth. Throughout the book, I painstakingly show the modeling process
from model development, through development of an MCMC algorithm to es-
timate its parameters, through model evaluation, and through summarization
and inference.

Although many introductory books begin with the assumption that the
reader has a solid grasp of probability theory and mathematical statistics, I
do not make that assumption. Instead, this book begins with an exposition of
the probability theory needed to gain a solid understanding of the statistical
analysis of data. In the early chapters, I use contrived examples applied to
(sometimes) contrived data so that the forest is not lost for the trees: The
goal is to provide an understanding of the issue at hand rather than to get
lost in the idiosyncratic features of real data. In the latter chapters, I show a
Bayesian approach (or approaches) to estimating some of the most common
models in social science research, including the linear regression model, gen-
eralized linear models (specifically, dichotomous and ordinal probit models),
hierarchical models, and multivariate models.

A consequence of this choice of models is that the parameter estimates
obtained via the Bayesian approach are often very consistent with those that
could be obtained via a classical approach. This may make a reader ask,
“then what’s the point?” First, there are many cases in which a Bayesian
approach and a classical approach will not coincide, but from my perspective,
an introductory text should establish a foundation that can be built upon,
rather than beginning in unfamiliar territory. Second, there are additional
benefits to taking a Bayesian approach beyond the simple estimation of model
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parameters. Specificially, the Bayesian approach allows for greater flexibility in
evaluating model fit, comparing models, producing samples of parameters that
are not directly estimated within a model, handling missing data, “tweaking”
a model in ways that cannot be done using canned routines in existing software
(e.g., freeing or imposing constraints), and making predictions/forecasts that
capture greater uncertainty than classical methods. I discuss each of these
benefits in the examples throughout the latter chapters.

Throughout the book I thoroughly flesh out each example, beginning
with the development of the model and continuing through to developing an
MCMC algorithm (generally in R) to estimate it, estimating it using the algo-
rithm, and presenting and summarizing the results. These programs should be
straightforward, albeit perhaps tedious, to replicate, but some programming
is inherently required to conduct Bayesian analyses. However, once such pro-
gramming skills are learned, they are incredibly freeing to the researcher and
thus well worth the investment to acquire them. Ultimately, the point is that
the examples are thoroughly detailed; nothing is left to the imagination or
to guesswork, including the mathematical contortions of simplifying posterior
distributions to make them recognizable as known distributions.

A key feature of Bayesian statistics, and a point of contention for oppo-
nents, is the use of a prior distribution. Indeed, one of the most complex things
about Bayesian statistics is the development of a model that includes a prior
and yields a “proper” posterior distribution. In this book, I do not concentrate
much effort on developing priors. Often, I use uniform priors on most param-
eters in a model, or I use “reference” priors. Both types of priors generally
have the effect of producing results roughly comparable with those obtained
via maximum likelihood estimation (although not in interpretation!). My goal
is not to minimize the importance of choosing appropriate priors, but instead
it is not to overcomplicate an introductory exposition of Bayesian statistics
and model estimation. The fact is that most Bayesian analyses explicitly at-
tempt to minimize the effect of the prior. Most published applications to date
have involved using uniform, reference, or otherwise “noninformative” priors
in an effort to avoid the “subjectivity” criticism that historically has been
levied against Bayesians by classical statisticians. Thus, in most Bayesian so-
cial science research, the prior has faded in its importance in differentiating
the classical and Bayesian paradigms. This is not to say that prior distribu-
tions are unimportant—for some problems they may be very important or
useful—but it is to say that it is not necessary to dwell on them.

The book consists of a total of 11 chapters plus two appendices covering
(1) calculus and matrix algebra and (2) the basic concepts of the Central Limit
Theorem. The book is suited for a highly applied one-semester graduate level
social science course. Each chapter, including the appendix but excluding
the introduction, contains a handful of exercises at the end that test the
understanding of the material in the chapter at both theoretical and applied
levels. In the exercises, I have traded quantity for quality: There are relatively
few exercises, but each one was chosen to address the essential material in
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the chapter. The first half of the book (Chapters 1-6) is primarily theoretical
and provides a generic introduction to the theory and methods of Bayesian
statistics. These methods are then applied to common social science models
and data in the latter half of the book (Chapters 7-11). Chapters 2-4 can
each be covered in a week of classes, and much of this material, especially in
Chapters 2 and 3, should be review material for most students. Chapters 5
and 6 will most likely each require more than a week to cover, as they form
the nuts and bolts of MCMC methods and evaluation. Subsequent chapters
should each take 1-2 weeks of class time. The models themselves should be
familiar, but the estimation of them via MCMC methods will not be and may
be difficult for students without some programming and applied data analysis
experience. The programming language used throughout the book is R, a
freely available and common package used in applied statistics, but I introduce
the program WinBugs in the chapter on hierarchical modeling. Overall, R and
WinBugs are syntactically similar, and so the introduction of WinBugs is not
problematic. From my perspective, the main benefit of WinBugs is that some
derivations of conditional distributions that would need to be done in order
to write an R program are handled automatically by WinBugs. This feature
is especially useful in hierarchical models. All programs used in this book, as
well as most data, and hints and/or solutions to the exercises can be found
on my Princeton University website at: www.princeton.edu/∼slynch.
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1

Introduction

The fundamental goal of statistics is to summarize large amounts of data with
a few numbers that provide us with some sort of insight into the process that
generated the data we observed. For example, if we were interested in learn-
ing about the income of individuals in American society, and we asked 1,000
individuals “What is your income?,” we would probably not be interested in
reporting the income of all 1,000 persons. Instead, we would more likely be
interested in a few numbers that summarized this information—like the mean,
median, and variance of income in the sample—and we would want to be able
to use these sample summaries to say something about income in the popu-
lation. In a nutshell, “statistics” is the process of constructing these sample
summaries and using them to infer something about the population, and it
is the inverse of probabilistic reasoning. Whereas determining probabilities
or frequencies of events—like particular incomes—is a deductive process of
computing probabilities given certain parameters of probability distributions
(like the mean and variance of a normal distribution), statistical reasoning is
an inductive process of “guessing” best choices for parameters, given the data
that have been observed, and making some statement about how close our
“guess” is to the real population parameters of interest. Bayesian statistics
and classical statistics involving maximum likelihood estimation constitute
two different approaches to obtaining “guesses” for parameters and for mak-
ing inferences about them. This book provides a detailed introduction to the
Bayesian approach to statistics and compares and contrasts it with the clas-
sical approach under a variety of statistical models commonly used in social
science research.

Regardless of the approach one takes to statistics, the process of statistics
involves (1) formulating a research question, (2) collecting data, (3) developing
a probability model for the data, (4) estimating the model, and (5) summa-
rizing the results in an appropriate fashion in order to answer the research
question—a process often called “statistical inference.” This book generally
assumes that a research question has been formulated and that a random
sample of data has already been obtained. Therefore, this book focuses on
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model development, estimation, and summarization/inference. Under a clas-
sical approach to statistics, model estimation is often performed using canned
procedures within statistical software packages like SAS R©, STATA R©, and
SPSS R©. Under the Bayesian approach, on the other hand, model estimation
is often performed using software/programs that the researcher has developed
using more general programming languages like R, C, or C++. Therefore, a
substantial portion of this book is devoted to explaining the mechanics of
model estimation in a Bayesian context. Although I often use the term “es-
timation” throughout the book, the modern Bayesian approach to statistics
typically involves simulation of model parameters from their “posterior dis-
tributions,” and so “model estimation” is actually a misnomer.

In brief, the modern Bayesian approach to model development, estimation,
and inference involves the following steps:

1. Specification of a “likelihood function” (or “sampling density”) for the
data, given the model parameters.

2. Specification of a “prior distribution” for the model parameters.
3. Derivation of the “posterior distribution” for the model parameters, given

the likelihood function and prior distribution.
4. Simulation of parameters to obtain a sample from the “posterior distri-

bution” of the parameters.
5. Summarization of these parameter samples using basic descriptive statis-

tical calculations.

Although this process and its associated terminology may seem foreign at
the moment, the goal of this book is to thoroughly describe and illustrate
these steps. The first step—as well as the associated parameter estimation
method of maximum likelihood—is perhaps well understood by most quanti-
tative researchers in the social sciences. The subsequent steps, on the other
hand, are not, especially Step 4. Yet advances in Step 4 have led to the re-
cent explosion in the use of Bayesian methods. Specifically, the development
of Markov chain Monte Carlo (MCMC) sampling methods, coupled with ex-
ponential growth in computing capabilities, has made the use of Bayesian
statistics more feasible because of their relative simplicity compared with tra-
ditional numerical methods. When approximation methods of estimation were
more common, such methods generally relied on normality assumptions and
asymptotic arguments for which Bayesians often criticize classical statistics.
With the advent of MCMC sampling methods, however, more complicated
and realistic applications can be undertaken, and there is no inherent reliance
on asymptotic arguments and assumptions. This has allowed the benefits of
taking a Bayesian approach over a classical approach to be realized.
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1.1 Outline

For this book, I assume only a familiarity with (1) classical social science
statistics and (2) matrix algebra and basic calculus. For those without such
a background, or for whom basic concepts from these subjects are not fresh
in memory, there are two appendices at the end of the book. Appendix A
covers the basic ideas of calculus and matrix algebra needed to understand
the concepts of, and notation for, mathematical statistics. Appendix B briefly
reviews the Central Limit Theorem and its importance for classical hypothesis
testing using a simulation study.

The first several chapters of this book lay a foundation for understanding
the Bayesian paradigm of statistics and some basic modern methods of esti-
mating Bayesian models. Chapter 2 provides a review of (or introduction to)
probability theory and probability distributions (see DeGroot 1986, for an ex-
cellent background in probability theory; see Billingsley 1995 and Chung and
AitSahlia 2003, for more advanced discussion, including coverage of Measure
theory). Within this chapter, I develop several simple probability distributions
that are used in subsequent chapters as examples before jumping into more
complex real-world models. I also discuss a number of real univariate and
multivariate distributions that are commonly used in social science research.

Chapter 2 also reviews the classical approach to statistical inference from
the development of a likelihood function through the steps of estimating the
parameters involved in it. Classical statistics is actually a combination of at
least two different historical strains in statistics: one involving Fisherian maxi-
mum likelihood estimation and the other involving Fisherian and Neyman and
Pearsonian hypothesis testing and confidence interval construction (DeGroot
1986; Edwards 1992; see Hubbard and Bayarri 2003 for a discussion of the
confusion regarding the two approaches). The approach commonly followed
today is a hybrid of these traditions, and I lump them both under the term
“classical statistics.” This chapter spells out the usual approach to deriving
parameter estimates and conducting hypothesis tests under this paradigm.

Chapter 3 develops Bayes’ Theorem and discusses the Bayesian paradigm
of statistics in depth. Specifically, I spend considerable time discussing the
concept of prior distributions, the classical statistical critique of their use,
and the Bayesian responses. I begin the chapter with examples that use a
point-estimate approach to applying Bayes’ Theorem. Next, I turn to more
realistic examples involving probability distributions rather than points es-
timates. For these examples, I use real distributions (binomial, poisson, and
normal for sampling distributions and beta, gamma, and inverse gamma for
prior distributions). Finally, in this chapter, I discuss several additional prob-
ability distributions that are not commonly used in social science research but
are commonly used as prior distributions by Bayesians.

Chapter 4 introduces the rationale for MCMC methods, namely that sam-
pling quantities from distributions can help us produce summaries of them
that allow us to answer our research questions. The chapter then describes
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some basic methods of sampling from arbitrary distributions and then de-
velops the Gibbs sampler as a fundamental method for sampling from high-
dimensional distributions that are common in social science research.

Chapter 5 introduces an alternative MCMC sampling method that can
be used when Gibbs sampling cannot be easily employed: the Metropolis-
Hastings algorithm. In both Chapters 4 and 5, I apply these sampling methods
to distributions and problems that were used in Chapters 2 and 3 in order to
exemplify the complete process of performing a Bayesian analysis up to, but
not including, assessing MCMC algorithm performance and evaluating model
fit.

Chapter 6 completes the exemplification of a Bayesian analysis by showing
(1) how to monitor and assess MCMC algorithm performance and (2) how to
evaluate model fit and compare models. The first part of the chapter is al-
most entirely devoted to technical issues concerning MCMC implementation.
A researcher must know that his/her estimation method is performing ac-
ceptably, and s/he must know how to use the output to produce appropriate
estimates. These issues are generally nonissues for most classical statistical
analyses, because generic software exists for most applications. However, they
are important issues for Bayesian analyses, which typically involve software
that is developed by the researcher him/herself. A benefit to this additional
step in the process of analysis—evaluating algorithm performance—is that it
requires a much more intimate relationship with the data and model assump-
tions than a classical analysis, which may have the potential to lull researchers
into a false sense of security about the validity of parameter estimates and
model assumptions.

The second part of the chapter is largely substantive. All researchers, clas-
sical or Bayesian, need to determine whether their models fit the data at hand
and whether one model is better than another. I attempt to demonstrate that
the Bayesian paradigm offers considerably more information and flexibility
than a classical approach in making these determinations. Although I cannot
and do not cover all the possibilities, in this part of the chapter, I introduce
a number of approaches to consider.

The focus of the remaining chapters (7-10) is substantive and applied.
These chapters are geared to developing and demonstrating MCMC algo-
rithms for specific models that are common in social science research. Chap-
ter 7 shows a Bayesian approach to the linear regression model. Chapter 8
shows a Bayesian approach to generalized linear models, specifically the di-
chotomous and ordinal probit models. Chapter 9 introduces a Bayesian ap-
proach to hierarchical models. Finally, Chapter 10 introduces a Bayesian
approach to multivariate models. The algorithms developed in these chap-
ters, although fairly generic, should not be considered endpoints for use by
researchers. Instead, they should be considered as starting points for the
development of algorithms tailored to user-specific problems.

In contrast to the use of sometimes contrived examples in the first six
chapters, almost all examples in the latter chapters concern real probability
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distributions, real research questions, and real data. To that end, some ad-
ditional beneficial aspects of Bayesian analysis are introduced, including the
ability to obtain posterior distributions for parameters that are not directly
estimated as part of a model, and the ease with which missing data can be
handled.

1.2 A note on programming

Throughout the text, I present R programs for virtually all MCMC algo-
rithms in order to demystify the linkage between model development and
estimation. R is a freely available, downloadable programming package and is
extremely well suited to Bayesian analyses (www.r-project.org). However, R
is only one possible programming language in which MCMC algorithms can
be written. Another package I use in the chapter on hierarchical modeling is
WinBugs. WinBugs is a freely available, downloadable software package that
performs Gibbs sampling with relative ease (www.mrc-bsu.cam.ac.uk/bugs).
I strongly suggest learning how to use WinBugs if you expect to routinely
conduct Bayesian analyses. The syntax of WinBugs is very similar to R, and
so the learning curve is not steep once R is familiar. The key advantage to
WinBugs over R is that WinBugs derives conditional distributions for Gibbs
sampling for you; the user simply has to specify the model. In R, on the other
hand, the conditional distributions must be derived mathematically by the
user and then programmed. The key advantage of R over WinBugs, however,
is that R—as a generic programming language—affords the user greater flex-
ibility in reading data from files, modeling data, and writing output to files.
For learning how to program in R, I recommend downloading the various
documentation available when you download the software. I also recommend
Venables and Ripley’s books for S and S-Plus R© programming (1999, 2000).
The S and S-Plus languages are virtually identical to R, but they are not
freely available.

I even more strongly recommend learning a generic programming language
like C or C++. Although I show R programs throughout the text, I have
used UNIX-based C extensively in my own work, because programs tend to
run much faster in UNIX-based C than in any other language. First, UNIX
systems are generally faster than other systems. Second, C++ is the language
in which many software packages are written. Thus, writing a program in a
software package’s language when that language itself rests on a foundation
in C/C++ makes any algorithm in that language inherently slower than it
would be if it were written directly in C/C++.

C and C++ are not difficult languages to learn. In fact, if you can pro-
gram in R, you can program in C, because the syntax for many commands
is close to identical. Furthermore, if you can program in SAS or STATA, you
can learn C very easily. The key differences between database programming
languages like SAS and generic programming languages like C are in terms


