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(Drawing by Per Nilsson)

Photobiology

I am lying on my back beneath the tree,
dozing, looking up into the canopy,
thinking: what a wonder!—I can see!

But in the greenery above my face,
an even greater miracle is taking place:
Leaves catch photons from the sun
and molecules from air around.
Quanta and carbon atoms become bound.
Life, for them, has just begun.

The sun not only creates life, it also takes away
mostly by deranging DNA.
Damage can be, in part, undone
by enzymes using photons from the sun.

Summer nears its end, already ’cross the sky
southward aiming birds are flying by.
Other birds for travel choose the night

relying on the stars for guiding light.

Imprinted in their little heads are Gemini,
Orion, Dipper, other features of the sky.
There is room for clocks that measure

day and night,
Correct for movement of the sky

and tell the time for flight

Deep into oceans, into caves
the sun cannot directly send its waves.
But through intricacies of foodweb’s maze,
oxygen from chloroplasts, luciferin, luciferase,
at times, in place,

where night and darkness seem to reign,
solar quanta emerge as photons

once again.

L.O. Björn 2002



Preface

I started my first photobiological research project almost exactly 50 years ago,
in the spring of 1957. My scientific interest ever since has been focused on
photobiology in its many aspects. Because I have been employed as a botanist,
my own research has dealt with the photobiology of plants, but throughout this
time I have been interested in other aspects, such as vision, the photobiology of
skin, and bioluminescence. A first edition of the present book was published in
2002, but this second edition is much expanded and completely updated. Several
new authors have been recruited among my eminent colleagues.

It has not been possible to cover all aspects of photobiology in one volume,
but I feel that we have managed to catch a fair and well-balanced cross section.
Many colleagues promised to help, but not all lived up to their promises. To
those who did, and who are coauthors to this volume, I direct my thanks; I think
that they have done an excellent job.

Living creatures use light for two purposes: for obtaining useful energy and
as information carrier. In the latter case organisms use light mainly to collect
information but also (e.g., by coloration and bioluminescence) for sending infor-
mation, including misleading information, to other organisms of their own or
other species. Collection of free energy through photosynthesis and collection
of information through vision or other photobiological processes may seem to
be very different concepts. However, on a deep level they are of the same kind.
They use the difference in temperature between the sun and our planet to evade
equilibrium, i.e., to maintain and develop order and structure.

Obviously, all of photobiology cannot be condensed into a single volume.
My idea has been to first provide the basic knowledge that can be of use to
all photobiologists, and then give some examples of special topics. I have had
to limit myself, and one of the interesting topics that had to be left out is the
thermodynamics of processes in which light is involved.

Thus, this book is intended as a start, not as the final word. There are several
journals dealing with photobiology in general, and an even greater number
dealing with special topics such as vision, photodermatology, or photosyn-
thesis. There are several photobiology societies arranging meetings and other
activities. And last but not least, up-to-date information can be found on the
Internet. The most important site, apart from the Web of Science and other
scientific databases, is Photobiology Online, a site maintained jointly by the
American and European Societies for Photobiology (ASP and ESP, respectively),
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at http://169.147.169.1/POL.index.html or http://www.pol-europe.net/, where
details about photobiology journals and books can be obtained.

The subtitle of this book may be somewhat misleading. There is only one
science. But I wanted to point out that the various disciplines dealing with light
and life have more in common than perhaps generally realized. I hope that
the reader will find that the same principles apply to seemingly different areas
of photobiology. For instance, we have transfer of excitation energy between
chromophores active in photosynthesis, in photorepair of DNA, and in biolu-
minescence. Cryptochromes, first discovered as components in light-sensing
systems in plants, are involved in the human biological clock, and probably
in the magnetic sense of birds and other animals, and they have evolved from
proteins active in DNA photorepair. The study of the photomagnetic sense of
birds has, in turn, led to new discoveries about how plants react to a combination
of light and magnetic fields.

Many colleagues have been helpful in the production of this book. Two of
my coauthors—Professors Helen Ghiradella and Anders Johnsson—who are also
close friends, have earned special thanks, because they have helped with more
chapters than those who bear their names. Helen has also helped to change my
Scandinavian English into the American twist of the islanders’ tounge, but we
have not changed the dialect of those who are native English speakers. Professor
Govindjee has contributed not only with his knowledge of photobiology, but
also with his great experience in editing. Drs. Margareta Johnsson and Helena
Björn van Praagh have helped with improvements and corrections, and Professor
Allan Rasmusson at our department in Lund has been very helpful when I and
my computer have had disagreements. I have enjoyed the friendliness and help
of other colleagues in the department. The staff of our biology library has been
very helpful and service-minded.

Many others have also helped, but special thanks go to my wife and beloved
photobiologist Gunvor, who has supported me during the work and put up with
paper and books covering the floor in our common home; to her I dedicate those
chapters of the book that bear my name.

Lars Olof Björn
Lund, Sweden

March 2007
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1
The Nature of Light and Its Interaction
with Matter

Lars Olof Björn

Abstract: This chapter provides a physical background to the following ones. It
describes the particle and wave properties of light, and the diffraction,
polarization, refraction, reflection, and absorption of light, statistics of
photon emission and absorption. Planck’s law of heat radiation is described
in various mathematical and graphical ways. One section is devoted to
a simplified description of the propagation of light in absorbing and
scattering media. The final sections are devoted to interactions between
light and matter: spectra of and energy levels in atoms and molecules, the
relation between absorption and emission spectra, the molecular geometry
of absorption and emission, and the transfer of electronic excitation energy
between molecules, including the Förster mechanism, triplet states, and the
photobiologically important properties of the dioxygen molecule.

1.1. Introduction

The behavior of light when it travels through space and when it interacts with
matter plays a central role in the two main paradigms of twentieth-century
physics: relativity and quantum physics. As we shall see throughout this book,
it is also important for an understanding of the behavior and functioning of
organisms.

1.2. Particle and Wave Properties of Light

The strange particle and wave properties of light are well demonstrated by a
modification of Young’s double slit experiment. In Young’s original experiment
(1801), a beam of light impinged on an opaque screen with two parallel, narrow
slits. Light passing through the slits was allowed to hit a second screen. Young did
not obtain two light strips (corresponding to the two slits) on the second screen,
but instead a complicated pattern of several light and dark strips. The pattern

1
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obtained can be quantitatively explained by assuming that the light behaves as
waves during its passage through the system.

It is easy to calculate where the maxima and minima in illumination of the
last screen will occur. We can get some idea of the phenomenon of interference
by just overlaying two sets of semicircular waves spreading from the two slits
(Fig. 1.1), but this does not give a completely correct picture.

For the experiment to work, it is necessary for the incident light waves to be
in step, i.e., the light must be spatially coherent. One way of achieving this is
to let the light from a well-illuminated small hole (in one more screen) hit the
screen with the slits. The pattern produced (Fig. 1.2) is a so-called interference
pattern or, to be more exact, a pattern produced by a combination of diffraction
(see the next section) in each slit and interference between the lights from the
two slits. It is difficult to see it if white light is used, since each wavelength
component produces a different pattern. Therefore, at least a colored filter should
be used to limit the light to a narrower waveband. The easiest way today (which
Young could not enjoy) is to use a laser (a simple laser pointer works well),
giving at the same time very parallel and very monochromatic light, which is
also sufficiently strong to be seen well.

In a direction forming the angle �with the normal to the slitted screen (i.e., to
the original direction of the light), waves from the two slits will enhance each
other maximally if the difference in distance to the two slits is an integer multiple
of the wavelength, i.e., d.sin � = n.�, where d is the distance between the slits, �
the wavelength, and n a positive integer (0, 1, 2, …). The waves will cancel each
other completely when the difference in distance is half a wavelength, i.e., d.sin
� = (n + 1/2).�. To compute the pattern is somewhat more tedious, and we need
not go through the details. The outcome depends on the width of each slit, the
distance between the slits, and the wavelength of light. An example of a result
is shown in Fig. 1.2.

So far so good—light behaves as waves when it travels. But we also know
that it behaves as particles when it leaves or arrives (see later). The most direct
demonstration of this is that we can count the photons reaching a sensitive
photocell (photomultiplier).

But the exciting and puzzling properties of light stand out most clearly when
we combine the original version of Young’s experiment with the photon counter.
Instead of the visible diffraction pattern of light on the screen, we could dim the
light and trace out the pattern as a varying frequency of counts (or, if we so wish,
as a varying frequency of clicks as in a classical Geiger counter) as we move
the photon counter along the projection screen (Fig. 1.3a). Since we count single
photons, we can dim the light considerably and still be able to register the light.
In fact, we can dim the light so much that it is very, very unlikely that more than
one photon at a time will be in flight between our light source and the photon
counter. This type of experiment has actually been performed, and it has been
found that a diffraction pattern is still formed under these conditions. We can do
the experiment also with an image forming device such as a photographic film
or a charge coupled diode (CCD) array as the receiver and get a picture of where



1. Nature of Light and Its Interactions 3

Figure 1.1. (Top) Light waves impinge from below on a barrier with only one slit open
and spread from this in concentric rings. (Bottom) Light waves impinge from below on
a barrier with two slits open. The two wave systems spreading on the other side interfere
and in some sectors enhance, in others extinguish one another. The picture is intended
only to simplify the understanding of the interference phenomenon and does not give a
true description of the distribution of light.
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Figure 1.2. Interference pattern produced in Young’s double slit experiment (computer
simulation). The width of each slit is 1 mm, the distance between slit centers 4 mm, and
the wavelength 0.001 mm (1 μm). The distance from the center of the screen is along
the horizontal axis and the irradiance (“light intensity”) along the vertical axis, both in
relative units. Note that the vertical scale is linear in the upper diagram, logarithmic in
the lower one.

the photons hit. A computer simulation of the outcome of such an experiment is
shown in Fig. 1.3b.

If you think a little about what this means, you will be very puzzled indeed.
For the diffraction pattern to be formed we need two slits. But we can produce
the pattern by using only one photon at a time. There can be no interaction
between two or more photons, which have traveled different paths, e.g., one
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Figure 1.3. (Top) Double slit experiment set up to count single photons. The sketch is
not to scale. In a real experiment the distance of the photomultiplier from the screen with
slits would be greater, and the opening in the photomultiplier housing smaller. (Bottom)
Simulation of the pattern of photon hits on a screen behind a double slit arranged in
the same way as in Fig. 1.2. The number of photons is indicated for each experiment.
Although the photon hits take place randomly and cannot be predicted, the interference
pattern emerges more and more clearly with increasing number of photons.

photon through one slit and another photon through the other slit. The experiment
shows that each photon “must be aware” of both slits, or, in other words, must
have traveled through both slits. I know of no other physics experiment that
demonstrates more clearly than this one that light is not waves or particles.
The wave and the particle are both models, incomplete pictures or imaginations
of the nature of light. The limitations of our senses and our brain prevent
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us from getting closer to reality than this, simply because it has not made
sense during our evolution to get closer to reality. This limitation does not
prevent us from using our models very successfully as long as we use them in a
correct way.

Let us take one more example to make clear how “weird” (i.e., counterintu-
itive) the scientific description of the behavior of light is. When I was younger
I used to watch the Andromeda galaxy using my naked eyes (now it is difficult,
not only because my vision has worsened, but because there is so much electric
light around where I live). I could see the galaxy because atoms in it had emitted
light about 2 million years earlier. The photons, after having traveled through
empty space, interacted with rhodopsin molecules in my eyes. But no photon
started on its course following a straight line towards the earth. It traveled as
an expanding wave. Just before interacting with the rhodopsin molecule in my
eye, the photon was everywhere on a wavefront with a radius of 2 million light
years. The energy of the photon was not localized until it came into contact with
my eye.

1.3. Light as Particles and Light as Waves,
and Some Definitions

When we are dealing with light as waves, we assign a wavelength to each wave.
Visible light has wavelengths in a vacuum in the range 400–700 nm (1 nm
equals 10−9 m), while ultraviolet radiation has shorter and infrared radiation
longer waves.

Photobiologists divide the ultraviolet part of the spectrum into ultraviolet
A (UV-A) with 315–400 nm wavelength, UV-B with 280–315 nm wavelength,
and UV-C with < 315 nm wavelength. You may see other limits for these regions
in some publications, but these are supported by the Comité Internationale de
l’Eclairage (CIE), which introduced the concepts. Just as everybody should use
the same internationally agreed-upon length of the meter, everybody should
honor the definitions of UV-A, UV-B, and UV-C; otherwise there is a risk for
chaos in the scientific literature. Plant photobiologists, for whom the spectral
region 700–750 nm is especially important, call this radiation “far-red light.”
They also call the region 400–700 nm “photosynthetically active radiation,” or
PAR, rather than visible light. Just as radiation outside this band is perfectly
visible for some organisms such as some insects, birds, and fish (and some light in
the range 400–700 nm invisible to many animals), so radiation with wavelengths
shorter or longer than “photosynthetically active radiation” is photosynthetically
active to many organisms.

Natural light never has a single wavelength, but can rather be regarded as a
mixture of waves with different wavelengths.

When we characterize light by its wavelength, we usually mean the wavelength
in a vacuum. When it travels through a vacuum, the velocity of light is always
exactly 299792.4562 km/s, irrespective of wavelength and the movement of the
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radiation source in relation to the observer. The reason that this value is exact is
that the velocity of light in a vacuum links our definitions of the meter and the
second. This velocity is usually designated c, and wavelength � (the Greek letter
lambda). A third property of light which we should keep track of is its frequency,
i.e., how many times per time unit the wave (the electric field) goes from
one maximum (in one direction) to another maximum (in the same direction).
Frequency is traditionally designated � (Greek letter nu), and in a vacuum
we have the following relation between the three quantities just introduced:
c = �·�, or � = c/�, or � = c/�. When light passes through matter (such as air
or water or our eyes), the velocity and wavelength decrease in proportion, and
frequency remains unchanged. Sometimes the wavenumber, i.e., 1/�, is used for
the characterization of light. It is usually symbolized by � with a line (bar) over
it, and a common unit is cm−1.

When we think of light as particles (photons), we assign an amount of energy
(E) to each photon. This energy is linked to the wave properties of the light by the
relations E = h·�, where h is Planck’s constant, 6.62617636 J·s (joule-seconds).
It also follows from the preceding that E = h·c/�. We can never know the exact
wavelength, frequency, or energy of a single photon.

1.4. Diffraction

We usually think of light traveling in straight lines if there is nothing in its way.
We have seen in Young’s double slit experiment that it does not always do that.
In fact, the great physicist Richard Feynman has shown that its behavior is best
understood if we think of it as always traveling every possible way at the same
time and components traveling those different ways interfering with one another
at every possible point.

We do not have to have two slits to show how the light “bends” near
edges. This “bending” is called diffraction in scientific terminology. It is
very important to take diffraction into account to understand some biological
phenomena, such as the vision of insects (see Chapter 9). Light is diffracted
in any small opening and also near any edge. To compute the diffraction
pattern we can make use of something called Huygens’ principle (sometimes
the Huygens-Fresnel principle). It states that we can think of propagating
light as a sum of semispherical waves emanating from a wavefront. If the
wavefront is flat, the semispherical waves emanating from it add up to a new
flat wavefront. But if something stops some of the semispherical waves, the
new wavefront is no longer flat. In Fig. 1.1 (Top) we illustrate this in one
plane. Flat waves impinge from below on a screen with an opening. Many
semicircular waves start out from the opening. Along a line from the middle
of the opening the resulting wavefront is flat, but at the edges the semicircular
waves produce a bent pattern. We have calculated this pattern more exactly in
Fig. 1.4.
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Figure 1.4. Diffraction pattern in a single slit (the pattern from a round hole looks similar
in one dimension, but is slightly different). The horisontal axis shows the sine of the
deviation angle in units of the ratio beween wavelength and slit width.

1.5. Polarization

Light waves are transverse, i.e., the oscillation is perpendicular to the direction
of wave propagation, the direction of the light (this is in contrast to sound
waves, in which particles vibrate in the line of wave propagation). In the case
of light, there are no vibrating particles, but a variation in electric and magnetic
fields. The electric and magnetic fields are both perpendicular to the direction
of propagation, but also perpendicular to one another. When the electric fields
of all the components of a light beam are parallel, the beam is said to be
plane-polarized. The plane of polarization is the plane that contains both the
electrical field direction and the line of propagation.

If we add two beams which travel in the same direction and are both
plane-polarized and have the same phase (i.e., the waves are in step) but different
planes of polarization, the resulting light is also plane-polarized with its plane
of polarization at an intermediate angle.

Light can also be circularly polarized, in which case the electrical field
direction spirals along the line of propagation. Since such a spiral can be
left- or right-handed, there are two kinds of circular polarization, left-handed and
right-handed (Fig. 1.5).

Circularly polarized light can be regarded as the sum of two equally
strong plane-polarized components with right angles between the planes of
polarizations, and a 90 degree phase difference between the components. On
the other hand, plane-polarized light can be regarded as a sum of equally strong
left- and right-handed components of circularly polarized light.

Natural light, such as direct sunlight, is often almost unpolarized, i.e., a
random mixture of all possible polarizations. After reflection in a water surface
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Figure 1.5. In the upper left part of the figure a plane-polarized light beam, composed
of one vertically and one horisontally polarized component, is depicted in perspective
and also “head on” at different points (or at one point at different moments). Numbered
points in the perspective drawing correspond to the numbers on the “head-on” drawings.
Only the electric components of the electromagnetic fields are shown (wavy lines in the
perspective drawing, straight lines in the “head-on” drawings). In the lower right part of
the drawing the same is shown for a circularly polarized beam.

the light becomes partially plane-polarized. Skylight is a mixture of circularly
and plane-polarized light, which we call elliptically polarized light. We cannot
directly perceive the polarization of the light we see. Insects do, and often use
the polarization of skylight as an aid in their orientation. Plants in many cases
react differently to plane-polarized light depending on its plane of polarization.
This holds for chloroplast orientation in seed plants, mosses, and green algae and
also for growth of fern gametophytes. A good treatise on the subject (in German)
is provided by W. Haupt (1977).

1.6. Statistics of Photon Emission and Absorption

Usually the members of a population of excited molecules can be expected to
emit photons independently of one another, i.e., the time of emission of one
photon does not depend on the time of emission of another photon. One exception
to this rule occurs when stimulated emission becomes significant, as happens in
a laser. Another exception is when there is cooperation between different parts of
a cell (e.g., when a dinoflagellate flashes), between different cells in an organism
(e.g., when a firefly flashes), or between different individuals in a population
(e.g., when fireflies in a tree send out synchronized flashes). The examples in
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the last sentence are very obvious. However, careful study of the statistics of
photon emission offers a very sensitive way of detecting cooperation between
different parts of a biological system, and we shall therefore dwell a little on
this subject, which also has a bearing on the reliability of measurement of weak
radiation in general.

When photons are emitted independently of one another, the distribution of
emission events in time is a Poisson distribution, just as in the case of radioactive
decay. This means that if the mean number of events in time �t is x, then the
probability of getting exactly n events in the time �t is p = e–x·xn/n! In this
formula, n! stands for factorial n, i.e., 1·2·3·4…. ·n. Thus 1! = 1, 2! = 2, 3! = 6,
4! = 24, and so on. By definition 0! = 1.

We are familiar with the Poisson distribution of events from listening to a
Geiger-Müller counter. That events are Poisson-distributed in time means that
they are completely randomly distributed in time. When one event takes place
does not depend on when a previous event occurred. One might think that there
cannot be much useful information to be extracted from such a random process,
but such a guess is wrong. The reader is probably already familiar with some
of the useful things we can learn from the random decay of atomic nuclei. We
can, in fact, use our knowledge of how Poisson statistics work for determining
the number of photons required to trigger a certain photobiological process. The
remarkable thing is that we can do this even without determining the number of
photons we shine on the organism that we study.

The principle was first used by Hecht et al. (1942) to determine how many
photons must be absorbed in the rods of an eye to give a visual impression.
Their ingenious experiment was a bit complicated by the fact that our nervous
system is wired in such a way that several rods have to be triggered within a
short time for a signal to be transmitted to the brain (thereby avoiding false
signaling due to thermal conversion of rhodopsin). We shall demonstrate the
principle with a simpler example, an experiment on the unicellular flagellate
Chlamydomonas (Hegemann and Marwan 1988). This organism swims around
with two flagella, and it reacts to light by either stopping (“stop response”) or
by changing swimming direction (“turning response”).

All one has to do is to take a sample of either light-adapted or dark-adapted
Chlamydomonas cells, subject them to a flash of light, and note which fraction
of the cells either stop or turn. The experiment is then repeated several times,
with the flash intensity varied between experiments. The absolute fluence in
each flash need not be determined, only a relative value. If one possesses a
number of calibrated filters no light measurement at all need be performed. Then
the fraction of reacting cells for each flash is plotted against the logarithm of
the relative flash intensity. It turns out that (for dark-adapted cells) the curve
so obtained, if plotted on a comparable scale, has the same shape as the curve
labeled n = 1 in Fig. 1.6. This holds for both stop response and for turning
response, and it means that both responses can be triggered by a single photon.
If the experiment is carried out within 20 minutes of removing the cells from


