Photobiology

Second Edition

Photobiology

The Science of Life and Light

Second Edition

Edited by

Lars Olof Björn

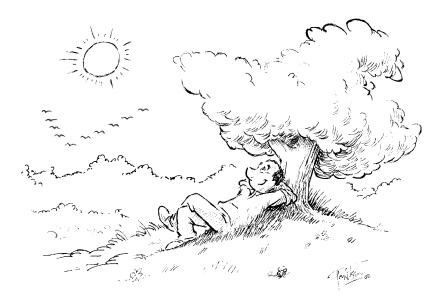
Lund University Lund, Sweden

Lars Olof Björn Department of Plant Physiology Lund University Sölvegatan 35 SE-223 62 Lund Sweden Lars_Olof.Bjorn@cob.lu.se

Library of Congress Control Number: 2007928823

ISBN: 978-0-387-72654-0

e-ISBN: 978-0-387-72655-7


Printed on acid-free paper.

© 2008 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

(Drawing by Per Nilsson)

Photobiology

I am lying on my back beneath the tree, dozing, looking up into the canopy, thinking: what a wonder!—I can see!

But in the greenery above my face, an even greater miracle is taking place: Leaves catch photons from the sun and molecules from air around. Quanta and carbon atoms become bound. Life, for them, has just begun.

The sun not only creates life, it also takes away mostly by deranging DNA. Damage can be, in part, undone by enzymes using photons from the sun.

Summer nears its end, already 'cross the sky southward aiming birds are flying by. Other birds for travel choose the night relying on the stars for guiding light. Imprinted in their little heads are Gemini, Orion, Dipper, other features of the sky. There is room for clocks that measure day and night, Correct for movement of the sky and tell the time for flight

Deep into oceans, into caves the sun cannot directly send its waves. But through intricacies of foodweb's maze, oxygen from chloroplasts, luciferin, luciferase, at times, in place,

where night and darkness seem to reign, solar quanta emerge as photons

once again.

L.O. Björn 2002

Preface

I started my first photobiological research project almost exactly 50 years ago, in the spring of 1957. My scientific interest ever since has been focused on photobiology in its many aspects. Because I have been employed as a botanist, my own research has dealt with the photobiology of plants, but throughout this time I have been interested in other aspects, such as vision, the photobiology of skin, and bioluminescence. A first edition of the present book was published in 2002, but this second edition is much expanded and completely updated. Several new authors have been recruited among my eminent colleagues.

It has not been possible to cover all aspects of photobiology in one volume, but I feel that we have managed to catch a fair and well-balanced cross section. Many colleagues promised to help, but not all lived up to their promises. To those who did, and who are coauthors to this volume, I direct my thanks; I think that they have done an excellent job.

Living creatures use light for two purposes: for obtaining useful energy and as information carrier. In the latter case organisms use light mainly to collect information but also (e.g., by coloration and bioluminescence) for sending information, including misleading information, to other organisms of their own or other species. Collection of free energy through photosynthesis and collection of information through vision or other photobiological processes may seem to be very different concepts. However, on a deep level they are of the same kind. They use the difference in temperature between the sun and our planet to evade equilibrium, i.e., to maintain and develop order and structure.

Obviously, all of photobiology cannot be condensed into a single volume. My idea has been to first provide the basic knowledge that can be of use to all photobiologists, and then give some examples of special topics. I have had to limit myself, and one of the interesting topics that had to be left out is the thermodynamics of processes in which light is involved.

Thus, this book is intended as a start, not as the final word. There are several journals dealing with photobiology in general, and an even greater number dealing with special topics such as vision, photodermatology, or photosynthesis. There are several photobiology societies arranging meetings and other activities. And last but not least, up-to-date information can be found on the Internet. The most important site, apart from the Web of Science and other scientific databases, is Photobiology Online, a site maintained jointly by the American and European Societies for Photobiology (ASP and ESP, respectively),

at http://169.147.169.1/POL.index.html or http://www.pol-europe.net/, where details about photobiology journals and books can be obtained.

The subtitle of this book may be somewhat misleading. There is only one science. But I wanted to point out that the various disciplines dealing with light and life have more in common than perhaps generally realized. I hope that the reader will find that the same principles apply to seemingly different areas of photobiology. For instance, we have transfer of excitation energy between chromophores active in photosynthesis, in photorepair of DNA, and in bioluminescence. Cryptochromes, first discovered as components in light-sensing systems in plants, are involved in the human biological clock, and probably in the magnetic sense of birds and other animals, and they have evolved from proteins active in DNA photorepair. The study of the photomagnetic sense of birds has, in turn, led to new discoveries about how plants react to a combination of light and magnetic fields.

Many colleagues have been helpful in the production of this book. Two of my coauthors—Professors Helen Ghiradella and Anders Johnsson—who are also close friends, have earned special thanks, because they have helped with more chapters than those who bear their names. Helen has also helped to change my Scandinavian English into the American twist of the islanders' tounge, but we have not changed the dialect of those who are native English speakers. Professor Govindjee has contributed not only with his knowledge of photobiology, but also with his great experience in editing. Drs. Margareta Johnsson and Helena Björn van Praagh have helped with improvements and corrections, and Professor Allan Rasmusson at our department in Lund has been very helpful when I and my computer have had disagreements. I have enjoyed the friendliness and help of other colleagues in the department. The staff of our biology library has been very helpful and service-minded.

Many others have also helped, but special thanks go to my wife and beloved photobiologist Gunvor, who has supported me during the work and put up with paper and books covering the floor in our common home; to her I dedicate those chapters of the book that bear my name.

> Lars Olof Björn Lund, Sweden March 2007

Contents

Pre	eface		vii
Co	ntribu	tors	xxi
1.		Nature of Light and Its Interaction with Matter	1
		Olof Björn	1
	1.1.	Introduction	1
	1.2.	Particle and Wave Properties of Light	1
	1.3. 1.4.	Light as Particles and Light as Waves, and Some Definitions	6 7
	1.4. 1.5.	Diffraction Polarization	8
	1.5.	Statistics of Photon Emission and Absorption	9
	1.7.	Heat Radiation	11
	1.7.	Refraction of Light	14
	1.9.	Reflection of Light	15
	1.10.	Scattering of Light	18
	1.11.	Propagation of Light in Absorbing and Scattering Media	19
	1.12.	Spectra of Isolated Atoms	22
	1.13.	Energy Levels in Diatomic and Polyatomic Molecules	23
	1.14.	Quantum Yield of Fluorescence	29
	1.15.	Relationship Between Absorption and Emission Spectra	30
	1.16.	Molecular Geometry of the Absorption Process	31
	1.17.	Transfer of Electronic Excitation Energy Between Molecules	33
	1.18.	The Förster Mechanism for Energy Transfer	34
	1.19.	Triplet States	35
	1.20.	The Dioxygen Molecule	36
	1.21.	Singlet Oxygen	37
2.	Princ	iples and Nomenclature for the Quantification of Light	41
		Olof Björn	
	2.1.	Introduction: Why This Chapter Is Necessary	41
	2.2.	The Wavelength Problem	42
	2.3.	The Problem of Direction and Shape	43
	2.4.	Biological Weighting Functions and Units	46

3.	Gene	ration a	nd Control of Light	51
	Lars	Olof Bjöt	rn	
	3.1.	Introdu	iction	51
	3.2.	Light S	Sources	51
		3.2.1.	The Sun	51
		3.2.2.	Incandescent Lamps	52
		3.2.3.	Electric Discharges in Gases of Low Pressure	53
		3.2.4.	Medium- and High-Pressure Gas Discharge Lamps	54
		3.2.5.	Flashlamps	55
		3.2.6.	Light-Emitting Diodes	55
		3.2.7.	Lasers	56
	3.3.	Selection	on of Light	57
		3.3.1.	Filters with Light-Absorbing Substances	58
		3.3.2.	Interference Filters	61
		3.3.3.	Monochromators	62
4.			ment of Light	69
		Olof Björ		60
	4.1.		iction	69
	4.2.		The Delevices	69
		4.2.1.	The Bolometer	69
		4.2.2.	The Thermopile	71
	1.2	4.2.3.	Thermopneumatic Devices	72
	4.3.		lectric Devices	73
		4.3.1.	A Device Based on the Outer Photoelectric Effect:	= 0
			The Photomultiplier	73
		4.3.2.	Devices Based on Semiconductors (Inner	
			Photoelectric Effect)	75
	4.4.		hemical Devices: Actinometers and Dosimeters	76
	4.5.		scent Wavelength Converters ("Quantum Counters")	79
	4.6.	Spectro	pradiometry	80
		4.6.1.	General	80
		4.6.2.	Input Optics	80
		4.6.3.	Example of a Spectroradiometer	82
		4.6.4.	Calibration of Spectroradiometers	84
	4.7.	Special	Methods for Measurement of Very Weak Light	87
		4.7.1.	Introduction	87
		4.7.2.	Direct Current Mode	87
		4.7.3.	Chopping of Light and Use of Lock-In Amplifier	88
		4.7.4.	Measurement of Shot Noise	88
		4.7.5.	Pulse Counting	88
	4.8.	A Sens	sor for Catching Images: The Charge-Coupled Device	89
5.	Liab	t os o To	ol for Biologists: Recent Developments	93
э.	-	olof Björ	· ·	73
	5.1.		iction	93

	5.2.	Optical Tweezers and Related Techniques	93
	5.3.	Use of Lasers for Ablation, Desorption, Ionization,	
		and Dissection	95
	5.4.	Fluorescent Labeling	96
	5.5.	Abbe's Diffraction Limit to Spatial Resolution	
		in Microscopy	
	5.6.	Two-Photon Excitation Fluorescence Microscopy	99
	5.7.	Stimulated Emission Depletion	
	5.8.	Near-Field Microscopy	
	5.9.	Quantum Dots	
	5.10.	Photochemical Internalization	
	5.11.	Photogating of Membrane Channels	
	5.12.	Photocrosslinking and Photolabeling	
	5.13.	Fluorescence-Aided DNA Sequencing	115
6.	Terre	strial Daylight	123
		Olof Björn	
	6.1.	Introduction	123
	6.2.	Principles for the Modification of Sunlight by the	
		Earth's Atmosphere	123
	6.3.	The UV-A, Visible, and Infrared Components	
		of Daylight in the Open Terrestrial Environment Under	
		Clear Skies	124
	6.4.	Cloud Effects	127
	6.5.	Effects of Ground and Vegetation	
	6.6.	The UV-B Daylight Spectrum and Biological Action	
		of UV-B	128
7.	Undo		101
/.		rwater Light ond C. Smith and Curtis D. Mobley	131
	7.1.	Introduction	131
	7.2.	Inherent Optical Properties	
	7.3.	Apparent Optical Properties	
	7.4.	Estimation of In-Water Radiant Energy	
	7.4.	Estimation of m-water Kadiant Energy	134
8.	Actio	n Spectroscopy in Biology	139
		Olof Björn	
	8.1.	Introduction	139
	8.2.	The Oldest History: Investigation of Photosynthesis by	
		Means of Action Spectroscopy	
	8.3.	Investigation of Respiration Using Action Spectroscopy	
	8.4.	The DNA That Was Forgotten	144
	8.5.	Plant Vision	
	8.6.	Protochlorophyllide Photoreduction to Chlorophyllide a	151

	8.7.	Limitati	ions of Action Spectroscopy: The Elusive Blue	
		Light R	eceptor	152
	8.8.	Another	r Use for Action Spectra	. 153
9.	-		ng in Biology	. 155
			n and Helen Ghiradella	
	9.1.		ction	
	9.2.		re Plants Green?	
	9.3.		Determines Spectra of Pigments?	. 157
	9.4.		n Between the Absorption and Molecular Structure	
			rophylls	159
	9.5.		of Chlorophyll a and b Absorption Peaks	
			Molecular Environment	
	9.6.	Phycob	iliproteins and Phycobilisomes	. 162
	9.7.		tic Adaptation of Cyanobacterial Phycobilisomes	
	9.8.		Tuning	
	9.9.		of Anthocyanins	
	9.10.		Mirrors and the Tuning of Structural Color	
			Introduction	
			Reflection in a Single Thin Layer	
			Reflection by Multilayer Stacks	
	9.11.	The Inte	erplay of Spectra in the Living World	. 188
10.	Photo	chemica	l Reactions in Biological Light Perception	
	and F	Regulatio	n	. 197
	Lars (Olof Björ	n	
	10.1.		ction	
	10.2.	Cis-Tra	ns and Trans-Cis Isomerization	. 198
		10.2.1.	Urocanic Acid	. 199
			Eukaryotic Rhodopsin	
			Archaean Rhodopsins	
			Photoactive Yellow Proteins (PYPs, Xanthopsins)	
		10.2.5.	Phytochrome	. 207
		10.2.6.	Photosensor for Chromatic Adaptation	
			of Cyanobacteria	209
		10.2.7.	<i>0</i>	
			Stomatal Regulation	
	10.3.	Other T	Sypes of Photosensors	
		10.3.1.	Cryptochromes	
		10.3.2.	Phototropin	
		10.3.3.	The Plant UV-B Receptor	. 215
11.	The I	Diversity	of Eye Optics	
11.		Diversity Olof Björ		

11.3. An Eye in Water: The Problem 227 11.4. An Eye in Water: The Solution 228 11.5. Another Problem: Chromatic Aberration 230 11.6. Problems and Solutions for Amphibious Animals 231 11.7. Feedback Regulation During Eye Development 234 11.8. Eyes with Extreme Light Sensitivity 234 11.9. Compound Eyes 235 11.10. Nipple Arrays on Insect Eyes 240 11.11. Eyes with Mirror Optics 241 11.12. Scanning Eyes 242 11.13. Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 257 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 259 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 265 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of ATP-Synthesizing Enzymes 277 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulaccan Acid Metabolism. 27		11.2.	The Human Eye	223
11.5. Another Problem: Chromatic Aberration 230 11.6. Problems and Solutions for Amphibious Animals 231 11.7. Feedback Regulation During Eye Development 234 11.8. Eyes with Extreme Light Sensitivity 234 11.9. Compound Eyes 235 11.10. Nipple Arrays on Insect Eyes 240 11.11. Eyes with Mirror Optics 241 11.12. Scanning Eyes 242 11.13. Evolution of Eyes 242 11.13. Evolution of Eyes 246 12. The Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 256 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 259 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 272 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land		11.3.	An Eye in Water: The Problem	227
11.6. Problems and Solutions for Amphibious Animals 231 11.7. Feedback Regulation During Eye Development 234 11.8. Eyes with Extreme Light Sensitivity 234 11.9. Compound Eyes 235 11.10. Nipple Arrays on Insect Eyes 240 11.11. Eyes with Mirror Optics 241 11.2. Scanning Eyes 242 11.3. Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 226 12. The Evolution of Photosynthesis and Its Environmental Impact 256 12. Introduction 256 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthesis 260 12.5. The First Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and Chloroplast Structure 267 12.9. Many Systems for the Assimilation of Carbon Dioxide		11.4.	An Eye in Water: The Solution	228
11.7. Feedback Regulation During Eye Development 234 11.8. Eyes with Extreme Light Sensitivity 234 11.9. Compound Eyes 235 11.10. Nipple Arrays on Insect Eyes 240 11.11. Eyes with Mirror Optics 241 11.12. Scanning Eyes 242 11.13. Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 256 12. The Evolution of Photosynthesis and Its Environmental Impact 256 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and Chloroplast Structure 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 275 213. The Journey onto Land </th <th></th> <th>11.5.</th> <th>Another Problem: Chromatic Aberration</th> <th>230</th>		11.5.	Another Problem: Chromatic Aberration	230
11.8. Eyes with Extreme Light Sensitivity 234 11.9. Compound Eyes 235 11.10. Nipple Arrays on Insect Eyes 240 11.11. Eyes with Mirror Optics 241 11.12. Scanning Eyes 242 11.13. Evolution of Photosynthesis and Its Environmental Impact 246 12. The Evolution of Photosynthesis and Its Environmental Impact 255 <i>Lars Olof Björn and Govindjee</i> 256 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 265 12.8. Evolution of Photosynthetic Pigments and Chloroplast Structure 267 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13.10. Introduction 289 13.2.1< Theoretical Considerations for Energ		11.6.	Problems and Solutions for Amphibious Animals	231
11.9. Compound Eyes 235 11.10. Nipple Arrays on Insect Eyes 240 11.11. Eyes with Mirror Optics 241 11.12. Scanning Eyes 242 11.13. Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 256 12. The Evolution of Photosynthesis and Its Environmental Impact 256 12. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 40 Have Been Tried in the Course of Evolution 270 270 12.10. C4 Metabolism 272 271.1. 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 2		11.7.	Feedback Regulation During Eye Development	234
11.10. Nipple Arrays on Insect Eyes 240 11.11. Eyes with Mirror Optics 241 11.12. Scanning Eyes 242 11.13. Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 256 12. The Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 257 12. Introduction 256 12. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthetic Organisms 259 12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 272 Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280				
11.11. Eyes with Mirror Optics 241 11.12. Scanning Eyes 242 11.13. Evolution of Eyes 246 12. The Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 256 12. Introduction 256 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthetic Organisms 259 12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism. 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 289 13.1. Introduction 289 13.2.1< Theoretical Considerations for Energy Transfer		11.9.	Compound Eyes	235
11.12. Scanning Eyes 242 11.13. Evolution of Eyes 246 12. The Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 256 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthetic Organisms 259 12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 270 Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 275 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13.1. Introduction 289 13.2.1. Theoretical Considerations for Energy Transfer 293 13.2.1. Th		11.10.	Nipple Arrays on Insect Eyes	240
11.13. Evolution of Eyes		11.11.	Eyes with Mirror Optics	241
12. The Evolution of Photosynthesis and Its Environmental Impact 255 Lars Olof Björn and Govindjee 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthetic Organisms 259 12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 21.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and 289 293 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 293 13.2.1. Theoretical Considerations for Energy Transfer 293 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 2		11.12.	Scanning Eyes	242
Lars Olof Björn and Govindjee 256 12.1. Introduction 256 12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthetic Organisms 259 12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 400 Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and 280 13. Photosynthetic Antennas: Light-Harvesting and Energy 289 Villy Sundström 23. 13.2. Photosynthetic Antennas: Light-Harvesting and Energy 293 13.2.1. Theoretical Considerations for Energy Transfer <th></th> <th>11.13.</th> <th>Evolution of Eyes</th> <th>246</th>		11.13.	Evolution of Eyes	246
12.1 Introduction 256 12.2 A Short Review of Plant Photosynthesis 257 12.3 The Domains of Life 258 12.4 Predecessors of the First Photosynthetic Organisms 259 12.5 The First Photosynthesis 260 12.6 Appearance of Oxygenic Photosynthesis 262 12.7 From Cyanobacteria to Chloroplasts 265 12.8 Evolution of Photosynthetic Pigments and Chloroplast Structure 267 12.9 Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10 C4 Metabolism 272 12.11 Crassulacean Acid Metabolism 274 12.12 Evolution of ATP-Synthesizing Enzymes 275 12.13 The Journey onto Land 275 12.14 Impact of Photosynthesis on the Biospheric Environment 277 12.15 Conclusion 289 <i>Villy Sundström</i> 13.1 Introduction 289 13.2 Photosynthetic Antennas: Light-Harvesting and Energy 293 13.2.1 Theoretical Considerations for Energy Transfer and Spectroscopy 294	12.	The E	volution of Photosynthesis and Its Environmental Impact	255
12.2. A Short Review of Plant Photosynthesis 257 12.3. The Domains of Life 258 12.4. Predecessors of the First Photosynthetic Organisms 259 12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 4 Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13.1< Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy 273 13.2.1. Theoretical Considerations for Energy Transfer 293 13.2.2.1. Theoretical Considerations for Energy Transfer 294 13.2.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 13.2.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 <th></th> <th>Lars C</th> <th>Dlof Björn and Govindjee</th> <th></th>		Lars C	Dlof Björn and Govindjee	
12.3. The Domains of Life		12.1.		
12.4. Predecessors of the First Photosynthetic Organisms. 259 12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and Chloroplast Structure 267 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 13.1. Introduction 289 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 </td <td></td> <td>12.2.</td> <td></td> <td></td>		12.2.		
12.5. The First Photosynthesis 260 12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and Chloroplast Structure 267 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 13.1. Introduction 289 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 294		12.3.		
12.6. Appearance of Oxygenic Photosynthesis 262 12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 270 12.10. C4 Metabolism 271 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and 289 Villy Sundström 23. 13.1. Introduction 289 13.2.1. Theoretical Considerations for Energy Transfer 293 13.2.1. Theoretical Considerations for Energy Transfer 293 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 294		12.4.	Predecessors of the First Photosynthetic Organisms	259
12.7. From Cyanobacteria to Chloroplasts 265 12.8. Evolution of Photosynthetic Pigments and Chloroplast Structure 267 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 13.1. Introduction 289 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 295		12.5.		
12.8. Evolution of Photosynthetic Pigments and Chloroplast Structure 267 12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 Villy Sundström 23.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy Transfer 293 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 294		12.6.	Appearance of Oxygenic Photosynthesis	262
Chloroplast Structure 267 12.9. Many Systems for the Assimilation of Carbon Dioxide 270 Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and 289 Villy Sundström 23.1 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy 293 13.2.1. Theoretical Considerations for Energy Transfer 293 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 Chromophores: B800–B800 and B800–B850 294		12.7.		265
12.9. Many Systems for the Assimilation of Carbon Dioxide Have Been Tried in the Course of Evolution 270 12.10. C4 Metabolism 272 12.11. Crassulacean Acid Metabolism 274 12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and 289 Villy Sundström 289 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy 293 13.2.1. Theoretical Considerations for Energy Transfer 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 Chromophores: B800–B800 and B800–B850 294		12.8.	, 6	
Have Been Tried in the Course of Evolution27012.10. C4 Metabolism27212.11. Crassulacean Acid Metabolism27412.12. Evolution of ATP-Synthesizing Enzymes27512.13. The Journey onto Land27512.14. Impact of Photosynthesis on the Biospheric Environment27712.15. Conclusion280 13. Photosynthetic Light Harvesting, Charge Separation, andPhotoprotection: The Primary Steps289 <i>Villy Sundström</i> 28913.1. Introduction28913.2. Photosynthetic Antennas: Light-Harvesting and Energy Transfer29313.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy29413.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850				267
12.10. C4 Metabolism27212.11. Crassulacean Acid Metabolism27412.12. Evolution of ATP-Synthesizing Enzymes27512.13. The Journey onto Land27512.14. Impact of Photosynthesis on the Biospheric Environment27712.15. Conclusion280 13. Photosynthetic Light Harvesting, Charge Separation, andPhotoprotection: The Primary Steps289 <i>Villy Sundström</i> 28913.1. Introduction28913.2. Photosynthetic Antennas: Light-Harvesting and Energy Transfer29313.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy29413.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850274		12.9.		
12.11. Crassulacean Acid Metabolism			Have Been Tried in the Course of Evolution	270
12.12. Evolution of ATP-Synthesizing Enzymes 275 12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 Villy Sundström 289 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy Transfer 293 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 294				
12.13. The Journey onto Land 275 12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 Villy Sundström 289 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy Transfer 293 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850 294				
12.14. Impact of Photosynthesis on the Biospheric Environment 277 12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and 280 13. Photosynthetic Light Harvesting, Charge Separation, and 289 <i>Villy Sundström</i> 289 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy 293 13.2.1. Theoretical Considerations for Energy Transfer 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 Chromophores: B800–B800 and B800–B850 294		12.12.	Evolution of ATP-Synthesizing Enzymes	275
12.15. Conclusion 280 13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 Villy Sundström 289 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy Transfer 293 13.2.1. Theoretical Considerations for Energy Transfer and Spectroscopy 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850		12.13.	The Journey onto Land	275
13. Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps 289 Villy Sundström 289 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy 293 13.2.1. Theoretical Considerations for Energy Transfer 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 13.2.3. Energy Transfer Between Weakly Dipole-Coupled 294		12.14.	Impact of Photosynthesis on the Biospheric Environment	277
Photoprotection: The Primary Steps 289 Villy Sundström 289 13.1. Introduction 289 13.2. Photosynthetic Antennas: Light-Harvesting and Energy 293 Transfer 293 13.2.1. Theoretical Considerations for Energy Transfer 294 13.2.2. Energy Transfer Between Weakly Dipole-Coupled 294 Chromophores: B800–B800 and B800–B850 294		12.15.	Conclusion	280
 13.1. Introduction	13.			289
 13.2. Photosynthetic Antennas: Light-Harvesting and Energy Transfer		Villy S	Sundström	
 Transfer		13.1.	Introduction	289
and Spectroscopy		13.2.		293
13.2.2. Energy Transfer Between Weakly Dipole-Coupled Chromophores: B800–B800 and B800–B850				294
			13.2.2. Energy Transfer Between Weakly Dipole-Coupled	
			-	295

		13.2.3.	Energy Transfer Between Strongly Coupled	
			Chromophores: B850 of LH2	. 296
		13.2.4.	The Photosynthetic Unit: Intercomplex	
			Excitation Transfer	. 298
	13.3.	Photosy	nthetic Charge Separation: The Photosynthetic	
		Reactio	n Center	. 300
		13.3.1.	The Structure and Function of the Bacterial	
			Reaction Center	. 300
		13.3.2.	The Mechanism of Primary Electron Transfer	301
	13.4.	Caroten	oid Photophysics and Excited State Dynamics:	
		The Ba	sis of Carotenoid Light-Harvesting and	
		Non-Ph	otochemical Quenching	. 303
		13.4.1.	Excited States of Carotenoids	305
	13.5.	Energy	Transfer from Carotenoids to (Bacterio)Chlorophyll	309
	13.6.	Quench	ing of Chlorophyll Excited States by Carotenoids:	
		Non-Ph	otochemical Quenching	. 313
14.	The B	iologica	l Clock and Its Resetting by Light	321
			on and Wolfgang Engelmann	0-1
	14.1.		cal Clocks	321
			Spectrum of Rhythms	
			Function of Clocks	
			Current Concepts and Caveats	
			Adaptive Significance and Evolutionary Aspects	
			of Circadian Clocks	. 324
		14.1.5.	Properties and Formal Structures of the Circadian	
			System	. 324
	14.2.	Synchro	onization of Clocks	
	14.3.	•	and Light in Cyanobacteria	
			Photoreceptors and Zeitgeber	
		14.3.2.	· ·	
			Orchestration of Gene Expression	. 330
	14.4.	Clocks	in the Dinoflagellate Lingulodinium	331
	14.5.	Light E	ffects on Circadian Clocks in Plants: Arabidopsis	332
		14.5.1.	Light as the Most Important Zeitgeber	333
		14.5.2.	Photoreceptors	334
		14.5.3.	Clock Mechanism and Clock-Controlled Genes	336
		14.5.4.	Photoperiodism	337
	14.6.	Fungal	Clocks and Light Resetting: Neurospora	338
		14.6.1.	The Circadian System of Neurospora	338
		14.6.2.	Entrainment of the Circadian System	341
		14.6.3.	Photoreceptors of the Circadian System	342
		14.6.4.	Outputs of the Circadian System and	
			Photoperiodism	
	14.7.	How Li	ght Affects Drosophila's Circadian System	344

		14.7.1.	Circadian Eclosion	344
		14.7.2.	Locomotor Activity Controlled by Several	
			Circadian Oscillators	345
		14.7.3.	Mechanism of Circadian Clock	
		14.7.4.	Photoreceptors for the Entrainment	
			of the Locomotion Clock	347
	14.8.	Light a	nd Circadian Clocks in Mammals	351
		14.8.1.	SCN and Its Incoming and Outgoing Pathways	351
		14.8.2.	Circadian Photoreceptors in the Retina	
		14.8.3.	Pineal Organ, Melatonin, and Photoperiodism	355
		14.8.4.	Clocks Outside the SCN	357
	14.9.		nd the Human Circadian System	
			Light Synchronizes the Human Circadian System	
		14.9.2.	Significance of Light in Shift Work and Jetlag	360
		14.9.3.	Light Treatment in Sleep Disorders	361
		14.9.4.	U	
			Depressions	
	14.10.			
			. Simple Model Description	
			. Some Mathematical Properties of Circadian Models .	
		14.10.3	. Single Versus Multioscillator Models—Outlook	366
15.		_	m in Insects and Other Animals	389
		Saunder		
	15.1.		ction	389
	15.2.		eriodic Regulation of Diapause and Seasonal	
			in Insects	
	15.3.		for Photoperiodism	393
	15.4.		ce for the Involvement of the Circadian System in	
			eriodic Time Measurement	
			Nanda-Hamner Experiments	396
		15.4.2.		
			Protocol	
			Skeleton Photoperiods and Bistability Phenomenon	400
		15.4.4.	The Effects of Transient or Non–Steady-State	
			Entrainment on Diapause Induction	
			Overt "Indicator" Rhythms as "Hands of the Clock"	
			ourglass" Alternative: Damping Oscillations	
	15.7.		ception and Clock Location	405
	15.8.	-	se Induction in Drosophila melanogaster and the	
		Potentia	al Molecular Analysis of Photoperiodic Induction	408
16.	Photo	morpho	genesis and Photoperiodism in Plants	417
	James	L. Welle	er and Richard E. Kendrick	
	16.1.	Introdu	ction	417

	16.2.	Photomorphogenic Photoreceptors	418
		16.2.1. Phytochromes	418
		16.2.2. Cryptochromes	423
		16.2.3. Phototropins	424
		16.2.4. Other Photoreceptors	425
	16.3.	Physiological Roles of Photoreceptors	425
		16.3.1. Germination	
		16.3.2. Seedling Establishment	427
		16.3.3. Phototropism	
		16.3.4. Shade Avoidance	430
	16.4.	Photoreceptor Signal Transduction	431
		16.4.1. Primary Reactions of Photoreceptors	431
		16.4.2. Mutants and Interacting Factors	432
		16.4.3. Expression Profiling	436
		16.4.4. Pharmacological Approaches	437
	16.5.	Photoperiodism	438
		16.5.1. Light and the Circadian Clock	438
		16.5.2. Signaling in Photoperiodism	445
	16.6.	Photomorphogenesis and Photoperiodism in the Natural	
		Environment	447
		16.6.1. Improving Energy Capture	448
		16.6.2. Light and the Seed Habit	449
		16.6.3. Avoidance or Survival of Unfavorable Conditions	
	16.7.	16.6.3. Avoidance or Survival of Unfavorable Conditions Concluding Remarks	
	16.7.		
17.		Concluding Remarks	451
17.	The L		451
17.	The L Rachei	Concluding Remarks ight-Dependent Magnetic Compass	451
17.	The L	Concluding Remarks	451 465
17.	The L Rachei	Concluding Remarks	451 465 465
17.	The L Rachei	Concluding Remarks ight-Dependent Magnetic Compass <i>Muheim</i> The Involvement of Light in the Magnetic Compass Orientation in Animals 17.1.1. The Magnetic Inclination Compass	451 465 465
17.	The L Rachel 17.1.	Concluding Remarks ight-Dependent Magnetic Compass <i>Muheim</i> The Involvement of Light in the Magnetic Compass Orientation in Animals 17.1.1. The Magnetic Inclination Compass Light-Dependent Effects on Orientation at Different	451 465 465 466
17.	The L Rachel 17.1.	Concluding Remarks	451 465 465 466
17.	The L Rachel 17.1.	Concluding Remarks	 451 465 465 466 467
17.	The L Rachel 17.1.	Concluding Remarks	 451 465 465 466 467
17.	The L Rachel 17.1.	Concluding Remarks	 451 465 465 466 467 467
17.	The L <i>Rachel</i> 17.1. 17.2.	Concluding Remarks	451 465 465 466 467 467 468
17.	The L <i>Rachel</i> 17.1. 17.2.	Concluding Remarks	 451 465 465 466 467 467 468 469
17.	The L <i>Rachel</i> 17.1. 17.2.	Concluding Remarks	 451 465 465 466 467 467 468 469
17.	The L <i>Rachel</i> 17.1. 17.2.	Concluding Remarks	451 465 465 466 467 467 468 469 470
17.	The L <i>Rachel</i> 17.1. 17.2.	Concluding Remarks	451 465 465 466 467 467 468 469 470
17.	The L <i>Rachel</i> 17.1. 17.2.	Concluding Remarks	451 465 466 467 467 467 468 469 470 471
17.	The L <i>Rachel</i> 17.1. 17.2.	 Concluding Remarks	451 465 466 467 467 467 468 469 470 471
17.	The L <i>Rachel</i> 17.1. 17.2.	 Concluding Remarks ight-Dependent Magnetic Compass Muheim The Involvement of Light in the Magnetic Compass Orientation in Animals 17.1.1. The Magnetic Inclination Compass Light-Dependent Effects on Orientation at Different Wavelengths and Irradiances 17.2.1. Evidence for an Antagonistic Spectral Mechanism Mediating Magnetic Compass Orientation in Newts 17.2.2. Magnetic Compass Orientation of Birds Depends on Wavelength and Irradiance Localization of the Light-Dependent Magnetoreceptor Mechanisms of Light-Dependent Magnetoreception 17.4.1. Chemical Magnetoreception Based on a Radical Pair Mechanism 17.4.2. Involvement of Cryptochromes as Magneto-Sensitive Photoreceptors? 	451 465 466 467 467 468 469 470 471 471
17.	The L <i>Rachel</i> 17.1. 17.2.	 Concluding Remarks ight-Dependent Magnetic Compass Muheim The Involvement of Light in the Magnetic Compass Orientation in Animals 17.1.1. The Magnetic Inclination Compass Light-Dependent Effects on Orientation at Different Wavelengths and Irradiances 17.2.1. Evidence for an Antagonistic Spectral Mechanism Mediating Magnetic Compass Orientation in Newts 17.2.2. Magnetic Compass Orientation of Birds Depends on Wavelength and Irradiance Localization of the Light-Dependent Magnetoreceptor Mechanisms of Light-Dependent Magnetoreception 17.4.1. Chemical Magnetoreception Based on a Radical Pair Mechanism 17.4.2. Involvement of Cryptochromes as Magneto-Sensitive Photoreceptors? 17.4.3. RF Fields as Diagnostic Tool for Testing 	451 465 466 467 467 468 469 470 471 471 473

18.	Photo	toxicity	479
	Lars (Olof Björn and Pirjo Huovinen	
	18.1.	Introduction	479
	18.2.	Phototoxicity in Plant Defense	482
	18.3.		
	18.4.	•	
	18.5.	Metabolic Disturbances Leading to Phototoxic Effects of	
	10.01	Porphyrins or Related Compounds	487
	18.6.	Polycyclic Aromatic Hydrocarbons as Phototoxic	. 107
	10.0.	Contaminants in Aquatic Environments	489
		18.6.1. Nature and Occurrence of PAHs	
		18.6.2. Mechanisms of PAH Phototoxicity	
		18.6.3. Factors Affecting Exposure to Phototoxicity	170
		of PAHs in Aquatic Systems	402
		18.6.4. Phototoxicity of PAHs to Aquatic Biota	
		16.0.4. Thorotoxicity of LATIS to Aquate Diota	495
19.	Ozone	e Depletion and the Effects of Ultraviolet Radiation	503
	Lars (Olof Björn and Richard L. McKenzie	
	19.1.	Introduction	503
	19.2.	The Ozone Layer	504
	19.3.	Ozone Depletion	506
	19.4.	Molecular Effects of UV-B Radiation	508
		19.4.1. Effects of Ultraviolet Radiation on DNA	511
		19.4.2. Photolyases and Photoreactivation	513
		19.4.3. Formation and Effects of Reactive Oxygen Species	515
		19.4.4. Effects of Ultraviolet Radiation on Lipids	517
		19.4.5. Photodestruction of Proteins	518
		19.4.6. UV Absorption Affecting Regulative Processes	518
		19.4.7. UV-Induced Apoptosis	
	19.5.	Ultraviolet Effects on Inanimate Matter of Biological	
		Relevance	. 519
	19.6.	UV-B Radiation in an Ecological Context	
		19.6.1. Aquatic Life	
		19.6.2. Terrestrial Life	522
	19.7.	Effects on Human Eyes	523
20.		nin D: Photobiological and Ecological Aspects	531
		Olof Björn	
	20.1.	Introduction	
	20.2.	Chemistry and Photochemistry of Provitamin and Vitamin D	532
	20.3.	Transport and Transformation of Vitamin D in the	
		Human Body	. 536
	20.4.	Physiological Roles of 1,25-Dihydroxyvitamin D in	
		Vertebrates	. 536

	20.5.		Effects and the Vitamin D Receptor: Two Basic	
		Modes of	of Action	537
	20.6.	Evolutio	onary Aspects	538
	20.7.		tion of Provitamin and Vitamin D in the	
		Plant Ki	ingdom	540
	20.8.	Physiol	ogical Effects of Provitamin and Vitamin D in	
		Plants a	nd Algae	541
	20.9.	Roles of	f Provitamin and Vitamin D in Plants	541
	20.10.	Biogeog	graphical Aspects	542
			ght and Dark Sides of Sunlight	
			otochemical Production of Vitamin D	
21.	The P	hotobiol	ogy of Human Skin	553
	Mary I	Norval		
	21.1.		ction	
	21.2.	The Stru	ucture of Skin and the Skin Immune System	554
		21.2.1.	Skin Structure	554
		21.2.2.	The Skin Immune System	555
		21.2.3.	Contact and Delayed-Type Hypersensitivity	556
		21.2.4.	Effect of Solar UV Radiation on the Skin: Action	
			Spectra	557
	21.3.	Pigment	tation and Sunburn	
		21.3.1.	Pigmentation and Phototypes	
		21.3.2.	Sunburn and Minimal Erythema Dose	
	21.4.		Jeing	
	21.5.		rcinogenesis	
			Nonmelanoma Skin Cancer	
			Malignant Melanoma	
			Animal Studies of Skin Cancer	
	21.6.		osuppression	
	21.0.		UV-Induced Immunosuppression	
			UV-Induced Immunosuppression and Tumors	
			UV-Induced Immunosuppression and Tumors	508
		21.0.5.	Infection Including Vaccination	560
	21.7.	Dhotodo	e	
	21.7.		ermatoses	
		21.7.1.	8	570
		21.7.2.	Idiopathic Photodermatoses: Polymorphic	57 1
			Light Eruption	
		21.7.3.	Cutaneous Porphyrias	
		21.7.4.	Photoallergic Contact Dermatitis	572
22	Light	Treatme	ent in Medicine	577
• • •			witsch and Robert Knobler	••• 511
		Introduc		577
	1.1.1.1.1.		ATIV/11	

22.2.	Phototh	erapy (Use of Light Without Applied	
	Photose	ensitizer)	578
	22.2.2.	Long-Wave (>340 nm) UV-A ("UV-A1")	580
	22.2.3.	Visible Light	580
22.3.	Photoch	emotherapy	581
	22.3.1.	PUVA (Photochemotherapy Mediated	
		by UV-A Radiation with a Psoralen Derivative	
		as Photosensitizer)	581
	22.3.2.	Implementation of Phototherapy	
		and Photochemotherapy	582
	22.3.3.	Extracorporeal Photochemotherapy	582
	22.3.4.		
		or Chlorins as Photosensitizers	584
Biolur	ninescer	10e · · · · · · · · · · · · · · · · · · ·	591
			591
	0		
		1	
23.4.	Mechar	isms of Light Production	597
23.5.	Dragon	fishes: Long-Wave Bioluminescence	
	and Loi	ng-Wave Vision	601
23.6.	Control	of Bioluminescence	603
23.7.	Human	Exploitation of Bioluminescence	607
23.8.	Photosy	nthetic Afterglow	608
23.9.	Ultrawe	eak Light Emission	609
Hints	for Tea	ching Experiments and Demonstrations	617
			617
24.2.	A Good	l Start	618
24.3.	The Wa	ave Nature of Light	619
24.4.		-	
24.5.	Comple	ementary Chromatic Adaptation of Cyanobacteria	620
24.6.			
24.7.	Photoco	onversion of Rhodopsin	623
24.8.			
24.9.			
24.10.			
	22.3. Biolun <i>Lars C</i> 23.1. 23.2. 23.3. 23.4. 23.5. 23.6. 23.7. 23.8. 23.9. Hints <i>Lars C</i> 24.1. 24.2. 24.3. 24.4. 24.5. 24.6. 24.7. 24.8. 24.9.	Photose 22.2.1. 22.2.2. 22.2.3. 22.3.1. 22.3.2. 22.3.2. 22.3.3. 22.3.4. Bioluminescer <i>Lars Olof Björ</i> 23.1. Introduc 23.2. Evolutio 23.3. Biologia 23.3.1. 23.3.2. 23.3.3. 23.3.4. 23.3.5. 23.4. Mechar 23.5. Dragon and Lon 23.6. Control 23.7. Human 23.8. Photosy 23.9. Ultrawe Hints for Teac <i>Lars Olof Björ</i> 24.1. Introduc 24.2. A Good 24.3. The Wa 24.4. Singlet 24.5. Comple 24.6. What Is 24.7. Photoco 24.8. Photosy 24.9. Photoco	 Photosensitizer)

24.11	. Light Acclimation of Leaves: The Xanthophyll Cycle	629
	24.11.1. Introduction to the Xanthophyll Cycle	630
	24.11.2. Experiment	633
24.12	. Ultraviolet Radiation Damage and Its Photoreactivation	635
24.13	. Ultraviolet Damage to Microorganisms	637
24.14	. Photomorphogenesis in Plants and Related Topics	638
	24.14.1. Photomorphogenesis of Bean Plants	638
	24.14.2. Regulation of Seed Germination by Phytochrome	639
	24.14.3. Effects of Blue and Red Light on Development	
	of Fern Prothallia	640
24.15	. Spectrophotometric Studies of Phytochrome In Vivo	640
24.16	. Bioluminescence	642
	24.16.1. Fireflies	642
	24.16.2. Bacteria	642
24.17	. Miscellaneous Teaching Experiments and Demonstrations	643
25. The A	Amateur Scientist's Spectrophotometer	647
Lars	Olof Björn	
25.1.		
25.2.		
25.3.		
25.4.	Measurement and Manipulation of Spectra	652
25.5.	Suggestions for Further Experimentation	656
Index		659

Contributors

Lars Olof Björn

Lund University, Department of Cell and Organism Biology, Sölvegatan 35, SE-223 62 Lund, Sweden Lars_Olof.Bjorn@cob.lu.se

Wolfgang Engelmann

Schlossgartenstr. 22, D-72070 Tübingen (Germany), Tel.: int+49-7071-68325 engelmann@uni-tuebingen.de

Helen Ghiradella

University at Albany, Department of Biology, Albany, New York 12222, USA hghff@albany.edu

Govindjee

Prof.Em., Biochemistry, Biophysics and Plant Biology, Department of Plant Biology, University of Illinois, 265 Morrill Hall, MC-116, 505 South Goodwin Avenue, Urbana, IL 61801–3707, USA, Fax: int+01-217-244-7246 gov@life.uiuc.edu

Pirjo Huovinen

Centro de Investigación y Desarrollo de Recursos y, Ambientes Costeros (i~mar), Universidad de Los Lagos, Camino a, Chinquihue Km 6, Casilla 557, Puerto Montt, Chile phuovinen@ulagos.cl

Anders Johnsson

Norwegian University of Science and Technology (NTNU), Department of Physics, NO-7491 Trondheim, Norway anders.johnsson@phys.ntnu.no

Theresa Jurkowitsch

Medical University of Vienna, Wahringerguertel 18–20, A-1090 Vienna, Austria theresa.dani@meduniwien.ac.at

Richard E. Kendrick

Department of Plant Science, Wageningen University, The Netherlands

xxii Contributors

Robert Knobler

Div. of Special and Environmental Dermatology, Medical University of Vienna, Wahringerguertel 18–20, A-1090 Vienna, Austria robert.knobler@meduniwien.ac.at

Richard L. McKenzie

National Institute of Water and Atmospheric Research, (NIWA), Lauder, PB 50061 Omakau, Central Otago 9352, New Zealand r.mckenzie@niwa.co.nz

Curtis D. Mobley

Sequoia Scientific, Inc., 2700 Richards Rd. Suite 107, Bellevue, WA 98005 curtis.mobley@sequoiasci.com

Rachel Muheim

Virginia Polytechnic Institute and State University, Department of Biological Sciences, Derring Hall, Blacksburg, VA 24061–0406, USA muheimr@vt.edu

Mary Norval

University of Edinburgh Medical School, Biomedical Sciences m.norval@ed.ac.uk

David Saunders

21, Leadervale Road, Edinburgh EH16 6PB, Scotland U.K. d.s.saunders@btopenworld.com

Raymond C. Smith

Geography Department and ICESS, University of California, Santa Barbara, Santa Barbara, CA 93106 ray@icess.ucsb.edu

Villy Sundström

Department of Chemical Physics, Lund University, Box 124, SE-22100 Lund, Sweden

James L. Weller

School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia jim.weller@utas.edu.au

1 The Nature of Light and Its Interaction with Matter

Lars Olof Björn

Abstract: This chapter provides a physical background to the following ones. It describes the particle and wave properties of light, and the diffraction, polarization, refraction, reflection, and absorption of light, statistics of photon emission and absorption. Planck's law of heat radiation is described in various mathematical and graphical ways. One section is devoted to a simplified description of the propagation of light in absorbing and scattering media. The final sections are devoted to interactions between light and matter: spectra of and energy levels in atoms and molecules, the relation between absorption and emission spectra, the molecular geometry of absorption and emission, and the transfer of electronic excitation energy between molecules, including the Förster mechanism, triplet states, and the photobiologically important properties of the dioxygen molecule.

1.1. Introduction

The behavior of light when it travels through space and when it interacts with matter plays a central role in the two main paradigms of twentieth-century physics: relativity and quantum physics. As we shall see throughout this book, it is also important for an understanding of the behavior and functioning of organisms.

1.2. Particle and Wave Properties of Light

The strange particle and wave properties of light are well demonstrated by a modification of Young's double slit experiment. In Young's original experiment (1801), a beam of light impinged on an opaque screen with two parallel, narrow slits. Light passing through the slits was allowed to hit a second screen. Young did not obtain two light strips (corresponding to the two slits) on the second screen, but instead a complicated pattern of several light and dark strips. The pattern

obtained can be quantitatively explained by assuming that the light behaves as waves during its passage through the system.

It is easy to calculate where the maxima and minima in illumination of the last screen will occur. We can get some idea of the phenomenon of *interference* by just overlaying two sets of semicircular waves spreading from the two slits (Fig. 1.1), but this does not give a completely correct picture.

For the experiment to work, it is necessary for the incident light waves to be in step, i.e., the light must be spatially coherent. One way of achieving this is to let the light from a well-illuminated small hole (in one more screen) hit the screen with the slits. The pattern produced (Fig. 1.2) is a so-called interference pattern or, to be more exact, a pattern produced by a combination of *diffraction* (see the next section) in each slit and *interference* between the lights from the two slits. It is difficult to see it if white light is used, since each wavelength component produces a different pattern. Therefore, at least a colored filter should be used to limit the light to a narrower waveband. The easiest way today (which Young could not enjoy) is to use a laser (a simple laser pointer works well), giving at the same time very parallel and very monochromatic light, which is also sufficiently strong to be seen well.

In a direction forming the angle α with the normal to the slitted screen (i.e., to the original direction of the light), waves from the two slits will enhance each other maximally if the difference in distance to the two slits is an integer multiple of the wavelength, i.e., d.sin $\alpha = n.\lambda$, where d is the distance between the slits, λ the wavelength, and n a positive integer (0, 1, 2, ...). The waves will cancel each other completely when the difference in distance is half a wavelength, i.e., d.sin $\alpha = (n + 1/2).\lambda$. To compute the pattern is somewhat more tedious, and we need not go through the details. The outcome depends on the width of each slit, the distance between the slits, and the wavelength of light. An example of a result is shown in Fig. 1.2.

So far so good—light behaves as waves when it travels. But we also know that it behaves as particles when it leaves or arrives (see later). The most direct demonstration of this is that we can count the photons reaching a sensitive photocell (photomultiplier).

But the exciting and puzzling properties of light stand out most clearly when we combine the original version of Young's experiment with the photon counter. Instead of the visible diffraction pattern of light on the screen, we could dim the light and trace out the pattern as a varying frequency of counts (or, if we so wish, as a varying frequency of clicks as in a classical Geiger counter) as we move the photon counter along the projection screen (Fig. 1.3a). Since we count single photons, we can dim the light considerably and still be able to register the light. In fact, we can dim the light so much that it is very, very unlikely that more than *one photon at a time* will be in flight between our light source and the photon counter. This type of experiment has actually been performed, and it has been found that a diffraction pattern is still formed under these conditions. We can do the experiment also with an image forming device such as a photographic film or a charge coupled diode (CCD) array as the receiver and get a picture of where 1. Nature of Light and Its Interactions

3



FIGURE 1.1. (**Top**) Light waves impinge from below on a barrier with only one slit open and spread from this in concentric rings. (**Bottom**) Light waves impinge from below on a barrier with two slits open. The two wave systems spreading on the other side interfere and in some sectors enhance, in others extinguish one another. The picture is intended only to simplify the understanding of the interference phenomenon and does not give a true description of the distribution of light.

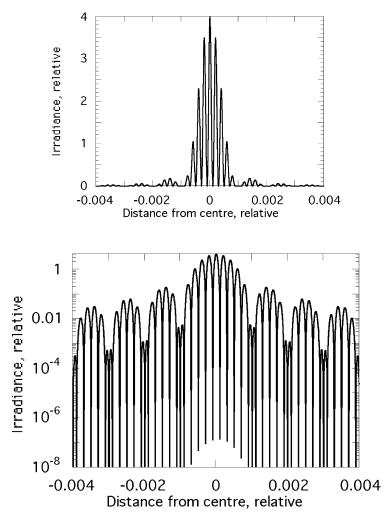


FIGURE 1.2. Interference pattern produced in Young's double slit experiment (computer simulation). The width of each slit is 1 mm, the distance between slit centers 4 mm, and the wavelength 0.001 mm (1 μ m). The distance from the center of the screen is along the horizontal axis and the irradiance ("light intensity") along the vertical axis, both in relative units. Note that the vertical scale is linear in the upper diagram, logarithmic in the lower one.

the photons hit. A computer simulation of the outcome of such an experiment is shown in Fig. 1.3b.

If you think a little about what this means, you will be very puzzled indeed. For the diffraction pattern to be formed we need *two* slits. But we can produce the pattern by using only one photon at a time. There can be no interaction between two or more photons, which have traveled different paths, e.g., one

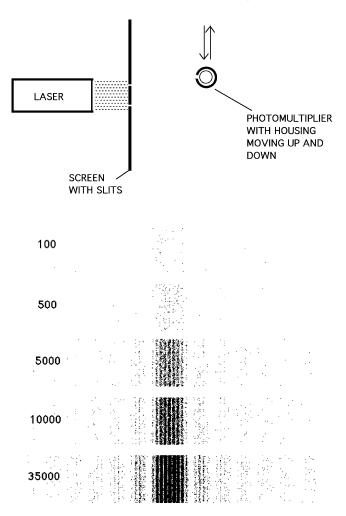


FIGURE 1.3. (**Top**) Double slit experiment set up to count single photons. The sketch is not to scale. In a real experiment the distance of the photomultiplier from the screen with slits would be greater, and the opening in the photomultiplier housing smaller. (**Bottom**) Simulation of the pattern of photon hits on a screen behind a double slit arranged in the same way as in Fig. 1.2. The number of photons is indicated for each experiment. Although the photon hits take place randomly and cannot be predicted, the interference pattern emerges more and more clearly with increasing number of photons.

photon through one slit and another photon through the other slit. The experiment shows that each photon "must be aware" of both slits, or, in other words, must have traveled through both slits. I know of no other physics experiment that demonstrates more clearly than this one that light is not waves or particles. The wave and the particle are both *models*, incomplete pictures or imaginations of the nature of light. The limitations of our senses and our brain prevent us from getting closer to reality than this, simply because it has not made sense during our evolution to get closer to reality. This limitation does not prevent us from using our models very successfully as long as we use them in a correct way.

Let us take one more example to make clear how "weird" (i.e., counterintuitive) the scientific description of the behavior of light is. When I was younger I used to watch the Andromeda galaxy using my naked eyes (now it is difficult, not only because my vision has worsened, but because there is so much electric light around where I live). I could see the galaxy because atoms in it had emitted light about 2 million years earlier. The photons, after having traveled through empty space, interacted with rhodopsin molecules in my eyes. But no photon started on its course following a straight line towards the earth. It traveled as an expanding wave. Just before interacting with the rhodopsin molecule in my eye, the photon was *everywhere* on a wavefront with a radius of 2 million light years. The energy of the photon was not localized until it came into contact with my eye.

1.3. Light as Particles and Light as Waves, and Some Definitions

When we are dealing with light as waves, we assign a wavelength to each wave. Visible light has wavelengths in a vacuum in the range 400–700 nm (1 nm equals 10^{-9} m), while ultraviolet radiation has shorter and infrared radiation longer waves.

Photobiologists divide the ultraviolet part of the spectrum into ultraviolet A (UV-A) with 315–400 nm wavelength, UV-B with 280–315 nm wavelength, and UV-C with < 315 nm wavelength. You may see other limits for these regions in some publications, but these are supported by the Comité Internationale de l'Eclairage (CIE), which introduced the concepts. Just as everybody should use the same internationally agreed-upon length of the meter, everybody should honor the definitions of UV-A, UV-B, and UV-C; otherwise there is a risk for chaos in the scientific literature. Plant photobiologists, for whom the spectral region 700–750 nm is especially important, call this radiation "far-red light." They also call the region 400–700 nm "photosynthetically active radiation," or PAR, rather than visible light. Just as radiation outside this band is perfectly visible for some organisms such as some insects, birds, and fish (and some light in the range 400–700 nm "photosynthetically active radiation" is photosynthetically active to many organisms.

Natural light never has a single wavelength, but can rather be regarded as a mixture of waves with different wavelengths.

When we characterize light by its wavelength, we usually mean the wavelength in a vacuum. When it travels through a vacuum, the velocity of light is always *exactly* 299792.4562 km/s, irrespective of wavelength and the movement of the

radiation source in relation to the observer. The reason that this value is exact is that the velocity of light in a vacuum links our definitions of the meter and the second. This velocity is usually designated c, and wavelength λ (the Greek letter lambda). A third property of light which we should keep track of is its frequency, i.e., how many times per time unit the wave (the electric field) goes from one maximum (in one direction) to another maximum (in the same direction). Frequency is traditionally designated ν (Greek letter nu), and in a vacuum we have the following relation between the three quantities just introduced: $c = \lambda \cdot \nu$, or $\lambda = c/\nu$, or $\nu = c/\lambda$. When light passes through matter (such as air or water or our eyes), the velocity and wavelength decrease in proportion, and frequency remains unchanged. Sometimes the wavenumber, i.e., $1/\lambda$, is used for the characterization of light. It is usually symbolized by ν with a line (bar) over it, and a common unit is cm⁻¹.

When we think of light as particles (photons), we assign an amount of energy (E) to each photon. This energy is linked to the wave properties of the light by the relations $E = h \cdot \nu$, where h is Planck's constant, 6.62617636 J·s (joule-seconds). It also follows from the preceding that $E = h \cdot c/\lambda$. We can never know the exact wavelength, frequency, or energy of a single photon.

1.4. Diffraction

We usually think of light traveling in straight lines if there is nothing in its way. We have seen in Young's double slit experiment that it does not always do that. In fact, the great physicist Richard Feynman has shown that its behavior is best understood if we think of it as always traveling every possible way at the same time and components traveling those different ways interfering with one another at every possible point.

We do not have to have two slits to show how the light "bends" near edges. This "bending" is called diffraction in scientific terminology. It is very important to take diffraction into account to understand some biological phenomena, such as the vision of insects (see Chapter 9). Light is diffracted in any small opening and also near any edge. To compute the diffraction pattern we can make use of something called Huygens' principle (sometimes the Huygens-Fresnel principle). It states that we can think of propagating light as a sum of semispherical waves emanating from a wavefront. If the wavefront is flat, the semispherical waves emanating from it add up to a new flat wavefront. But if something stops some of the semispherical waves, the new wavefront is no longer flat. In Fig. 1.1 (Top) we illustrate this in one plane. Flat waves impinge from below on a screen with an opening. Many semicircular waves start out from the opening. Along a line from the middle of the opening the resulting wavefront is flat, but at the edges the semicircular waves produce a bent pattern. We have calculated this pattern more exactly in Fig. 1.4.

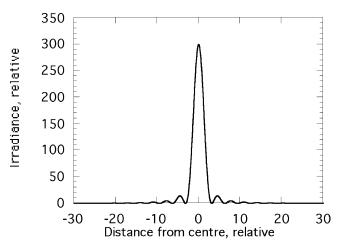


FIGURE 1.4. Diffraction pattern in a single slit (the pattern from a round hole looks similar in one dimension, but is slightly different). The horisontal axis shows the sine of the deviation angle in units of the ratio between wavelength and slit width.

1.5. Polarization

Light waves are *transverse*, i.e., the oscillation is perpendicular to the direction of wave propagation, the direction of the light (this is in contrast to sound waves, in which particles vibrate in the line of wave propagation). In the case of light, there are no vibrating particles, but a variation in electric and magnetic fields. The electric and magnetic fields are both perpendicular to the direction of propagation, but also perpendicular to one another. When the electric fields of all the components of a light beam are parallel, the beam is said to be *plane-polarized*. The *plane of polarization* is the plane that contains both the electrical field direction and the line of propagation.

If we add two beams which travel in the same direction and are both plane-polarized and have the same *phase* (i.e., the waves are in step) but different planes of polarization, the resulting light is also plane-polarized with its plane of polarization at an intermediate angle.

Light can also be circularly polarized, in which case the electrical field direction spirals along the line of propagation. Since such a spiral can be left- or right-handed, there are two kinds of circular polarization, left-handed and right-handed (Fig. 1.5).

Circularly polarized light can be regarded as the sum of two equally strong plane-polarized components with right angles between the planes of polarizations, and a 90 degree *phase difference* between the components. On the other hand, plane-polarized light can be regarded as a sum of equally strong left- and right-handed components of circularly polarized light.

Natural light, such as direct sunlight, is often almost unpolarized, i.e., a random mixture of all possible polarizations. After reflection in a water surface

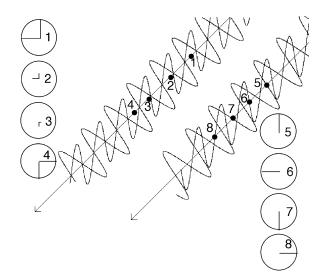


FIGURE 1.5. In the upper left part of the figure a plane-polarized light beam, composed of one vertically and one horisontally polarized component, is depicted in perspective and also "head on" at different points (or at one point at different moments). Numbered points in the perspective drawing correspond to the numbers on the "head-on" drawings. Only the electric components of the electromagnetic fields are shown (wavy lines in the perspective drawing, straight lines in the "head-on" drawings). In the lower right part of the drawing the same is shown for a circularly polarized beam.

the light becomes partially plane-polarized. Skylight is a mixture of circularly and plane-polarized light, which we call elliptically polarized light. We cannot directly perceive the polarization of the light we see. Insects do, and often use the polarization of skylight as an aid in their orientation. Plants in many cases react differently to plane-polarized light depending on its plane of polarization. This holds for chloroplast orientation in seed plants, mosses, and green algae and also for growth of fern gametophytes. A good treatise on the subject (in German) is provided by W. Haupt (1977).

1.6. Statistics of Photon Emission and Absorption

Usually the members of a population of excited molecules can be expected to emit photons independently of one another, i.e., the time of emission of one photon does not depend on the time of emission of another photon. One exception to this rule occurs when stimulated emission becomes significant, as happens in a laser. Another exception is when there is cooperation between different parts of a cell (e.g., when a dinoflagellate flashes), between different cells in an organism (e.g., when a firefly flashes), or between different individuals in a population (e.g., when fireflies in a tree send out synchronized flashes). The examples in the last sentence are very obvious. However, careful study of the statistics of photon emission offers a very sensitive way of detecting cooperation between different parts of a biological system, and we shall therefore dwell a little on this subject, which also has a bearing on the reliability of measurement of weak radiation in general.

When photons are emitted independently of one another, the distribution of emission events in time is a Poisson distribution, just as in the case of radioactive decay. This means that if the mean number of events in time Δt is x, then the probability of getting exactly n events in the time Δt is $p = e^{-x} \cdot x^n/n!$ In this formula, n! stands for factorial n, i.e., $1 \cdot 2 \cdot 3 \cdot 4 \dots \cdot n$. Thus 1! = 1, 2! = 2, 3! = 6, 4! = 24, and so on. By definition 0! = 1.

We are familiar with the Poisson distribution of events from listening to a Geiger-Müller counter. That events are Poisson-distributed in time means that they are completely randomly distributed in time. When one event takes place does not depend on when a previous event occurred. One might think that there cannot be much useful information to be extracted from such a random process, but such a guess is wrong. The reader is probably already familiar with some of the useful things we can learn from the random decay of atomic nuclei. We can, in fact, use our knowledge of how Poisson statistics work for determining the number of photons required to trigger a certain photobiological process. The remarkable thing is that we can do this even without determining the number of photons we shine on the organism that we study.

The principle was first used by Hecht et al. (1942) to determine how many photons must be absorbed in the rods of an eye to give a visual impression. Their ingenious experiment was a bit complicated by the fact that our nervous system is wired in such a way that several rods have to be triggered within a short time for a signal to be transmitted to the brain (thereby avoiding false signaling due to thermal conversion of rhodopsin). We shall demonstrate the principle with a simpler example, an experiment on the unicellular flagellate *Chlamydomonas* (Hegemann and Marwan 1988). This organism swims around with two flagella, and it reacts to light by either stopping ("stop response") or by changing swimming direction ("turning response").

All one has to do is to take a sample of either light-adapted or dark-adapted *Chlamydomonas* cells, subject them to a flash of light, and note which fraction of the cells either stop or turn. The experiment is then repeated several times, with the flash intensity varied between experiments. The absolute fluence in each flash need not be determined, only a relative value. If one possesses a number of calibrated filters no light measurement at all need be performed. Then the fraction of reacting cells for each flash is plotted against the logarithm of the relative flash intensity. It turns out that (for dark-adapted cells) the curve so obtained, if plotted on a comparable scale, has the same shape as the curve labeled n = 1 in Fig. 1.6. This holds for both stop response and for turning response, and it means that both responses can be triggered by a single photon. If the experiment is carried out within 20 minutes of removing the cells from