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To Fred



Preface to the Second Edition

The reception given to the first edition of this book, especially by nonstatis-
ticians, has been most pleasing. Yet several readers have written to me asking
for further details on, or clarifications of, methods and examples, and suggest-
ing the preparation of sets of problems at the end of each chapter so that the
book would be more useful as a text. This second edition was prepared, in
large part, as a response to these requests.

Methodological research on the analysis of categorical data based on the
use of loglinear models has continued at a rapid pace over the last three years.
In this new edition, I have attempted to expand the discussion of several
topics, by drawing selectively from this new literature, while at the same time
preserving the existing structure of chapters and sections.

While not a single chapter remains completely unchanged, the bulk of the
new material consists of (1) problem sets at the end of Chapters 2 through 8,
(2) expanded discussion of linear logistic response models and polytomous
response models in Chapter 6, (3) a further discussion of retrospective epi-
demiological studies in Chapter 7,and (4) a new appendix on the small-sample
behavior of goodness-of-fit statistics. I have added briefer materials and
references elsewhere and corrected several minor errors from the first edition.
A relatively major correction has been made in connection with the theorem
on collapsing tables in Section 3.8.

I gave considerable thought to the preparation of an additional appendix
on computer programs for the analysis of categorical data, but in the end I
resisted the temptation to do so. Many programs for maximume-likelihood
estimation in connection with loglinear models are now in widespread use.
These include the GLIM package prepared in England under the guidance of
John Nelder and the sponsorship of the Royal Statistical Society, and various
adaptations of iterative scaling programs originally prepared by Yvonne
Bishop and Shelby Haberman (e.g., BMDP3F in the BMDP Programs dis-
tributed by the UCLA Health Sciences Computing Facility). Most users are
likely to find one or more suitable programs available at their own computer
installation that can be used to work through the examples and problems in
this book. My primary reason for not providing any further guidance to com-
puter programs is that I believe there will be major changes in both their
availability and in the numerical methods they will be using within the next
two to three years. Thus any explicit advice I could offer now would be out of
date soon after the publication of the second edition.

Many friends, colleagues, and students provided me with suggestions, com-
ments, and corrections for this edition. These include John Duffy, O. Dudley
Duncan, David Hoaglin, J. G. Kalbfleisch, Kinley Larntz, S. Keith Lee,
William Mason, Michael Meyer, Doug Ratcliff and Stanley Wasserman. The
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preparation of this edition was partially supported by Office of Naval
Research Contract N00014-78-C-0600 to the University of Minnesota.

For the typing and organization of the final manuscript, as well as for the
updating of the indexes, I am indebted to Linda D. Anderson.

New Brighton, Minnesota Stephen E. Fienberg
November 1979



Preface to the First Edition

The analysis of cross-classified categorical data has occupied a prominent
place in introductory and intermediate-level statistical methods courses for
many years, but with a few exceptions the only techniques presented in such
courses have been those associated with the analysis of two-dimensional
contingency tables and the calculation of chi-square statistics. During the
past 15 years, advances in statistical theory and the ready availability of
high-speed computers have led to major advances in the analysis of multi-
dimensional cross-classified categorical data. Bishop, Fienberg, and Holland
[1975], Cox [1970a], Haberman [1974a], Lindsey [1973], and Plackett
[1974] have all presented detailed expositions of these new techniques, but
these books are not directed primarily to the nonstatistical reader, whose
background may be limited to one or two semesters of statistical methods at
a noncalculus level.

The present monograph is intended as an introduction to the recent work
on the analysis of cross-classified categorical data using loglinear models.
I have written primarily for nonstatisticians, and Appendix I contains a
summary of theoretical statistical terminology for such readers. Most of the
material should be accessible to those who are familiar with the analysis of
two-dimensional contingency tables, regression analysis, and analysis-of-
variance models. The monograph also includes a variety of new methods
based on loglinear models that have entered the statistical literature
subsequent to the preparation of my book with Yvonne Bishop and Paul
Holland. In particular, Chapter 4 contains a discussion of contingency tables
with ordered categories for one or more of the variables, and Chapter 8
presents several new applications of the methods associated with incomplete
contingency tables (i.e., tables with structural zeros).

Versions of material in this monograph were prepared in the form of notes
to accompany lectures delivered in July 1972 at the Advanced Institute on
Statistical Ecology held at Pennsylvania State University and during 1973
through 1975 at a series of Training Sessions on the Multivariate Analysis of
Qualitative Data held at the University of Chicago. Various participants at
these lectures have provided me with comments and suggestions that have
found their way into the presentation here. Most of the final version of
the monograph was completed while I was on sabbatical leave from the
University of Minnesota and under partial support from National Science
Foundation Grant SOC72-05257 to the Department of Statistics, Harvard
University, and grants from the Robert Wood Johnson Foundation and the
Commonwealth Fund to the Center for the Analysis of Health Practices,
Harvard School of Public Health.
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I am grateful to Stephen S. Brier, Michael L. Brown, Ron Christensen,
David R. Cox, William Fairley, S. Keith Lee, William Mason, and Roy E.
Welsch for extremely valuable comments and suggestions. Many people have
provided me with examples and other materials, from both published and
unpublished works, that have found their way into the final manuscript,
including Albert Beaton, Richard Campbell, O. Dudley Duncan, Leo
Goodman, Shelby Haberman, David Hoaglin, Kinley Larntz, Marc Nerlove,
S. James Press, Ira Reiss, Thomas Schoener, and Sanford Weisberg. Most of
all, I am indebted to Yvonne Bishop, Paul Holland, and Frederick Mosteller,
whose collaboration over a period of many years helped to stimulate the
present work.

For the typing and organization of the final manuscript, I wish to thank
Sue Hangge, Pat Haswell, Susan Kaufman, and Laurie Pearlman.

New Brighton, Minnesota Stephen E. Fienberg
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1
Introduction

1.1 The Analysis of Categorical Data

A variety of biological and social science data come in the form of cross-
classified tables of counts, commonly referred to as contingency tables. The
units of a sampled population in such circumstances are cross-classified
according to each of several categorical variables or sets of categories such
as sex (male, female), age (young, middle-aged, old), or species. Intermediate-
level statistics textbooks for biologists, such as Bliss [1967], Snedecor and
Cochran [1967], and Sokal and Rohlf [1969], focus on the analysis of such
data in the special case of two-way cross-classifications, as do textbooks for
social scientists, such as Blalock [1972]. More detailed treatments, by
Maxwell [1961] and by Fleiss [1973], are also available. A review of the
material presented in one or more of these books is adequate preparation for
this presentation.

When we look at several categorical variables simultaneously, we say
that they form a multidimensional contingency table, with each variable
corresponding to one dimension of the table. Such tables present special
problems of analysis and interpretation, and these problems have occupied
a prominent place in statistical journals since the first article on testing in
2 x 2 x 2tables by Bartlett [1935].

Until recent years the statistical and computational techniques available
for the analysis of cross-classified data were quite limited, and most re-
searchers handled multidimensional cross-classifications by analyzing
various two-dimensional marginal totals, that is, by examining the categorical
variables two at a time. This practice has been encouraged by the wide
availability of computer program packages that automatically produce
chi-square statistics for all two-dimensional marginal totals of multi-
dimensional tables. Although such an approach often gives great insight
about the relationship among variables, it
(a) confuses the marginal relationship between a pair of categorical variables

with the relationship when other variables are present,

(b) does not allow for the simultaneous examination of these pairwise
relationships,

(c) ignores the possibility of three-factor and higher-order interactions among
the variables.

My intention here is to present some of the recent work on the statistical
analysis of cross-classified data using loglinear models, especially in the
multidimensional situation. The models and methods that will be considered
do not have the shortcomings mentioned above. All the techniques described
will be illustrated by actual data. Readers interested in mathematical proofs
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should turn to the source articles or books cited.

I view this monograph as an introduction to a particular approach to
the analysis of cross-classified categorical data. For more details on this
approach, including mathematical proofs, various generalizations, and their
ramifications, see Bishop, Fienberg, and Holland [1975] or Haberman
[1974a, 1978]. Other presentations with differing contents or points of view
include Cox [1970a], Gokhale and Kullback [1978], Goodman [1970,
1971b], Grizzle, Starmer, and Koch [1969], Ku, Varner, and Kullback
[1971], Lancaster [ 1969], Lindsey [1973], and Plackett [1974]. Bock [1970,
1975] also discusses the analysis of cross-classified data, based on the notion
of multinomial response relationships much like those considered here.

1.2 Forms of Multivariate Analysis

The analysis of cross-classified categorical data falls within the broader
framework of multivariate analysis. A distinction will be made here between
variables that are free to vary in response to controlled conditions—that is,
response variables—and variables that are regarded as fixed, either as in
experimentation or because the context of the data suggests they play a
determining or causal role in the situation under study—that is, explanatory
variables. Dempster [1971] notes that the distinction between response and
explanatory variables need not be firm in a given situation, and in keeping
with this view, in exploratory analyses, we often choose different sets of
response variables for the same data set.

Of importance in describing various types of models and methods for
multivariate analysis is the class of values assumed by the variables being
examined. In many circumstances, we wish to distinguish among variables
whose values are
(i) dichotomous (e.g., yes or no),

(ii) nonordered polytomous (e.g., five different detergents),

(iii) ordered polytomous (e.g., old, middle-aged, young),

(iv) integer-valued (e.g., nonnegative counts), or

(v) continuous (at least as an adequate approximation).

Variables with values of types (i) through (iv) are usually labeled discrete,
although integer-valued variables might also be treated as if they were
continuous. Here the term categorical will be used to refer primarily to types
(1), (i1), and (iii), and the possibility of type (iv) will be ignored. Mixtures of
categorical and continuous variables appear in many examples.

We can categorize classes of multivariate problems by the types of response
and explanatory variables involved, as in the cross-classification of Table 1-1.
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Table 1-1
Classes of Statistical Problems

Explanatory Variables

Categorical Continuous Mixed
Categorical (a) (b) (c)
Response ]
Variables Continuous (d) (e) (f)
Mixed ? ? ?

The cells in the bottom row of this table all contain question marks in order
to indicate the lack of generally accepted classes of multivariate models and
methods designed to deal with situations involving mixtures of continuous
and discrete response variables. Dempster [1973] has proposed a class of
logit models that is of use here, but his approach has yet to see much applica-
tion. The cells in the middle row correspond to problems dealt with by
standard multivariate analysis, involving techniques such as

(d) analysis of variance,

(e) regression analysis,

(f) analysis of covariance (or regression analysis with some dummy variables).

The work on linear logistic response models by Walker and Duncan
[1967], Cox [1970a], and Haberman [1974a] deals with problems for all
three cells in the first row when there is a single dichotomous response
variable, while the more recent results of Nerlove and Press [1973] handle
multiple response variables. Linear logistic response models will be discussed
to some extent in Chapter 6. Cell (a) of the table corresponds to cross-classified
categorical data problems, and some of the most widely used models for their
analysis will be described in the following chapters.

The models used throughout this book rely upon a particular approach to
the definition of interaction between or among variables in multidimensional
contingency tables, based on cross-product ratios of expected cell values. As
a result, the models are linear in the logarithms of the expected value scale;
hence the label loglinear models. There are several analogies between
interaction in these loglinear models and the notion of interaction in analysis-
of-variance (ANOVA) models. These will be pointed out in the course of the
discussion. The use of ANOVA-like notation is deceptive, however. In
ANOVA models one tries to assess the effects of independent variables on a
dependent variable and to partition overall variability. In contingency table
analysis the ANOVA-like models are used to describe the structural relation-
ship among the variables corresponding to the dimensions of the table. The
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distinction here is important, and the fact that many researchers have not
understood it has led to considerable confusion.

When a distinction is made between explanatory variables and response
variables, loglinear models can be converted into logit or linear logistic
response models, in which one predicts log-odds quantities involving the
dependent (or response) variables using a linear combination of effects due
to the explanatory variables. There is a much closer analogy between these
linear logistic models and the usual ANOVA or regression models. This
point is discussed in considerable detail in Chapter 6.

1.3 Some Historical Background

The use of cross-classifications to summarize counted data clearly predates
the early attempts of distinguished investigators such as Quetelet in the
mid-nineteenth century to summarize the association between variables in a
2 x 2table. Not until the turn of the century, however, did Pearson and Yule
formulate the first major developments in the analysis of categorical data.
Despite his proposal of the well-known chi-square test for independence for
two-dimensional cross-classifications (see Pearson [1900a]), Karl Pearson
preferred to view a cross-classification involving two or more polytomies as
arising from a partition of a set of multivariate data, with an underlying
continuum for each polytomy and a multivariate normal distribution for the
“original” data. This view led Pearson [1900b] to develop his tetrachoric
correlation coefficient for 2 x 2 tables and served as the basis for the approach
adopted by many subsequent authors, such as Lancaster [1957] and
Lancaster and Hamdan [1964]. This approach in some sense also led to
Lancaster’s method of partitioning chi-square, to which I shall return shortly.
The most serious problems with Pearson’s approach were (1) the complicated
infinite series linking the tetrachoric correlation coefficient with the fre-
quencies in a 2 x 2 table and (2) his insistence that it always made sense to
assume an underlying continuum for a dichotomy or polytomy, even when
the dichotomy of interest was dead-alive or employed—unemployed, and
that it was reasonable to assume that the probability distribution over such
a dead-alive continuum was normal.

Yule [1900], on the other hand, chose to view the categories of a cross-
classification as fixed, and he set out to consider the structural relationship
between or among the discrete variables represented by the cross-classifica-
tion. This approach led him to consider various functions of the cross-product
ratio, discussed here in Chapter 2. When there actually is an underlying
continuum for each of two polytomies, the cross-product ratio for a 2 x 2
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table resulting from a partitioning of the two variables simply is not a
substitute for an estimate of the true correlation coefficient of the underlying
continuum (see Plackett [1965] or Mosteller [1968]). Thus the methods
proposed by Yule are not necessarily applicable in cases where the 2 x 2
table is simply a convenient summary device for continuous bivariate data
and the original observations are in fact available.

The debate between Pearson and Yule was both lengthy and acrimonious
(see, e.g., Pearson and Heron [1913]), and in some ways it has yet to be
completely resolved, although the statistical literature of the past 25 years on
this topic would indicate that Yule’s position now dominates. In fact, Yule
can be thought of as the founder of the loglinear model school of contingency
table analysis, and most of the results in this book are an outgrowth of his
pioneering work. However, the notions of Yule were not immediately
generalized beyond the structure of two-dimensional tables. Thirty-five years
passed before Bartlett [1935], as a result of a personal communication from
R. A. Fisher, utilized Yule’s cross-product ratio to define the concept of
second-order interactionina 2 x 2 x 2 contingency table (see Chapter 3).

While the multivariate generalizations of the Yule—Bartlett cross-product
ratio or loglinear model approach were fermenting, the technique of
standardization (see Bishop, Fienberg, and Holland [1975], Chapter 4, and
Bunker et al. [ 1969]) to eliminate the effects of categorical covariates received
considerable attention in the epidemiological literature. Standardization is
basically a descriptive technique that has been made obsolete, for most of
the purposes to which it has traditionally been put, by the ready availability
of computer programs for loglinear model analysis of multidimensional
contingency tables. Thus it is not discussed in detail in this book.

During the past 25 years, the statistical literature on the analysis of
categorical data has focused primarily on three classes of parametric models:
(1) loglinear models, (2) additive models, and (3) models resulting from
partitioning chi-square, which may be viewed as a combination of multi-
plicative and additive. This last class of models, which is usually associated
with the work of Lancaster, is much misunderstood, as Darroch [1974, 1976
has recently noted. In addition, there has been a related literature on measures
of association (e.g., Goodman and Kruskal [1954, 1959, 1963, 1972]).
Although different groups of authors use different methods of estimation
(maximum likelihood, minimum modified chi-square, or minimum dis-
crimination information), almost all of the recent literature can be traced back
either to the 1951 paper of Lancaster or to the work of S. N. Roy and his
students at North Carolina in the mid-1950s (e.g., Roy and Kastenbaum
[1956], Roy and Mitra [ 1956]). It is interesting that Roy’s students developed



6 Introduction

his ideas using both the minimum modified chi-square approach (e.g.,
Bhapkar and Koch [1968a, b], Grizzle, Starmer, and Koch [1969]) and the
method of maximum likelihood (e.g., Bock [1970], Kastenbaum [ 1974]).

The major advances in the literature on multidimensional contingency
tables in the 1960s grew out of Roy and Kastenbaum’s work and papers by
Birch [1963], Darroch [1962], Good [1963], and Goodman [1963, 1964].
These advances coincided with the emergence of interest in and the availabi-
lity of high-speed computers, and this work received substantial impetus from
several large-scale data analysis projects. Much of the recent literature on
loglinear models can be linked directly to the National Halothane Study
(see Bunker et al. [1969], Bishop, Fienberg, and Holland [1975], Mosteller
[1968]), while problems in the Framingham Study led to work on linear
logistic models involving both categorical and continuous predictor variables
(e.g., Cornfield [1962], Truett, Cornfield, and Kannel [1967]). The Framing-
ham study work paralleled work on linear logistic models by Cox [1966] and
had ties to the earlier contributions of Berkson [ 1944, 1946 .

A fairly complete bibliography for the statistical literature on contingency
tables through 1974 is given by Killion and Zahn [1976].

1.4 A Medical Example

Table 1-2 presents data compiled by Cornfield [1962] from the Framingham
longitudinal study of coronary heart disease (see Dawber, Kannel, and Lyell
[1963] for a detailed description). Variable 1 is a binary response variable
indicating the presence or absence of coronary heart disease, while variable 2

Table 1-2
Data from the Framingham Longitudinal Study of Coronary Heart Disease (Corn-
field [1962])

Coronary Serum Systolic

Heart Cholesterol Blood Pressure (mm Hg)

Disease (mg/100 cc) <127 127146 147-166 167+
<200 2 3 3 4

Present 200-219 3 2 0 3
220-259 8 11 6 6
>260 7 12 11 11
<200 117 121 47 22

Absent 200-219 85 98 43 20
220-259 119 209 68 43
>260 67 99 46 33
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(serum cholesterol at four levels) and variable 3 (blood pressure at four levels)
are explanatory. The data as displayed in Table 1-2 form a 2 x 4 x 4 three-
dimensional contingency table.

This example is typical of those encountered in medical contexts. Although
serum cholesterol and blood pressure might well be viewed as continuous
variables, the values of these variables have been broken up into four
categories each, corresponding to different levels of a priori perceived risk of
coronary heart disease. An alternative to this approach would be to treat the
variables as continuous and to use a regression-like logistic response model
that expresses the dependency of coronary heart disease in a smooth and
simple fashion.



2
Two-Dimensional Tables

2.1 Two Binomials

We often wish to compare the relative frequency of occurrence of some
characteristic for two groups. In a review of the evidence regarding the
therapeutic value of ascorbic acid (vitamin C) for treating the common cold,
Pauling [1971] describes a 1961 French study involving 279 skiers during
two periods of 5-7 days. The study was double-blind with one group of 140
subject receiving a placebo while a second group of 139 received 1 gram of
ascorbic acid per day. Of interest is the relative occurrence of colds for the
two groups, and Table 2-1 contains Pauling’s reconstruction of these data.

If P, is the probability of a member of the placebo group contracting a cold
and P, is the corresponding probability for the ascorbic acid group, then we
are interested in testing the hypothesis that P, = P,. The observed numbers
of colds in the two groups, x;; = 31 and x,, = 17 respectively, are observa-
tions on independent binomial variates with probabilities of success P, and
P, and sample sizes n; = 140 and n, = 139. The difference in observed
proportions,

has mean P, — P, and variance

P,(l—P1)+P2(1—P2)
n, n,

Table 2-1
Incidence of Common Colds in a Double-Blind Study Involving 279 French Skiers
(Pauling [1971])

(a) Observed values
Cold No Cold Totals

Placebo 31 109 140
Treatment

Ascorbic Acid 17 122 139

Totals 48 231 279

(b) Expected values under independence
Cold No Cold | Totals

Placebo 24.1 1159 140
Ascorbic Acid 239 1151 139
Totals 48 231 279

Treatment
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If P, = P,,then we could estimate the common value by

total no. of colds 2.1)
ny + n,

o

and the estimated variance of P, — P, by
= = (1 1 .
Pl —-P)(—+—]. (2.2)
nyo on,
Assuming that the hypothesis P, = P, is correct, a reasonable test can be

based on the approximate normality of the standardized deviate

z= P, . (2.3)

a value that is significant at the 0.05 level. If we take these data at face value,
then we would conclude that the proportion of colds in the vitamin C group
is smaller than that in the placebo group. This study, however, has a variety
of severe shortcomings (e.g., the method of allocation is not specified and the
evaluation of symptoms was largely subjective). For a further discussion of
these data, and for a general review of the studies examining the efficacy of
vitamin C as a treatment for the common cold up to 1974, see Dykes and
Meier [1975].

As an alternative to using the normal approximation to the two-sample
binomial problem, we could use the Pearson chi-square statistic (see Pearson
[1900a]),

x? =Z (Observed — Expected)? (2.4)
Expected ’ '

where the summation is over all four cells in Table 2-1. We obtain the expected
values by estimating P, = P, = P (the null value) as P = 48/279; that is, we
multiply the two sample sizes n, and n, by P, obtaining the expected values
for the (1, 1) and (2, 1) cells, and then get the other two expected values by
subtraction. Table 2-1b shows these expected values, and on substituting the
observed and expected values in expression (2.4) we get X2 = 4.81, a value
that may be referred to a y? distribution with 1 d.f. (degree of freedom). A large
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value of X2 corresponds to a value in the right-hand tail of the ¥ distribution
and is indicative of a poor fit. Rather than using the x? table we note that the
square root of 4.81 is 2.19, the value of our z-statistic computed earlier. Some
elementary algebra shows that, in general, z2 = X2 Ifweset x,, = n; — x,,
and x,, = n, — X5, then

<zm_m>2

J2 n N
X1+ Xay | [ X12 + X3 l+ 1 (2.5)
nl + nZ nl + n2 nl n2

_ Dxaalny = x5,) = x54(ny = x11)]%(ny + ny)
(11 + X21)(X12 + x22)n0,

2 2
[Xll —n,(}“ +x21>:l [xlz_n1<X12+xu>:|
X2 ny + n, + ny + n,
n X131+ Xpy n.[ X2t X2
I Cr— 1 —
ny + n, ny + n,
. —n xi1 + %20\ | X0 —n X124 %22 ) | (2.6)
21 2 hnl T, N 22 2 _——"1 + n, .
n x“ +XA n x12+X22
o ———— N
ny +n, ny, +n,

_ Dxualny = x50) = x54(ny = x4 )1%(ny + 1))
(X171 + X21)(xy5 + X30)n4n,

and

+

The use of the statistic X? is also appropriate for testing for independence
in 2 x 2 tables, as noted in the next section.

Throughout this book we use the Greek quantity y? to refer to the chi-
square family of probability distributions, and the Roman quantity X2 to
refer to the Pearson goodness-of-fit test statistic given in general by expression
(2.4).

2.2 The Model of Independence

We have just examined a 2 x 2 table formed by considering the counts
generated from two binomial variates. For this table the row totals were fixed



