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Preface

The analysis of discrete multivariate data, especially in the form of cross-classifica-
tions, has occupied a prominent place in the statistical literature since the days of
Karl Pearson and Sir R. A. Fisher. Although Maurice Bartlett’s pioneering paper
on testing for absence of second-order interaction in 2 x 2 x 2 tables was pub-
lished in 1935, the widespread development and use of methods for the analysis
of multidimensional cross-classified data had to await the general availability of
high-speed computers. As a result, in the last ten years statistical journals, as well
as those in the biological, social, and medical sciences, have devoted increasing
space to papers dealing with the analysis of discrete multivariate data. Many
statisticians have contributed to this progress, as a glance at the reference list will
quickly reveal. We point, especially, to the sustained and outstanding contribu-
tions of Joseph Berkson, M. W. Birch, I. J. Good, Leo A. Goodman, James E.
Grizzle, Marvin Kastenbaum, Gary G. Koch, Solomon Kullback, H. O. Lancaster,
Nathan Mantel, and R. L. Plackett.

The one person most responsible for our interest in and continued work on the
analysis of cross-classified data is Frederick Mosteller. It is not an overstatement
to say that without his encouragement and support in all phases of our effort, this
book would not exist. Our interest in the analysis of cross-classified data goes back
to 1964 and the problems which arose during and after Mosteller’s work on the
National Halothane study. This work led directly to the doctoral dissertations of
two of us (Bishop and Fienberg), as well as to a number of published papers. But
Fred’s contributions to this book are more than just encouragement; he has read
and copiously commented on nearly every chapter, and while we take complete
responsibility for the final manuscript, if it has any virtues they are likely to be
due to him.

Richard Light enthusiastically participated in the planning of this book, and
offered comments on several chapters. He prepared the earlier drafts of Chapter 11,
Measures of Association and Agreement, and he made the major effort on the
final version of this chapter.

We owe a great debt to many of our colleagues and students who have com-
mented on parts of our manuscript, made valuable suggestions on aspects of our
research, and generally stimulated our interest in the subject. Those to whom we
are indebted include Raj Bahadur, Darrell Bock, Tar Chen, William Cochran,
Joel Cohen, Arthur Dempster, O. Dudley Duncan, Hillel Einhorn, Robert Fay,
John Gilbert, Anne Goldman, Shelby Haberman, David Hoaglin, Nathan Keyfitz,
William Kruskal, Kinley Larntz, Siu-Kai Lee, Lincoln Moses, I. R. Savage,
Thomas Schoener, Michael Sutherland, John Tukey, David Wallace, James
Warram, Sanford Weisberg, Janet Wittes, and Jane Worcester.

For the production of the manuscript we are indebted to Holly Grano, Kathi
Hirst, Carol Lambert, and Mary Jane Schleupner.
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1 Introduction

1.1 The Need

The scientist searching for structure in large systems of data finds inspiration in
his own discipline, support from modern computing, and guidance from statistical
models. Because large sets of data are likely to be complicated, and because so
many approaches suggest themselves, a codification of techniques of analysis,
regarded as attractive paths rather than as straitjackets, offers the scientist valuable
directions to try. In statistical specialities such as regression and the analysis of
variance, codifications are widely available and sometimes keyed to special
disciplines. In discrete multivariate statistics, however, the excellent guides
already available, for example Cox [1970], Fleiss [1973], Good [1965], Lancaster
[1969], and Maxwell [1961], stop short of giving a systematic treatment of large
contingency tables, and especially tables that have troublesome irregularities.
This book offers such a treatment.

1.2 Why a Book?

The literature on discrete multivariate analysis, although extensive, unfortunately
is widely scattered. This book brings that literature together in an organized way.
Although we do report a few new results here, that is not our primary purpose.
Our purpose is to organize the materials needed by both theoretical and practical
workers so that key ideas stand out. By presenting parametric models, sampling
schemes, basic theory, practical examples, and advice on computation, this book
serves as a ready reference for various users.

To bring together both the theory and practice of discrete multivariate analysis,
a good deal of space is required. We need to relate various techniques of analysis,
many of which are quite close to one another in both concept and result, so that
the practitioner can know when one method is essentially the same as another,
and when it is not. We need to provide basic theory, both for understanding and
to lay a basis for new variations in the analysis when conditions do not match the
ones presented here.

When we deal with several variables simultaneously, the practical examples
we analyze tend to be large—larger than those ordinarily treated in the standard
texts and monographs. An exploratory analysis of a set of data often leads us to
perform several separate parallel analyses. Sometimes one analysis suggests
another. Furthermore, we are obliged to discuss computing to some extent
because these large-scale analyses are likely to require iterative methods, which
are best done by high-speed computers. The availability of high-speed computing
facilities has encouraged investigators to gather and ready for analysis substantial

1



2 Discrete Multivariate Analysis

sets of data. Applications and examples play a central role in most of the chapters
in this book, and they take considerable space because we illustrate calculations,
present alternative analyses, and discuss the conclusions the practitioner might
draw for various data sets.

These reasons all lead to a treatment of book length.

1.3 Different Users

The applied statistician or quantitative research worker looking for comprehensive
analyses of discrete multivariate data will find here a variety of ways to attack
both standard and nonstandard sets of data. As a result, he has available a sys-
tematic approach to the analysis of multiway contingency tables. Naturally, new
difficulties or constraints raise new problems, but the availability of a flexible
approach should strengthen the practitioner’s hand, just as the ready availability
of analysis of variance and regression methods has for other data. He will under-
stand his computer output better and know what kinds of computer analyses
to ask for.

By skillful use of one computer program for obtaining estimates, the researcher
can solve a wide range of problems. By juxtaposing practical examples from a
variety of fields, the researcher can gain insight into his own problem by recognizing
similarities to and differences from problems that arise in other fields. We have
therefore varied the subject matter of the illustrations as well as the size of the
examples. We have found the methods described in this book useful for small
as well as large data sets.

On many occasions we have helped other people analyze sets of discrete
multivariate data. In such consulting work we have found some of the material
in this book helpful in guiding the practitioner to suitable analyses. Of course,
several of the examples included here are drawn directly from our consulting
experiences.

Parts of several chapters have grown out of material used in different university
courses or sets of lectures we have given. Some of these courses and lectures stressed
the application of statistical methods and were aimed at biological, medical, or
social scientists with less preparation than a one-year course in statistics. Others
stressed the statistical theory at various graduate levels of mathematical and
statistical sophistication.

For the student we have included some exercise work involving both the
manipulation of formulas and the analysis of additional data sets. In the last
few years, certain examples have been analyzed repeatedly in the statistical
literature, gradually bringing us a better understanding of what various methods
accomplish. By making more examples of varied character readily available,
we hope this healthy tradition of reanalyzing old problems with new methods will
receive a substantial boost.

Finally, of course, we expect the book to provide a reference source for the
methods collected in it. Although we do not try to compete with the fine bibliog-
raphy provided by Lancaster [1969], some of the papers we cite have appeared
since the publication of that work.

1.4 Sketch of the Chapters
Although each chapter has its own introduction, we present here a brief description
of the contents and purposes of each chapter. We have organized the chapters
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into three logical groups of unequal size. The first group introduces the log-linear
model, presents the statistical theory underlying its use in the analysis of contin-
gency-table data, and illustrates the application of the theory to a wide variety
of substantive problems. The second group of chapters deals with approaches
and methods not relying directly on the log-linear model. The final pair of chapters
contains basic statistical results and theory used throughout the book.

Section 1 Log-Linear Models, Maximum Likelihood Estimation, and
Their Application

Chapter 2

With one exception, the example on the relation of survival of mothers to prenatal
care, this is a theoretical chapter. It is meant for the practitioner as well as the
theoretician, although they may read it from different points of view. The chapter
develops the notation and ideas for the log-linear model used so extensively in
this book. It begins with two-by-two (2 x 2) tables of counts and works up to
tables of four or more dimensions. The emphasis is, first, on describing structure
rather than sampling, second, on the relation of the log-linear model approach to
familiar techniques for testing independence in two-way contingency tables, and
third, on the generalization of these ideas to several dimensions. Fourth, the chapter
shows the variety of models possible in these higher dimensions.

Chapter 3 (Preparation for most readers: Chapter 2)

Although from its title this chapter sounds like a theoretical one, its main emphasis
is on important practical devices for computing estimates required for the
analysis of multidimensional tables of counts. These devices include both how to
recognize when simple direct estimates for cells are and are not available, and
how to carry out iterative fitting when they are not. The chapter explains how to
count degrees of freedom, occasionally a trickier problem than many of us are
used to. All aspects of the analysis—models, estimates, calculation, degrees of
freedom, and interpretation—are illustrated with concrete examples, drawn from
history, sociology, political science, public health, and medicine, and given in
enough detail that the practical reader should now have the main thrust of the
method.

Chapter 4 (Preparation.: Chapter 3)

Chapter 4 provides tools and approaches to the selection of models for fitting
multidimensional tables. While it includes some theory, this is the key chapter
for the reader who must actually deal with applications and choose models to
describe data.

First, it summarizes the important large sample results on chi square goodness-
of-fit statistics. (These matters are more fully treated in Chapter 14.) Second, it
explains how the partitioning of chi square quantities leads to tests of special
hypotheses and to the possibility of more refined inferences. Third, although
there is no “‘best” way to select a model, the chapter describes several different
approaches to selecting log-linear models for multidimensional tables, using
large-sample results and the partitioning method.
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Chapter 5 (Preparation: Chapter 3)
Cell counts can be zero either because of sampling variability even when observa-
tions can occur in a cell, or because constraints make the cell automatically zero
(for example, the losing football team does not score more than the winning team).
In addition, for some problems, certain cells are not expected to fit smoothly into a
simple model for the table of counts, so the counts for these cells, although available,
are set aside for special treatment. One danger is that the researcher may not
recognize that he is afflicted with an incomplete table.

This profusely illustrated chapter offers standard ways of handling such in-
complete tables and is oriented to problems of estimation, model selection,
counting of degrees of freedom, and applications.

Chapter 6 (Preparation: Chapter 5)

This chapter deals with a special application: If, as sometimes happens, we have
several samplings or censuses, we may wish to estimate a total count. For example,
we may have several lists of voluntary organizations from the telephone book,
newspaper articles, and other sources. Although each list may be incomplete,
from the several lists we want to estimate the total number of voluntary organiza-
tions (including those on none of these lists). This chapter offers ways to solve such
multiple-census problems by treating the data sets as incomplete multidimensional
tables. The method is one generalization of the capture-recapture method of
estimation used in wildlife and other sampling operations.

Chapter 7
(Preparation: Chapter 3)
Since Markov chains depend on a relation between the results at one stage and
those at later stages, there are formal similarities with contingency tables.
Consequently, analysis of Markov chains using the log-linear model is an attractive
possibility, treated here along with other methods.

This is a practical chapter, containing illustrations which come from market
research and studies of political attitudes, language patterns (including bird songs),
number-guessing behavior, and interpersonal relations.

Chapter 8

(Preparation.: Chapter 3 and some of Chapter 5)

Although square tables are discussed elsewhere, this chapter focuses on the
special questions of symmetry and marginal homogeneity. These problems arise
in panel studies when the same criteria are used at each point in time and in
psychological studies, as when both members of a pair are classified simultaneously
according to the same criteria. The chapter gives methods for assessing symmetry
and homogeneity, illustrated with practical examples. It also treats multidimen-
sional extensions of the notions of symmetry and marginal homogeneity, relating
them to the basic approach of this book using log-linear models.

Chapter 9

For practitioners, this chapter gives numerous suggestions and examples about
how to get started in building models for data. The attitude is that of exploratory
data analysis rather than confirmatory analysis. When models are fitted, the
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problem still remains of how to view the fit. What if it is too good? How bad
is too bad? Rough approximations may be just what is desired. The beginner
may wish to start reading the book with this chapter.

SectionIl  Related models and methods

Chapter 10

Although this book offers a systematic treatment of contingency tables through
the approach of log-linear models and maximum likelihood estimation, the reader
may want to know what alternative methods are available. This chapter offers
introductions to some of the more widely used of these methods and points the
reader to further literature.

Chapter 11

This chapter differs from the others in the book because it deals only with two-
way tables, and also because the main thrust of measuring association is to sum-
marize many parameters in one. The basic principles for the choice and use of
measures of association depend on the purposes of the user. The chapter also
treats a special case of association, referred to as “‘agreement.” Because we view
interaction and association as due primarily to many different parameters, this
chapter presents a different outlook than does the rest of the book.

Chapter 12

In a contingency table of many dimensions, the number of cells is often high while
the average number of observations per cell in many practical problems is small,
and so many cells may have zero entries. We wish to estimate the probabilities
associated with the cells. Extra information about these probabilities may be
available from the general distribution of the counts or from the margins. Bayesian
approaches offer methods of estimating these probabilities, but they usually
leave to the user the problem of choosing the parameter of the prior distribution,
a job he may be ill equipped to do. Theoretical investigations can help the reader
choose by showing him some methods that will protect him from bad errors. This
chapter reviews the literature and provides new results, together with some
applications. The treatment deals with the case where the cells merely form a list,
and the case where the cells form a complete two-way table.

Section 111  Theoretical background

Chapter 13

In working with contingency tables, both the practitioner and the theorist face
certain standard sampling distributions repeatedly : the binomial, Poisson, multi-
nomial, hypergeometric, and negative binomial distributions, and some of their
generalizations. This chapter offers a ready source of reference for information
about these distributions.

Chapter 14

In discrete problems, exact calculations are notoriously difficult, especially when
the sample sizes are large. This difficulty makes the results of this chapter espe-
cially important, since asymptotic (large-sample) methods are so widely used in
this work.
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The mathematics of asymptotic methods useful to the theoretician is scattered
throughout the literature. For getting asymptotic distributions, mathematical
orders of magnitude play an important role. This chapter provides a convenient
short course in the devices and theorems about the O, o notation, for sequences
of real numbers and about the analogous 0,, 0, notation, for random variables.
The treatment includes vector random variables. The material is illustrated with
examples and practice exercises, enabling the student to derive many of the
theoretical results in this book. Moreover, the devices discussed are useful in
every branch of theoretical statistics.

1.5 Computer Programs

As we have already noted, one general-purpose computer program can be used to
carry out most of the calculations described in this book. Many researchers work-
ing with multiway table data have prepared such programs to carry out estima-
tion using the method of iterative proportional fitting and to compute various
goodness-of-fit statistics. These programs are now available at a large number
of computer centers and research installations. We refer those who would like to
use programs which are not available at their institutions to the Fortran listings
in Bishop [1967, appendix I] and Haberman [1972, 1973b].

1.6 How to Proceed from Here

Readers of this book come to it with different backgrounds and different interests.
We have ordered Chapters 2 through 9 so that each chapter builds only on preced-
ing ones, with the exception that most of them use material from the two theoretical
background chapters (Chapters 13 and 14). Thus a good basic sequence consists
of Chapters 2 through 9. Nevertheless, readers may choose to work with chapters
in different orders.

Graduate students in theoretical statistics may choose to begin with a review
of the sampling distribution properties and large-sample theory in Chapters 13
and 14, then proceed to Chapters 2, 3, 4, 5,9, 10, 11, and 12. Chapters 6, 7, and 8
can be handled either after Chapter 5 or at the end of the indicated sequence.

Quantitative biological or social scientists interested in analyzing their own
data will most likely profit from a quick reading of Chapters 2 and 3, followed by
Chapter 9 (Sections 9.1-9.5) and Chapters 4 and 5. Then they might turn to
Chapter 7, 8, or 11, depending on their interests.

Other sequences of chapters come to mind. Figure 1.6-1 gives a schematic
representation of alternative orderings for different readers and an indication of
how the chapters are linked.



2 Structural Models for Counted Data

2.1 Introduction

As soon as a problem is clearly defined, its solution is often simple. In this chapter
we show how complex qualitative data may be described by a mathematical
model. Questions that the data were designed to answer may then be stated
precisely in terms of the parameters of the model.

In multivariate qualitative data each individual is described by a number of
attributes. All individuals with the same description are enumerated, and this
count is entered into a cell of the resulting contingency table. Descriptive models
with as many independent parameters as the table has cells are called *‘saturated.”
They are useful in reducing complexity only if the parameters can be readily
interpreted as representing “‘structural” features of the data, because most of the
questions of importance may be interpreted as being questions about the data
structure.

The complexity of the data is reflected by the number of parameters in the
model describing its structure. When the structure is simple, the model has few
parameters. Whenever the model has fewer parameters than the number of data
cells, we say that the model is “‘unsaturated.” For some unsaturated models we
can reduce the number of cells in the table without distorting the structure. Such
reduction we refer to as “‘collapsing” and we give theorems defining those struc-
tures that are collapsible. Before proceeding to describe models for the simplest
four-cell table, we enlarge on this concept of structure and on the development and
uses of models.

2.1.1 Structure
If every individual in the population under study can be classified as falling into
one and only one of t categories, we say that the categories are mutually exclusive
and exhaustive. A randomly selected member of the population will fall into one
of the t categories with probability p;, where {p,} is the vector of cell probabilities

{pi} = (P1>P2:---,P) (2.1-1)
and

Here the cells are strung out into a line for purposes of indexing only ; their arrange-
ment and ordering does not reflect anything about the characteristics of individuals
falling into a particular cell. The p; reflect the relative frequency of each category in
the population.
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When the cells are defined in terms of the categories of two or more variables,
a structure relating to the nature of the data is imposed. The natural structure for
two variables is often a rectangular array with columns corresponding to the
categories of one variable and rows to categories of the second variable; three
variables create layers of two-way tables, and so on. As soon as this structure is
imposed, the position of the cells tells us something about the characteristics of
individuals falling into them: For instance, individuals in a specific cell have one
characteristic in common with individuals in all cells of the same row, and another
characteristic in common with all individuals in cells in the same column. A good
mathematical model should reflect this structure.

As soon as we consider more than one randomly selected individual we must
consider the sampling plan. If the second and all subsequent individuals are
sampled ‘‘with replacement,” that is, the first is replaced in the population before
the second is randomly drawn, and so on, then the vector of probabilities (2.1-1)
is unchanged for each individual. Alternatively, the vector of probabilities is
unchanged if the population is infinitely large. In either of these circumstances, if
we take a simple random sample of size N, we obtain a sample of counts {x;} such
that

{xi} = (xlﬁx23"',xt)’ (2.1-2)
where

Y x;=N.

The corresponding expected counts are {m;}, such that
{m} = (my,m,,...,m), (2.1-3)
where
E(x;)=m; fori=1,...,1,
m; = Np;.

In Chapter 3 we deal with estimating the {m;} from the {x;} under a variety of
sampling schemes and for different models. In Chapter 13 we consider different
sampling distributions and the relationships between the {m;} and the {p;}. In
this chapter we are not concerned with the effects of sampling, but only with the
underlying data structure. Thus we are interested in models that specify relation-
ships among the cell probabilities {p;} or among the expected counts {m;}. Some
sampling schemes impose restrictions on the {m;}, and so we also discuss situations
where these constraints occur without considering how they arise. The constraints
occur in situations where we are in effect taking several samples, each drawn from
one segment of the population. We then have probabilities for each segment
summing to 1, but we cannot relate probabilities in different segments to the
population frequency in different segments unless we know the relative size of the
segments.

2.1.2 Models

The smallest rectangular table is based on four cells, and the saturated model
describing it has four independent parameters. In Section 2.2 we give a four-term
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model for this table that is linear in the logarithmic scale, and we give an interpreta-
tion of each of the four terms. In Section 2.3 we extend this four-term model to
larger two-dimensional tables by enlarging the number of parameters encompassed
by each term of the model.

Log-linear models are not new; they are implicit in the conventional y? test
for independence in two-way contingency tables. The notation of Birch [1963] is
convenient for such models, as the number of terms depends on the dimension
and the interdependencies between dimensions, rather than on the number of cells.
Each term encompasses as many parameters as are needed for the total number
of independent parameters in the saturated model to equal the number of cells in
the table. When the model is unsaturated, the reduction is generally achieved by
removing one or more terms completely, because the terms rather than the
parameters correspond to effects of interest. In Section 2.4 we show that an s-
dimensional table of any size is described by a model with 2° terms. Thus the
models reflect the structure imposed on the data, and the terms are closely related
to hypotheses of interest.

2.1.3  Uses of structural models

The interpretation of the terms of saturated models that fully specify an array
leads to interpretation of models with fewer terms. The investigator faced with
data of an unknown structure may wish to determine whether they are fitted well
by a particular unsaturated model, that is he may wish to test a particular hypothe-
sis. Alternatively, he may wish to obtain good estimates for some or all of the cells
and may obtain such estimates by fitting an unsaturated model. Using unsaturated
models to obtain stable cell estimates is akin to fitting an approximate response
curve to quantitative data; the investigator gains knowledge of important under-
lying trends by reducing the number of parameters to less than that required for
perfect fit. Thus comprehension is increased by focusing on the most important
structural features.

If the data can be described by models with few terms, it may be possible to con-
dense the data without either obscuring important structural features or intro-
ducing artifactitious effects. Such condensation is particularly pertinent when the
data are sparse relative to the magnitude of the array. In addition to focusing on
parameter and model interpretation, we look in each section of this chapter at the
problem of determining when such condensation is possible without violating
important features of the underlying structure.

In this chapter we do not discuss fitting models ; we discuss procedures that yield
maximum likelihood estimates in Chapter 3 and assessment of goodness of fit in
Chapter 4. The concern here is with such questions as:

1. What do we mean by “independence’ and ‘‘interaction’’?

2. Why is it necessary to look at more than two dimensions at a time?

3. How many variables should be retained in a model and which can safely be
removed?

2.2 Two Dimensions—The Fourfold Table
The simplest contingency table is based on four cells, and the categories depend
on two variables. The four cells are arranged in a 2 x 2 table whose two rows
correspond to the categorical variable A and whose two columns correspond to
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the second categorical variable B. We consider first the different constraints that
we may use to specify the cell probabilities, then the effect of rearranging the cells.
This leads to formulation of a model, the log-linear model, that we can readily
interpret in terms of the constraints and apply to any arrangement of the four cells.

We discuss features of the log-linear model for the 2 x 2 table in detail. Impor-
tant features that also apply to larger tables are:

1. Only one parameter of the model is changed when it is used to describe
expected cell counts m instead of probabilities p;

2. the model is suitable for a variety of sampling schemes ;

3. the ready interpretability of the terms of the model is not shared by models
that are linear in the arithmetic scale.

In Section 2.7 we give a geometric interpretation of the 2 x 2 table and show how
the parameters of the log-linear model are related to the structural features of a
three-dimensional probability simplex.

2.2.1 Possible constraints for one arrangement

Double subscripts refer to the position of the cells in our arrangement. The first
subscript gives the category number of variable A4, the second of variable B, and
the two-dimensional array is displayed as a grid with two rows and two columns :

B

A (2.2-1)

We consider first a simple random sample such that the cell probabilities sum to 1,
that is, we have the linear constraint

2
2
i=1j

M

1

By displaying the cells as in expression (2.2-1), we introduce a structure to the
corresponding probabilities, and it is natural for us to examine the row and
column marginal totals:

Di+ = Z Dik i=12 (2.2-3)

2
P+j= Y Py J=12 (2.2-4)

These totals give the probabilities of an individual falling in categories i and j
of variables 4 and B, respectively. (Throughout this book, when we sum over a
subscript we replace that subscript by a ‘4 ”.) At this point, we can expand our
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tabular display (2.2-1) to include the marginal totals and the basic constraint
(2.2-2):

1 2 Totals

1| piy D12 D1+

2| pu D22 D2+ (2.2-5)

Totals | p,, P+2 1

The marginal probabilities p;, and p,; are the unconditional probabilities of
belonging to category i of variable 4 and category j of variable B, respectively.
Each set of marginal probabilities must sum to 1. As we have only two categories,
once we know one row total, p,, , we also know the other row total, p,, , because
P2+ =1 — py,, and similarly for column totals. Thus if we know_the values of
p1+ and p,,, the two linear constraints on the marginal probabilities lead to a
complete definition of all the marginal probabilities. We need only one further
constraint involving the internal cells to specify completely the structural relation-
ships of the table.

We refer to the internal cells as “‘elementary” cells. The probability p;; is the
probability of an individual being in category i of variable 4 and category j of
variable B. Most questions of interest related to the fourfold table are concerned
with differences between such internal probabilities and the marginal probabili-
ties. A variety of functions of the probabilities are commonly used, and others can
readily be devised, that will produce the further constraint needed for complete
specification of the table. Commonly used are:

(i) the difference in column proportions

Pi1r P12,

D+1 D+2 ’

(i) the difference in row proportions

Pir Pap,

’

D1+ Do+

(iii) the cross-product ratio

_ P11P22
o= —==.
P12P21

A natural choice if we wish to continue to use linear constraints is:
(iv) the diagonal sum

S4 = P11 + P22-

Finally, we can choose:
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(v) the ratio of an elementary cell probability to the product of its row and
column probabilities

P11
Pi+P+1

Other measures appear in Chapter 11. Specifying the value of any one of the five
statistics in this list is equivalent to specifying the remaining four, given p,, and
p+ 1. Such specification completely determines the values of the cell probabilities
{p;;}- The third function, a, has desirable properties not possessed by the others.
We consider its properties in detail because they lead us to the formulation of our
model for the fourfold table.

Properties of the cross-product ratio
Since the rows of the table correspond to one variable, 4, and the columns to a
second variable, B, it is natural for us to be interested in the relationship between
these underlying categorical variables. We first consider the behavior of the
statistics (i)(v) under independence. If the state of A is independent of the state of
B, then

Pij = Pi+P+j i=12; j=12; (2.2-6)

but this relationship is not satisfied for all i and j if A and B are dependent.

As any of the functions, when combined with the marginal totals, completely
specify the table, they also measure dependence between the underlying variables.
For instance, the independence relationship (2.2-6) is equivalent to stating that
the proportional difference (i) or (ii) is O, or that the measure (v) has the value 1.
The measure (iv) becomes a less attractive function of the marginal probabilities,
namely,

Sa=1—=ps1 — P+ +2P14P41-

When we focus on the product relationship (2.2-6), it is reasonable for us to
choose the cross-product ratio instead of the linear functions. The cross-product
ratio o, like measure (v), attains the value 1 when the condition of independence
holds, and it has two properties not possessed by measure (v), or any of the other
measures :

1. «is invariant under the interchange of rows and columns;

2. o is invariant under row and column multiplications. That is, suppose we
multiply the probabilities in row 1 by r; > 0, those in row 2 by r, > 0, those
in column 1 by ¢; > 0, and those in column 2 by ¢, > 0. Then we get

o = P11P22 _ (ric1py 1)("2021722). (2.2-7)
P12P21 (r1€2p15)(racipay)
This result holds regardless of whether we normalize so that the new cell

entries sum to 1. An important implication is that we obtain the same value
of o when we use either the cell probabilities or the expected counts in each cell.

Interpretation of cross-product ratio
The cross-product ratio « is also known as the “‘odds ratio.” For the first level of
variable A4, the odds on being in the first level of variable B are p,,/p,,, and for
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the second level of variable A they are p,;/p,,. The cross-product ratio is the
ratio of these odds,

o = P11/P12 _ P11P22
P21/P22 Pi12P2:

This definition is also invariant under interchange of the variables. It should not
be confused with another measure used by epidemiologists, the relative risk r,
defined as the ratio of the row proportion p,,/(p;; + p;,) to the corresponding
row proportion p,,/(p,; + P,,)- Thus we have

r— P11(P21 + P22) _ PuiP2+
P21(P11 + P12)  PaiPi+

(2.2-8)

We can define r similarly in terms of column proportions, but then we obtain a
different value. The relative risk does not have the invariance properties possessed
by the relative odds, although its interpretation when dealing with the risk of
contracting disease in two population groups makes it a useful parameter.

The logarithm of the relative odds is also a linear contrast of the log-probabilities
of the four elementary cells, namely

loga =logpyy — logpy, — log pyy + log p,,, (2.2-9)

and when log @ = 0 we have independence between variables 4 and B.

The cross-product ratio and bivariate distributions

As soon as we consider the cross-product ratio as a measure of departure from
independence, the question of its relationship to the correlation coefficient arises.
Mosteller [1968] takes bivariate normals with different selected values of p and
shows that the value of « differs according to the breaking point chosen. Thus « is
not easily related to p for bivariate normals, but Plackett [1965] shows that it is
possible to construct a class of distributions where the value of « is unchanged by
the choice of breaking point.

2.2.2 Effect of rearranging the data

Suppose that the two underlying variables A and B for the 2 x 2 table actually
have the same categories and simply represent measurements on one variable at
two points in time. We can then refer to them as 4, and A,. There are three dif-
ferent arrays that may be of interest :

1. the basic table

A,
1 2
1 P11 D12
A, (2.2-10)
2| pxn D22
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2. the table measuring changes from the first measurement to the second. This
table preserves the margins for the first variable:

Same Different

1 D11 D12
A, (2.2-11)

2 D22 D21

3. the table measuring changes going back from the second measurement to
the first. This table preserves the margins for the second variable:

4,

Same P11 D22

(2.2-12)
Different | p,, Pi2

For each of these 2 x 2 tables we have a cross-product ratio. Taking tables
(2.2-10)+2.2-12) in order, these ratios are

o, = D1iP22 (2.2-13)
P12P21

o, = Zuibar, (2.2-14)
P12P22

o, = Dbz (2.2-15)
D22P21

The reason for this ordering of the subscripts will become apparent shortly. For
the moment we note that these three expressions suggest a class of structural
models based on a5, «,, and o, , rather than on one of the cross products together
with the margins of one of the tables.

Taking logarithms of the {«;}, we get three linear contrasts

logo; = logpyy — logpy, — log pyy + log p,,, (2.2-16)
loga, = logpy, — logpy, + logp,, — log p,,, (2.2-17)
loga; = logp,, + logp;, — logp,, — logp,,. (2.2-18)

If we specify values for these three contrasts and recall that
Ypy=1 (2.2-19)
we have completely defined the four cell probabilities. This formulation suggests

that we look for a model that is linear in the log scale.

2.2.3 The log-linear model
A simple way to construct a linear model in the natural logarithms of the cell
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probabilities is by analogy with analysis of variance (ANOVA) models. We write
log pij = u + uyg) + Uy + g, i=12;j=12, (2.2-20)
where u is the grand mean of the logarithms of the probabilities :
u = g(logp,; + logp,, + logp,; + logp,,), (2.2-21)
u + u,; is the mean of the logarithms of the probabilities at level i of first variable :
u + uy = 3(log pi; + log p;y) i=12, (2.2-22)
and similarly for the jth level of the second variable :
u + uyy = 3(log py; + log p)) ji=12 (2.2-23)
Since u, ;) and u,;, represent deviations from the grand mean u,
ul(l) + ul(z) = uz(l) + uz(z) = 0- (2.2'24)
Similarly, u, ,; represents a deviation from u + u,; + u,;), so that
Uiz11) = —U12012) = —U12021) T U12(22)- (2.2-25)

We note that the additive properties (2.2-24) and (2.2-25) imply that each u-term
has one absolute value for dichotomous variables. Thus we introduce no ambiguity
by writing, for instance, u; = 0 without specifying the second subscript.

If we define [;; = log p;;, then by analogy with ANOVA models we can write
the grand mean as

_ Ly 4 _ lij
u=-—-= ;Z (2.2-26)
Similarly, the main effects are
I; I
Uy = 12_+ - _—ZL ) (2.2-27)
L B (2.2-28)
) T 5 1 .

and the interaction term becomes
i liy l+j Iy 4 222
ulz(ij)_ij____"'—' (-9)

We note that the main effects are functions of the marginal sums of the logarithms
but do not correspond to the marginal sums p;, and p, ; in the original scale.
We now consider properties of the log-linear model.

Relationship of u-terms to cross-product ratios
From equations (2.2-18) and (2.2-27) we have

Uy = ilog py; + logp,, — log p,; — logp,,)
=tloga,. (2.2-30)
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Similarly, from expressions (2.2-17) and (2.2-28) we have

Uyay = gllog pyy — log py, + log pyy — log )
= tloga,, (2.2-31)
and from (2.2-16) and (2.2-29) we have

Uiz(11) = s(logpy; — logp;, — logp,, + log p,»)
= }logua;. (2.2-32)

Thus the main effects in the log-linear u-term model are directly related to the
two cross-product ratios described above, u, to o; and u, to a,. The choice of
subscripts for the o; now becomes apparent. We note that for u,,, the terms in p
appear with positive sign whenever variable 1 is at level 1, and similarly for u,,,
and variable 2 at level 1. For.u;,,,, the positive sign appears whenever both
variables are on the same level. Thus the u-terms can be regarded as measures
of departure from independence for the three different data arrangements.

Effect of imposing constraints
To assess the effect on the u-terms of imposing constraints on the {p:j}, we need

to revert to the arithmetic scale.
We can rewrite the model (2.2-20) for cell (1, 1) as

logpyy = u + zlogay + §loga, + ;logas, (2.2-33)
and hence
P11 = Awjabos, (2.2-34)
where log 4 = uand o} = (a;)"/*fori = 1, 2, 3. Then the basic table can be rewritten
as
AZ
1 2 Totals
Aatl 1
1 Ao os ol L Aoy oholy + —
A 142%3 a’zag 1 2%3 a’zag
1
5 Adh Aok i Exé a_'3
ool ooy ap\oy o
1 Al ’
Totals la;(oc'locg + —,—,) —,(_" + oc_?) 1
op003 z\03 0

Setting p, , = p,, = 1/2 implies that the {o;} must satisfy the relationship
ai’? — a3/ — ad? + (ay0,05)2 = 0. (2.2-35)

If we set o) = 1, which is equivalent to setting u, = 0, the condition (2.2-35)

becomes
1 1
(a’z - —7) (ag - a—,) =0, (2.2-36)
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which is satisfied by either a5, = 1 or oy = 1, or both. Equivalently, we must have
u, = 0or u,, = 0, or both.

This result also holds in larger tables; constant marginal probabilities do not
imply that u, = 0 unless we also have u, = 0 or u;, = 0, or both. Consequently,
when we move from simple random sampling to sampling different segments of
the population independently, we cannot specify that a margin is fixed by placing
constraints on a single u-term.

Model describes probabilities or expected counts

So far we have dealt entirely with a table of probabilities that sum to 1. If we

consider instead a table of expected counts {m;;} that sum to a grand total N =
.,;Mij> we have m;; = Np;;, and hence

logm;; = log N + log p;;
=+ (U + Uy + U12p), (2.2-37)

where u’ = u + log N. Thus for the single sample we can describe the structure
of the expected counts instead of the structure of the probabilities by changing
the value of u from the mean of the logarithms of the {p;;} to the mean of the
logarithms of the {m;;}, and henceforth we denote the constant by u in both cases.
In other words, the equations (2.2-26)+2.2-29) are applicable if we define [;; =
log m;; instead of I;; = log p;;.

It follows that o can be defined similarly as the cross-product ratio of expected
counts instead of probabilities.

Model applicable in varied sampling situations

So far we have considered taking a single sample of size N, with p;; the probability
of anindividual falling into'the cell (i, j). This is the simple random sampling scheme.
A fourfold table can also be generated by other sampling schemes. Suppose that
we take a sample of N, individuals from the first category of variable A and N,
from the second category, and then count how many fall into the different cate-
gories of variable B. Our table of expected counts becomes

B
1 2 Totals
1 my, my, N,
A
2 m21 m22 Nz (2-2'38)
Totals my, My, N

and we have
myy +my, =Ny,
my; + my, = N,,

N1+N2=N.
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Corresponding to this table, there is a table of probabilities P;;, the probability
of being in category j for sample i. Thus

N P =My,

v T (2.2-39)

N,Pjz) = my;,
for j = 1,2. We write these probabilities with capital letters, as they are no longer
the probabilities giving the frequency of occurrence of the four types of individuals
in the population. Instead of the four probabilities summing to 1, we have

P1(1) + P2(1) =1,

(2.2-40)
PI(Z) + Pz(z) = 1

We have taken two independent samples from different segments of the population
and cannot get back to the population p;; unless we know the relative magnitude
of the two segments of the population.

Our log-linear model is still applicable to the table of expected counts (2.2-38),
but the restriction (2.2-35) derived for equal row margins applies, so the relative
magnitudes of the u-terms are constrained. In other sampling plans the restrictions
on the probabilities differ in other ways. For simplicity, in the rest of this chapter
we discuss log-linear models in terms of expected counts, not probabilities.

Before comparing the log-linear model with other models, we give an example
of sampling that gives a 2 x 2 table with a fixed margin.

Example 2.2-1 Sensitivity, specificity, and predictive value

The problem of evaluating a new laboratory procedure designed to detect the
presence of disease affords an example not only of sampling so that a 2 x 2 table
has a fixed margin, but also of rearranging four cells for three different purposes.

1. Natural arrangement for laboratory data
To determine how effectively the laboratory procedure identifies positives and
negatives, the investigator evaluates N, persons known to have the disease and
N, persons known to be free of the disease. The results are designed to estimate
the expected counts in array (2.2-41). In this array we no longer enclose every
elementary cell in a box, but the arrangement of cells is the same as in array
(2.2-10).

Laboratory Procedure

True State Disease No Disease Totals
Disease my, ms, N, (2.2-41)
No Disease My m,, N,

A perfect laboratory procedure correctly identifies as diseased all those persons
who are truly diseased and none of those who are not diseased; this situation
corresponds to m,; = m,;, = 0. Thus a3 = m,;m,,/m,;m,, tells us whether
the laboratory procedure is of any value. Unless o5 is large, the laboratory
procedure is abandoned.

2. Measuring sensitivity and specificity
When the evaluation of the laboratory procedure is described, laboratory results
indicating disease are considered positive, the others negative. The term “‘sensi-
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tivity” is used for the proportion of positive results that agree with the true state,
and the term “specificity” for the proportion of negative results that agree with
the true state. These are the proportions described by the rearranged array:

Laboratory Procedure

True State Correct Incorrect Totals
Disease my my, N, (2.2-42)
No Disease My, My N,
Now each row yields one of the proportions of interest :
e m m
sensitivity = Py, = —+ =1 — Py, =1 — =2,
N, N,
(2.2-43)
ms2 Myy

specificity = P,(,, = N 1— Py, =1--2
2

The relative magnitude of the sensitivity and specificity is measured by

_myymyy

o = ———.

UEYULY)
Such laboratory procedures are often used on large populations to find diseased
persons. When a choice is to be made between two competitive procedures for
screening a population, the prevalence and nature of the disease determines which

characteristic, sensitivity or specificity, should be maximized.
3. Assessing predictive value
The third arrangement of the array does not preserve the fixed margins N, and N, :

Agrees with True State Laboratory Procedure

Disease No Disease
(2.2-44)
Yes My, my,
No My, My,

Unless the sample sizes N; and N, are proportional to the prevalence of the
disease in the population where the laboratory procedure is to be used as a
screening device, a, = m;m;,/m,,m,, does not measure the relative odds on
a correct prediction according to the outcome of the laboratory procedure.

To assess whether the cost of screening a population is worthwhile in terms of
the number of cases detected, the health official needs to know the positive
predictive value PV + and the negative predictive value PV —. To compute
predictive values we need to know the proportion D of diseased persons in the
population to be screened. Then we multiply the first row of the original table
(2.2-41) by D/N, and the second row by (1 — D)/N, to obtain

Laboratory Procedure

True State . )
Disease No Disease

(2.2-45)
Disease DP,, DP,,,
No Disease (1 — D)P;(;, (1 — D)Py,,
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The cross-product ratio a5 is the same in array (2.2-45) as in array (2.2-41).
Similarly, if we rearrange array (2.2-45) to correspond with array (2.2-42), we
obtain the same values for sensitivity and specificity. When we rearrange array
(2.2-45) to correspond with array (2.2-44), a difference occurs. We obtain

Agrees with True State Laboratory Procedure

Disease No Disease
Yes DP,, (1 = D)P,,, (2.2-46)
No (1 = D)Py,, DP,,

The cross product in array (2.2-46) differs from that in array (2.2-44) by the factor
D?/(1 — D)? and measures the relative odds in the population of having the disease
according to the results of the laboratory procedure. For the positive laboratory
results we have

DP
PV+ = 28
(I = D)Py(5) + DP,,
1
= , 2.2-47
D N, my,
and for the negative laboratory results
1
PV—- = . 2.2-48
1 - D Nl mzz

When the two predictive values are equal we have independence in array (2.2-46).
Thus we have shown that rearranging tables has practical applications. It is
helpful in assessing the relationships between predictive values, and between
sensitivity and specificity for particular disease prevalences, as discussed by
Vechio [1966]. (See exercises 1 and 2 in Section 2.6 for further details.)* Wl

2.2.4 Differences between log-linear and other models
Models other than the log-linear have been proposed for describing tables of
counts. We now discuss two contenders and show that the logit model can be
regarded as a different formulation of the log-linear model, but models that are
linear in the arithmetic scale have different advantages and disadvantages.

Logit models
Suppose that the row totals m, , and m,, are fixed and that we are interested
in the relative proportions in the rows. We have, as before, Py = m;;/m;, for
i=12

Then the logit for the ith row is defined as

Py Miy
L, =log—Y _ = log—. (2.2-49)
1 — Py & m,
From the saturated model
lOg(mU) =Uu + ul(i) + uZ(j) + ulz(ij), (2.2'50)

* The symbol Bl marks the end of an example.
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we find that
L; = upy1) — Uyq) + Uy261) — Ur262)
= 2uyq) + 2uy53),
and letting w = 2u,;, and wy ;) = 2u;,;,, we get
Li=w+ w, (2.2-51)

with w;;y + Wy, = 0. Thus we have transformed the log-linear model for the
expected cell counts into a linear model for the logits.

We can now compare the linear logit model with the linear model for the
one-way analysis of variance, because we can think of the row variable A as
being an independent variable and the column variable B as being a dependent
variable. As w;, measures the structural relationship between 4 and B (i.e.,
because u,,(;;, measures this relationship), we can speak of the effect of 4 on B.

We discuss other aspects of logits in Section 2.3.5, where we show that the
logit model is appropriate primarily for stratified samples. It is unduly restrictive
for a simple random sample, as it requires that one margin be fixed. In Chapter 10,
Section 10.4, we discuss uses that have been made of the logistic model for mixtures
of quantitative and qualitative variables.

Additive models
It is natural to explore the possibility of using a linear model in the cell probabil-
ities instead of their logarithms. Suppose we let

with
Bi=7v: =¢84 =¢&,;=0.

Since the {p;;} must sum to 1, u = 1. By examining the marginal totals, we also
have

ﬁi=%(pi+_%) i=1’27
y=Ype,—d  j=12 (22-53)

Thus, unlike the u-terms, the §; and y; are directly interpretable in terms of the
marginal totals p;, and p. ;. This advantage brings with it the range restrictions

1 1

— 3 = »Bi = 4>
1 1

i<y 54 (2.2-54)
1 1

—25¢&;5 2

The major problem comes in the interpretation of ¢,,, which we can write as
e11 = P11 + P2z = P12 — P21)
=4(4piy — 2p14 — 2p4y + 1) (2.2-55)

Setting &,; = 0 does not imply independence of the underlying variables unless
Pis+ =% Or p,y =3, nor does setting p;; = p,,p.; imply that ¢,, takes on any
specific value.



