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Preface

This monograph is written for advanced Master’s students, Ph.D. students,
and researchers in mathematical statistics and decision theory. It should be
useful not only as a basis for graduate courses, seminars, Ph.D. programs, and
self-studies, but also as a reference tool.

At the very least, readers should be familiar with basic concepts covered in
both advanced undergraduate courses on probability and statistics and intro-
ductory graduate-level courses on probability theory, mathematical statistics,
and analysis. Most statements and proofs appear in a form where standard
arguments from measure theory and analysis are sufficient. When additional
information is necessary, technical tools, additional measure-theoretic facts,
and advanced probabilistic results are presented in condensed form in an ap-
pendix. In particular, topics from measure theory and from the theory of
weak convergence of distributions are treated in detail with reference to mod-
ern books on probability theory, such as Billingsley (1968), Kallenberg (1997,
2002), and Dudley (2002).

Building on foundational knowledge, this book acquaints readers with the
concepts of classical finite sample size decision theory and modern asymptotic
decision theory in the sense of LeCam. To this end, systematic applications to
the fields of parameter estimation, testing hypotheses, and selection of popu-
lations are included. Some of the problems contain additional information in
order to round off the results, whereas other problems, equipped with solu-
tions, have a more technical character. The latter play the role of auxiliary
results and as such they allow readers to become familiar with the advanced
techniques of mathematical statistics.

The central theme of this book is what optimal decisions are in general
and in specific decision problems, and how to derive them. Optimality is un-
derstood in terms of the expected loss, i.e. the risk, or some functional of it.
In this regard estimators, tests, and selection rules are initially considered in
the book side by side, and then individually in the last three chapters.

Originally we were motivated to write this book by the lack of any no-
ticeable coverage of selection rules in books on decision theory. In over more
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than 50 years’ worth of scholarship, the majority of the over 1000 published
articles on selection rules do not utilize a rigorous decision-theoretic approach.
Instead, many articles on selection rules restrict themselves to a specific para-
metric family, propose an ad hoc rule, study its performance characteristics,
and (at the very best) compare its performance with another competing se-
lection rule. By contrast, this book offers a fuller point of view, and the last
chapter provides a thorough presentation of optimal selection rule theory.

Two other justifications for including selection theory are as follows.
First, in modern medium-level books on mathematical statistics, the decision-
theoretic approach is usually presented in a rather restricted and concise
manner. This practice, combined with an emphasis on estimation under the
squared error loss and on testing under the zero–one loss, fails to explain why
extra efforts should be made to become familiar with decision theory and to
use it. Of course, dealing with selection rules requires new types of loss struc-
tures, and learning more about them leads to a better understanding of the
wide range of powerful tools that decision theory has to offer. Second, permu-
tation invariance plays an important role in selection theory. The structure
of the problem of optimal permutation invariant selection rules, along with
its multisample statistical model, is quite unique. Indeed, it provides a rather
different setting in decision theory when compared to estimation and testing
problems based on a single sample, and we wished to make those differences
more readily available to our readers. In addition, as we wrote the first parts
of the book, which we began in the spring of 1999, it became clear that two
additional aspects of decision theory were important to us: asymptotic deci-
sion theory and the coexistence of the frequentist and Bayes approaches in
decision theory. With this final realization, we settled on our main topics for
the book, and they have carried us along ever since.

This book combines innovation and tradition in ways that we hope can
usefully extend the line of scholarship that starts with classical monographs
on decision theory by Wald (1950), Blackwell and Girshick (1954), Fergu-
son (1967), and DeGroot (1970) and continues with modern works by Pfan-
zagl and Wefelmeyer (1982, 1985), Strasser (1985), Janssen, Milbrodt, and
Strasser (1985), LeCam (1986), LeCam and Yang (1990), Torgersen (1991),
Bickel, Klaasen, Ritov, and Wellner (1993), Rieder (1994), and Shiryaev and
Spokoiny (2000). Most of these recent publications focus primarily on funda-
mental structural relationships in finite and asymptotic decision theory. By
contrast, we have chosen to include parts of mathematical statistics as they
have been represented by Witting (1985), Lehmann (1986), Pfanzagl (1994),
Witting and Müller-Funk (1995), Lehmann and Casella (1998), and Lehmann
and Romano (2005). As a result, this monograph is uniquely able to syn-
thesize otherwise disparate materials, while establishing connections between
classical and modern decision theory and inviting readers to explore their
interrelationships.

The importance of creating a bridge between the classical results of math-
ematical statistics and the modern asymptotic decision theory founded by
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LeCam should not be underestimated. So far, LeCam’s theory has been ap-
plied primarily to estimation and testing problems, which we now also present
in the last part of Chapter 9 with treatments of selection problems. We also
include new applications of this theory, which we hope demonstrate its broad
and powerful applicability. The prominent monographs in that area are by
Strasser (1985), LeCam (1986), Torgersen (1991), Bickel, Klaasen, Ritov, and
Wellner (1993), and LeCam and Yang (2000). These are written for mathe-
matical researchers in decision theory, and they are only partially accessible
to graduate students. Representations of parts of modern decision theory,
mainly applications of LAN theory to estimation and testing problems, that
are accessible to graduate students can be found in the books by Behnen
and Neuhaus (1989), Witting and Müller-Funk (1995), Hájek, Šidák, and Sen
(1999), and Lehmann and Romano (2005). In these works, however, considera-
tions are restricted to the asymptotic behavior of the log-likelihood under, say,
a null hypothesis and local alternatives. As a consequence, the general theory
of statistical models and their convergence are deliberately excluded, as are
central statements of modern asymptotic decision theory. These statements
provide the fundamental link between the convergence of the distributions of
the likelihood ratio, the decision-theoretically motivated concept of conver-
gence of models, and the closely related randomization criterion. They make
it possible to establish the asymptotic lower Hájek–LeCam bound on the risk.
The combination of this asymptotic lower bound, linearization techniques for
the log-likelihood, projection techniques for the statistics, and the lemmas of
LeCam constitute the backbone of modern asymptotic statistical theory. In
this book we wish to present the fundamental facts and their relations to each
other on an intermediate level in a form that is mathematically self-contained.
This style of presentation will, we hope, enable the reader to gain deep insight
into and appreciation for the structure of modern decision theory.

Another goal of this book is to provide a broad coverage of both the
frequentist and the Bayes approaches in decision theory. Most existing books
seem to prefer one or the other. We consider the Bayes approach to be a useful
decision-theoretic framework among others, and we use it heavily throughout
the book; however, we do so without extra nonmathematical philosophical
justification. In this spirit we distinguish between the average risk, where the
randomness of parameters is not an issue, and the Bayes risk. This distinction
allows us also to treat settings with improper priors just mathematically with
the average risk. Readers who are interested in contemporary presentations
of Bayesian analysis, including its philosophical foundation, reasoning, and
justification, are referred to the fundamental books on Bayesian analysis by
Berger (1985), Bernardo and Smith (1994), Robert (2001), and Ghosh and
Ramamoorthi (2003).

Chapter 1. The fundamental probabilistic concepts and technical tools
are provided here. These are in the first section properties of exponential fam-
ilies, where we have used Brown (1986) as a guideline for our presentation.
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At first glance, the importance of this class of distributions seems to be more
or less due to its favorable analytical form. However, several deeper reaching
characterization theorems show that, roughly speaking, finite optimal deci-
sions are only possible for this class of distributions. The class of conjugate
priors that are important for Bayes decisions, which arises in a natural way
from an exponential family, is studied systematically after the Bayes frame-
work has been introduced in Section 1.2. Tools that are used later on for Bayes
estimation, testing, and selection are also prepared here.

Distances between distributions play a central role. They reflect, for ex-
ample, the degree of information content in a binary model, and they explain
why a decision between distributions that are farther apart is easier than
a decision between distributions that are closer together. Moreover, some of
the distances or transforms, (e.g., the variational and the Hellinger trans-
forms) and their mutual relations are utilized to introduce and establish the
concepts of the strong and weak convergence of statistical models. The vari-
ational and Hellinger distance, as well as the Kullback–Leibler distance, the
χ2-distance, and the Bayes error for testing hypotheses in binary models are
special members of the class of v-divergences that were independently intro-
duced by Csiszár (1963) and Ali and Silvey (1966) and constructed with the
help of a convex function v. The behavior under randomization and interre-
lations of these functionals for different convex functions studied in Section
1.3 provides a deeper understanding of these functionals and prepares for ap-
plications in subsequent chapters. Information in Bayes models is considered
next, and the chapter concludes with an introduction to L2-differentiability,
where we have used Witting (1985) as a guideline for our presentation.

Chapter 2. The central topic is the Neyman–Pearson lemma and its
extensions. Links between Neyman–Pearson, minimax, and Bayes tests are
discussed and studied in detail. After a consideration of statistical models
with stochastic ordering, especially with a monotone likelihood ratio, which
include exponential families, Neyman–Pearson’s lemma is extended to tests
for composite one-sided hypotheses.

Chapter 3. An introduction to the general framework of decision theory is
given, followed by a discussion of its components. The concept of convergence
of decisions and the sequentially weak compactness of the set of all decisions
for a given model are central topics. Here and at several other places of the
book, we restrict ourselves to compact decision spaces and dominated models.
This practice helps keep technical tools at the graduate level, and it usefully
restricts references to results in other literature.

Special properties of the risk as a function of the parameter as well as
of the decision are studied to prepare for theorems of the existence of Bayes
and minimax decisions. Furthermore, the interrelations between Bayes and
minimax decisions are studied in preparation of proofs of minimaxity of esti-
mators and tests later on that are based on Bayes properties and a constant
risk. Γ -minimax decisions, which are analogues to minimax decisions in the
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Bayes approach, are also briefly considered in Section 3.6, and the chapter
concludes with special versions of the minimax theorem and the complete
class theorem. For readers interested in further results, references are made
to the fundamental monographs by Strasser (1985) and LeCam (1986).

Chapter 4. The chapter begins with examples in which randomizations
of models appear in a natural way. The concept of ε-deficiency due to LeCam
(1964), which is a comparison of the risk function “up to ε”, is essential for the
approximation and convergence of models and takes the center stage in this
chapter. Another fundamental result is the randomization theorem of decision
theory. It shows that the decision-theoretic concept of ε-deficiency is identical
with the variational distance between one model and a suitable randomization
of the other model. A transition to standard models gives the statement that
finite models are uniquely determined by their standard distributions and the
Hellinger tranforms. The characterization of the ε-deficiency via Bayes risks
leads to the concept of standard decision problems for which the associated
risk is just a special v-divergence. This is the concave function criterion of
decision theory, and it connects concepts from information and decision theory.

In the second part of the chapter, sufficient statistics are characterized
by the fact that the induced model is equivalent to the original model. The
v-divergences are used to give for the sufficiency an information-theoretic char-
acterization due to Csiszár (1963), the test-theoretic characterization due to
Pfanzagl (1974), and the well-known factorization criterion by Neyman. A
discussion of the different concepts of sufficiency such as pairwise sufficiency,
Blackwell sufficiency, and Bayes sufficiency is included. A brief discussion of
ancillarity, which includes Basu’s theorem, concludes the chapter.

Chapter 5. The treatment of the reduction by invariance is kept concise
by mainly considering the groups of permutations, location-scale transforms,
and rotations. Whereas permutation invariance is especially relevant for selec-
tion rules, the other groups are utilized to prove the Hunt–Stein theorem on
the minimaxity of best invariant tests. Hereby the existence of the Haar mea-
sure can be established directly in a simple manner without having recourse
to further literature. The connection between best equivariant estimators and
minimax estimators is provided by the Girshick–Savage theorem. With the
conclusion of this chapter all tools from finite decision theory that are neces-
sary for our purposes have been collected.

Chapter 6. The previous results on ε-deficiency and the randomization
theorem are used to develop a theory of convergence of models within our
fixed framework. Asymptotically normal models play a central role. Whereas
the term model is standard in mathematical statistics, the term experiment
is more common in modern decision theory. As both concepts are essentially
the same (see Lehmann and Romano (2005) p. 550), we use the term model
throughout the book. The transition to standard models makes it possible to
get for finite models the well-known bounds on the ε-deficiency in terms of the
Dudley metric of standard distributions, which leads to the characterization of
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the convergence of finite models in terms of the distributions of the likelihood
ratios. For binary models the concepts of contiguity and entire separation are
introduced through the accumulation points of a sequence of models. As in
Jacod and Shiryaev (1987, 2002) and Liese (1986), we use Hellinger integrals
to get the results on the contiguity and the entire separation of sequences
of binary models, especially the results of Oosterhoff and van Zwet (1979)
for triangular arrays of independent models. In the study of the asymptotic
normality of double sequences of binary models, we follow the ideas of LeCam
and Yang (1990).

After the introduction and brief discussion of Gaussian models the LAN-
and ULAN-properties are introduced and established for localized sequences
of differentiable models. From the start, after Witting and Müller-Funk (1995)
and Rieder (1994), regression coefficients that satisfy the Noether condition
are used. Special cases then are the row-wise i.i.d. case, the two-sample prob-
lem, and regression models with deterministic covariables. Suitable versions
of the third lemma of LeCam are given. These results allow us to study the
risks of sequences of decisions in a shrinking sequence of the localization point
of the models, providing a comparison of the efficiency of different sequences
of decisions.

In the remainder of the chapter, the lower Hájek–LeCam bound is derived.
To avoid advanced techniques from topology, the bound is established here
only for compact decision spaces and dominated limit models. This proves
sufficient for our purposes, as the models considered here are nearly always
parametric models. The lower Hájek–LeCam bound makes it possible to break
up the proof of asymptotic optimality of estimators, tests, and selection rules
into separate steps. The first step consists of finding in the asymptotic Gaus-
sian model the optimal solution, which depends only on the sufficient central
variable. By replacing the central variable with the central sequence a se-
quence of decisions is obtained. Under additional regularity assumptions the
convergence of the risks to the lower Hájek–LeCam follows, and this in turn
guarantees the optimality of the sequence of decisions.

Chapter 7. The chapter on parameter estimation begins with the Cramér–
Rao inequality and the result, which has been proved by various authors under
different regularity assumptions: namely that equality only holds for exponen-
tial families. This result corroborates the importance of exponential families
for statistical analyses under finite sample sizes and it distinguishes a need
for asymptotic considerations. Classical results on UMVU estimators, selected
topics on Bayes estimators, and considerations regarding the admissibility of
estimators conclude the first part of this chapter.

The second part is devoted to the study of the asymptotic properties of
estimators of parameters. For all asymptotic considerations it is mandatory
to deal first with the question of the consistency of estimators. Only for esti-
mators with this property can classical and modern linearization techniques
be utilized. From a variety of possible approaches to consistency we have
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chosen the concept of M -estimators, and we follow here to some extent the
presentation in Pfanzagl (1994). Besides a treatment of the consistency of
M -estimators and the MLEs, and a discussion of the existence of MLEs in
exponential families, we study location and regression models. Techniques
from convex analysis, due to Hjort and Pollard (1993), allow us to verify
consistency without assumptions regarding compactness for convex criterion
functions. The part on consistency is completed with the consistency in Bayes
models. In giving the fundamental results of Doob (1949) and Schwartz (1965)
we follow Ghosh and Ramamoorthi (2003). One way of proving the asymp-
totic normality of M -estimators is based on the classical Taylor expansion.
However, for the treatment of regression models with not necessarily differen-
tiable criterion functions it is preferable to follow linearization techniques for
convex criterion functions based on Hjort and Pollard (1993). Doing so avoids
conditions regarding differentiability. The necessity of taking the second way
arises in L1-regression and more generally in quantile regressions, as they are
represented in Jurečková and Sen (1996). The asymptotic normality of the
posterior distribution (i.e., the Bernstein–von Mises theorem) is established
and used to prove the asymptotic normality of the Bayes estimator.

The last section of this chapter deals with the asymptotic optimality of
the MLE. The result by Bahadur (1964) on the majorization of the covari-
ance matrix of the limit distribution of an asymptotically normal estimator
over the inverse of Fisher’s information matrix is presented. Then the estima-
tion problem is treated systematically as a decision problem, and the lower
bound on the risks is derived under different conditions by utilizing the gen-
eral results from Chapter 6. This is done in the finite-dimensional case for
the asymptotically median unbiased estimators. In the multivariate case, an
asymptotic minimax bound is derived. It is shown that in each case, under
weak assumptions the MLE achieves the respective lower bound. With these
main theorems in asymptotic estimation theory this chapter is completed.

Chapter 8. At the beginning uniformly best unbiased level α tests for
two-sided hypotheses in one-parameter exponential families are characterized.
Then there follows a section on testing linear hypotheses in multivariate nor-
mal distributions with a common known covariance matrix. These results con-
stitute, from an asymptotic point of view, the solution of the decision problem
in the limit model. Uniformly best unbiased level α tests in d-parameter expo-
nential families, which are conditional tests, are derived next. Selected topics
on uniformly best invariant level α tests and Bayes tests conclude the first
part of this chapter.

The second part is devoted to the study of the asymptotic properties of
tests. It begins with the study of exponential rates of error probabilities in
binary models, which leads to the theorems of Stein and Chernoff. The major
treatment of asymptotic tests starts with a problem that is of importance of
its own: the central question about the linearizations of statistics. Whereas
in the area of parameter estimation such linearizations are the result of the



Preface XIII

linearization of equations, supporting tools of this type are not available for
tests. For the latter, the projection techniques due to Hájek are fundamental.
This has been used already for U -statistics in the special case of Hoeffding.
The usefulness of these projection techniques is demonstrated on U -statistics
and rank statistics, which serve as preparation for the results on the local
asymptotic optimality of linear rank tests. Projection techniques are also used
to study statistics that include estimated nuisance parameters.

The results on the linearization of statistics are used to establish the
asymptotic normality of the test statistics under the null hypothesis. A com-
bination of the asymptotic upper Hájek–LeCam bound for the power with the
third lemma of LeCam allows the characterization of locally asymptotically
most powerful tests and the calculation of the relative efficiency of given tests.
For one-dimensional and multivariate parameters of interests, in models with
or without nuisance parameters, we characterize the locally asymptotically
optimal tests. In particular, we study Neyman’s score test, the likelihood ra-
tio tests, and tests that are based on the MLE known as Wald tests. The
asymptotic relative efficiency of selected rank tests, especially for the two-
sample problem, is determined by investigating the local asymptotic power
along parametric curves in the space of the distributions. For given rank tests,
the parametric models are determined for which these rank tests are locally
asymptotically best.

Chapter 9. Selection rules are presented here within the decision theo-
retic framework of the book. The goal is to select a best, or several of the
best, of k independent populations. The foundation of finite sample size selec-
tion rules goes back to Paulson (1949, 1952), Bahadur and Goodman (1952),
Bechhofer (1954), Bechhofer, Dunnett, and Sobel (1954), Gupta (1956, 1965),
Lehmann (1957a,b, 1961, 1963, 1966), and Eaton (1967a,b). The first research
monographs were written by Bechhofer, Kiefer, and Sobel (1968), Gibbons,
Olkin, and Sobel (1977), and Gupta and Panchapakesan (1979).

After an introduction of the selection models, optimal point selection rules
are derived for parametric and especially for exponential families. For equal
sample sizes the fundamental Bahadur–Goodman–Lehmann–Eaton theorem
states that the natural selection rule is the uniformly best permutation invari-
ant decision. For unequal sample sizes the situation changes dramatically and
the natural selection rule loses many of its qualities (see Gupta and Miescke
(1988)). Bayes selection rules in explicit form are not always readily avail-
able. For exponential families, conjugate priors can be chosen such that the
posterior distributions are balanced and provide Bayes solutions of a simple
form. Combining selection with the estimation of the parameter of the selected
population is also considered. The next section deals with subset selections
and especially with Gupta’s subset selection rule. Γ -minimax selections are
also considered here. Section 9.3 deals with multistage selection rules that im-
prove the efficiency by combining the approaches of the previous two sections
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(see, e.g., Miescke (1984a, 1999)). Selected results, including Bayes designs for
stagewise sampling allocations, are presented in detail.

The second part of the chapter is on asymptotic properties of selection
rules, and it starts with the exponential rates of the error probabilities of
selection rules from Liese and Miescke (1999a). These results are related to
results of Chernoff (1952, 1956) and Krafft and Puri (1974). Then localized
parametric models are considered. It is shown that under equal sample sizes
the natural selection rule based on the central sequence is both locally asymp-
totically uniformly best in the class of all permutation invariant selection rules
and locally asymptotically minimax in terms of the pointwise comparison of
the asymptotic risks. Because the statistics used by the selection rules have
a specific difference structure, which is similar to the situation of two-sample
problems, the localization point that appears in the central sequence can be re-
placed by an estimator without changing the asymptotic efficiency. The same
holds true for additional nuisance parameters. In the nonparametric selection
model we study selection rules that are based on rank statistics. Here we use
results that have been prepared previously for nonparametric tests.

There are a number of people and institutions that we would like to thank
for supporting this book project. Several rounds of reviews over the past three
years have given us immeasurable help getting the book into shape, and we are
deeply indebted to all of the experts who were willing to review our material
and provide critical comments and suggestions. We are very grateful to the
Mathematical Research Institute at Oberwolfach for letting us stay and work
within its RIP program for two weeks in both 2004 and 2005. The support we
have received from Springer Verlag and the guidance we have received from
John Kimmel and his technical staff have greatly facilitated our work, and we
are especially appreciative. We also thank the colleagues in our departments
who have contributed to countless discussions throughout the progress of the
book. Their input as well as their understanding of our long preoccupation
with this project are very much appreciated. Additionally, thanks are due to
our departments and universities for the time and working space that they
have provided us. We thank Peter Dencker and Jin Tan for proofreading parts
of the book and Jenn Fishman for helping us with the revision of the preface.

Our special thanks go to Ingo Steinke, who proofread several versions of the
book, pointed out many inaccurate details, and provided valuable suggestions
for improving the book’s overall layout. His continuous interest and help in
this project is highly appreciated.

Finally, we would like to say some words in memory of Shanti S. Gupta,
who passed away in 2002. His inspiration, support, and encouragement have
deeply affected our lives and, in particular, our work on this book.
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October 2007 Klaus-J. Miescke



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI

1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Priors and Conjugate Priors for Exponential Families . . . . . . . . 16
1.3 Divergences in Binary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 Information in Bayes Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.5 L2-Differentiability, Fisher Information . . . . . . . . . . . . . . . . . . . . . 58
1.6 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2 Tests in Models with Monotonicity Properties . . . . . . . . . . . . . 75
2.1 Stochastic Ordering and Monotone Likelihood Ratio . . . . . . . . . 75
2.2 Tests in Binary Models and Models with MLR . . . . . . . . . . . . . . 83
2.3 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3 Statistical Decision Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.1 Decisions in Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2 Convergence of Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.3 Continuity Properties of the Risk . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.4 Minimum Average Risk, Bayes Risk, Posterior Risk . . . . . . . . . . 121
3.5 Bayes and Minimax Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.6 Γ -Minimax Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.7 Minimax Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.8 Complete Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.9 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4 Comparison of Models, Reduction by Sufficiency . . . . . . . . . . 156
4.1 Comparison and Randomization of Models . . . . . . . . . . . . . . . . . . 156
4.2 Comparison of Finite Models by Standard Distributions . . . . . . 166
4.3 Sufficiency in Dominated Models . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.4 Completeness, Ancillarity, and Minimal Sufficiency . . . . . . . . . . 188
4.5 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194



XVI Contents

5 Invariant Statistical Decision Models . . . . . . . . . . . . . . . . . . . . . . 198
5.1 Invariant Models and Invariant Statistics . . . . . . . . . . . . . . . . . . . 198
5.2 Invariant Decision Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.3 Hunt–Stein Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.4 Equivariant Estimators, Girshick–Savage Theorem . . . . . . . . . . . 222
5.5 Solutions to Selected Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6 Large Sample Approximations of Models and Decisions . . . . 235
6.1 Distances of Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.2 Convergence of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.3 Weak Convergence of Binary Models . . . . . . . . . . . . . . . . . . . . . . . 248
6.4 Asymptotically Normal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

6.4.1 Gaussian Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
6.4.2 The LAN and ULAN Property . . . . . . . . . . . . . . . . . . . . . . 269

6.5 Asymptotic Lower Risk Bounds, Hájek–LeCam Bound . . . . . . . 281
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1

Statistical Models

The starting point of all statistical inference is the observation of data that are
subject to unavoidable random errors. The intention is to draw conclusions
from the data in such a way that the information that is contained in the data
is exploited as much as possible. For this purpose we need a mathematical
model that explains the fluctuation of the observations from measurement to
measurement, then a mathematical frame for possible conclusions, and finally
a tool for the assessment of the quality of concrete conclusions. Although
usually error-free conclusions from disturbed data cannot be drawn, we can
improve, or even optimize, the inference by utilizing our knowledge of the
probabilities of the random events that are relevant for the statistical problem
at hand.

The basic object is a suitably chosen space X in which all concrete mea-
surements can be observed. Following standard practice in probability theory
let there be given a σ-algebra A of subsets of X so that A contains all subsets
of X that are relevant for the problem. The pair (X ,A) is called the sample
space. If X is a metric space, then we use the Borel sets as the σ-algebra A.
On the other hand, if X is finite or countably infinite, then we use the power
set P(X ) for A.

To explain the fluctuation of the observations we assume that each obser-
vation x ∈ X is the realization of a random variable X with values in X that
is defined on some underlying abstract probability space (Ω,F,P), where P is
a probability measure on (Ω,F). By definition, such a random variable is a
mapping X : Ω → X that is F-A measurable, i.e., X−1(A) ∈ F, A ∈ A, where
X−1(A) = {ω : X(ω) ∈ A, ω ∈ Ω}. To indicate that X is measurable we use
the notation X : Ω →m X .

To be able to work on concrete problems a link to a family of concrete
probability spaces, say (X ,A, Pθ), θ ∈ Δ, has to be established by means of
possible distributions Pθ of X at θ ∈ Δ that include the true but unknown
distribution of X. This leads to the concept of a statistical model. The first
step toward a statistical model is to choose a suitable family (Pθ)θ∈Δ of distri-
butions of X on (X ,A). This can be a difficult and challenging task, depending

F. Liese, K.-J. Miescke, Statistical Decision Theory,
DOI: 10.1007/978-0-387-73194-0 1, c© Springer Science+Business Media, LLC 2008



2 1 Statistical Models

on the experimental situation. The choice has to be made based on the initial
information that is available about the random behavior of X in the exper-
iment. To be mathematically consistent we assume that there is a family of
probability measures (Pθ)θ∈Δ on (Ω,F) such that for every θ ∈ Δ the distri-
bution of X under Pθ is given by Pθ = Pθ ◦ X−1; i.e., Pθ(A) = Pθ(X ∈ A),
A ∈ A. By combining the sample space with the set of possible distributions
of X we arrive at the statistical model

M = (X ,A, (Pθ)θ∈Δ). (1.1)

If the parameter set Δ is finite, then we call M a finite model. The simplest
models are binary models where Δ consists only of two elements.

1.1 Exponential Families

Many of the frequently used parametric families of distributions (Pθ)θ∈Δ in a
statistical model M = (X ,A, (Pθ)θ∈Δ) are special cases of exponential fami-
lies. Examples are the normal, binomial, Poisson, beta, and gamma families.
Because all of these families share properties that are typical for an exponen-
tial family, it is natural and proves useful to study first this important general
statistical model, and to collect analytical properties that are used throughout
this book.

We are following here the tradition set by Lehmann (1959, 1983) in his clas-
sical books on testing and estimation, and continued in their respective second
editions: Lehmann (1986), Lehmann and Casella (1998), and Lehmann and
Romano (2005). More general treatments of exponential families are provided
in Barndorff-Nielsen (1978) and Brown (1986). We also refer to Hoffmann-
Jørgensen (1994), Johansen (1979), and Küchler and Sørensen (1997).

Let (X ,A) be a given measurable space and T : X →m R
d be a statistic.

For any μ ∈Mσ(A), we take

Δ = {θ :
∫

exp{〈θ, T 〉}dμ <∞} ⊆ R
d, and (1.2)

K(θ) = ln(
∫

exp{〈θ, T 〉}dμ), θ ∈ Δ, (1.3)

where 〈θ, T 〉 = θTT =
∑d

i=1 θiTi is the Euclidean scalar product of the vectors
θ = (θ1, ..., θd)T and T = (T1, ..., Td)T . Given 0 < α < 1, we set p = 1/α and
q = 1/(1 − α). Then 1/p + 1/q = 1 and by Hölder’s inequality (see Lemma
A.13) it holds for θ1, θ2 ∈ Δ,
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exp{K(αθ1+(1− α)θ2)} =
∫

exp{〈αθ1 + (1− α)θ2, T 〉}dμ (1.4)

=
∫

exp{〈αθ1, T 〉} exp{〈(1− α)θ2, T 〉}dμ

≤ (
∫

exp{〈θ1, T 〉}dμ)α(
∫

exp{〈θ2, T 〉}dμ)1−α

= exp{αK(θ1) + (1− α)K(θ2)}.

This means that the set Δ in (1.2) is a convex set, and that the function K
in (1.3) is convex. For every θ ∈ Δ,

Pθ(A) =
∫
A

exp{〈θ, T 〉 −K(θ)}dμ, A ∈ A, (1.5)

is a probability measure on (X ,A), and the family of distributions (Pθ)θ∈Δ is
called an exponential family . We denote by

fθ(x) :=
dPθ
dμ

(x) = exp{〈θ, T (x)〉 −K(θ)}, x ∈ X , (1.6)

the density of Pθ with respect to μ, θ ∈ Δ.
It should be noted that, in general, the parameter set Δ is neither closed

nor open. An exponential family (Pθ)θ∈Δ is called regular if Δ = Δ0, where
here and in the sequel Δ0 denotes the interior of Δ.

Throughout the book, whenever an exponential family is considered, the
following two assumptions are made to make sure that the dimensions of R

d

and Δ can not be reduced.

(A1) The statistics T1, ..., Td are linearly independent in the sense that for
a0, a1, ..., ad ∈ R, the relation a1T1 + · · · + adTd = a0, μ-a.e., implies that
ai = 0, i = 0, 1, ..., d.

(A2) The interior Δ0 of Δ is nonempty.

If the condition (A1) is fulfilled, then the parameter θ is identifiable; that
is, Pθ1 = Pθ2 implies θ1 = θ2. If not already achieved from the very beginning,
the technical tools of reparametrization and a suitable choice of the measure
μ are available for this purpose.

Definition 1.1. Under the assumptions (A1) and (A2) made on T and Δ,
respectively, the family of distributions (Pθ)θ∈Δ given by (1.5) is called a d-
parameter exponential family in natural form, with natural parameter θ and
generating statistic T . The statistical model

Mne = (X ,A, (Pθ)θ∈Δ) (1.7)

with (Pθ)θ∈Δ from (1.5) is called a natural exponential model. It is called
regular if Δ is open.
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An exponential family in natural form is also called an exponential family
in canonical form in the literature.

Problem 1.2.∗ The representation of an exponential family in natural form by
(1.5) is not unique in the triplet (T, θ,μ).

The ambiguity pointed out in the above problem is often utilized to find
representations that are better adapted to the problem under consideration.

As the density in (1.5) is positive we see that the distributions from the
exponential family are measure-theoretically equivalent to μ; that is, Pθ(B) =
0 if and only if μ(B) = 0, or in short μ 
� Pθ. This implies

Pθ 
� Pθ0 , θ0, θ ∈ Δ, (1.8)

and that the density of Pθ with respect to Pθ0 is given by

dPθ
dPθ0

= exp{〈θ − θ0, T 〉 −K(θ) +K(θ0)}, θ0, θ ∈ Δ.

For d = 1 the condition (A1) only means that the statistic T is not μ-a.e.
constant and therefore in view of (1.8) T is not Pθ-a.s. constant. For d > 1 the
condition (A1) excludes the cases where Pθ-a.s. the statistic T takes on values
in a lower-dimensional subspace. We show later that Eθ ‖T‖2 <∞, θ ∈ Δ. For
such a random vector the fact that only values from a subspace are attained
can be characterized with the help of the covariance matrix.

Problem 1.3.∗ Let Y1, ..., Yd be random variables with finite second moments.
There exist a0, a1, ..., ad ∈ R with

∑d
i=1 a2

i > 0 and a1Y1 + · · · + adYd = a0, P-a.s.,
if and only if the covariance matrix of (Y1, ..., Yd) is singular.

For some purposes it proves convenient to study the family of induced
distributions Qθ = Pθ ◦ T−1. The statistical model

Mre = (Rd,Bd, (Qθ)θ∈Δ), (1.9)

is called the reduced model or the model in minimal form. For every B ∈ Bd

and ν = μ ◦ T−1,

Qθ(B) =
∫
IB(T ) exp{〈θ, T 〉 −K(θ)}dμ =

∫
B

exp{〈θ, t〉 −K(θ)}ν(dt),

so that
gθ(t) :=

dQθ

dν
(t) = exp{〈θ, t〉 −K(θ)}, t ∈ R

d. (1.10)

When passing from the natural form to the reduced form we changed the
sample space with the consequence that the new generating statistic (i.e.,
the identical mapping) is very simple. Later we show that the two models, the
natural model and the reduced model, are identical from the decision-theoretic
point of view.
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It is an important property of exponential families that the distributions of
a sample of size n form again an exponential family where the new generating
statistic is the sum. The following proposition presents the precise statement
which is a consequence of the fact that the density of a product measure with
respect to another product measure is simply the product of the individual
densities; see Proposition A.29.

Proposition 1.4. Let (Pθ)θ∈Δ be a natural exponential family with respect to
μ. Then (P⊗n

θ )θ∈Δ ⊆ P(A⊗n) is a natural exponential family with respect to
μ⊗n with generating statistic T⊕n(x1, ..., xn) :=

∑n
i=1 T (xi) and it holds that

dP⊗n
θ

dμ⊗n
= exp{〈θ, T⊕n〉 − nK(θ)}.

If X and Y are independent random vectors with distributions P and Q,
respectively, then the distribution of X +Y is given by the convolution of the
two distributions P and Q, defined by

(P ∗Q)(B) :=
∫
P (B − x)Q(dx), B ∈ Bd.

According to (1.9) the reduced version of P⊗n
θ is given by Qn,θ := P⊗n

θ ◦T−1
⊕n .

As T⊕n is the sum of n independent identically distributed (i.i.d.) random
vectors we see that the reduced model is given by

Qn,θ = L(T⊕n|P⊗n
θ ) = (Pθ ◦ T−1)∗n,

where ∗n denotes then-fold convolution.
For practical purposes we may also change the parameter set. Such a

reparametrization can often be made to get new parameters that allow for a
better statistical interpretation. Let Λ ⊆ R

d and κ : Λ → Δ be a mapping.
Then (1.5) can be reparametrized to

Ppe,η(A) : = Pκ(η)(A) =
∫
A

exp{〈κ(η), T 〉 −K(κ(η))}dμ, A ∈ A, (1.11)

hη(x) : =
dPpe,η
dμ

(x) = exp{〈κ(η), T (x)〉 −K(κ(η))}, x ∈ X ,

where η ∈ Λ. The statistical model

Mpe = (X ,A, (Ppe,η)η∈Λ), (1.12)

with (Ppe,η)η∈Λ from (1.11), is called a reparametrized exponential model .
Whenever the representation (1.12) is used, we assume without loss of gen-
erality that the mapping κ : Λ → Δ is a one-to-one mapping of Λ into Δ.
This guarantees that for any two parameter points η1, η2 ∈ Λ, Ppe,η1 = Ppe,η2

implies η1 = η2. In this case, the parameter η in the family (Ppe,η)η∈Λ is iden-
tifiable. Moreover, we use γ = κ−1 in the sequel. A concrete statistical model
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usually is introduced by specifying (Ppe,η)η∈Λ, where the parameter η admits
a direct statistical interpretation.

In the following examples, we look at some common parametric families
of distributions and represent them as exponential families. As the natural
parameter is not necessarily the parameter that admits a statistical interpre-
tation we often introduce another more meaningful parameter.

Here and in the sequel, whenever an at most countable sample space X
appears we use the power set P(X ), i.e., the system of all subsets of X , as
σ-algebra A in our statistical model. Unless explicitly mentioned otherwise,
we use the counting measure as the dominating measure so that we have only
to deal with the probability mass function (p.m.f.), f(x) := P ({x}), x ∈ X ,
which is the density of P with respect to the counting measure. We set

Sd−1 = {(p1, ..., pd−1) : pi > 0, i = 1, ..., d− 1,
∑d−1

j=1 pj < 1},
So
d = {(p1, ..., pd) : pi > 0, i = 1, ..., d,

∑d
j=1 pj = 1},

Sc
d = {(p1, ..., pd) : pi ≥ 0, i = 1, ..., d,

∑d
j=1 pj = 1}.

(1.13)

Example 1.5. Let X1, ..., Xn be a sample of i.i.d. observations from an experiment
with d possible outcomes that have probabilities pi, i = 1, ..., d. The sample space is
X = {(ε1, ..., εn) : εi ∈ {1, ..., d}, i = 1, ..., n} and it holds

P(X1 = ε1, ..., Xn = εn) =
∏n

i=1
pεi

= exp{
∑d

j=1
Tj(x) ln pj}, x = (ε1, ..., εn) ∈ X , where

Tj(x) = |{i : εi = j, i = 1, ..., n}|

is the number of observations with outcome j, j = 1, ..., d. As
∑d

j=1 pj = 1 the
assumption (A2) is not met. However, by a reduction to d − 1 parameters we can
get an exponential family (1.5) in natural form. Put for i = 1, ..., d− 1,

θi = κi(p) := ln(pi/pd), pi = γi(θ) = exp{θi}(1 +
∑d−1

j=1 exp{θj})−1,

pd = 1−
∑d−1

i=1 pi, pd = γd(θ) = 1−
∑d−1

i=1 γi(θ),

T = (T1, ..., Td−1), K(θ) = n ln(1 +
∑d−1

j=1 exp{θj}),

θ = (θ1, ..., θd−1) ∈ Δ = R
d−1, p = (p1, ..., pd) ∈ So

d.

As
∑d

i=1 ki ln pi =
∑d

i=1 kiθi we see that Pθ = L(X1, ..., Xn) has the p.m.f.

fθ(x) = exp{
∑d

i=1
Ti(x) ln pi}

= exp{
∑d−1

i=1
Ti(x) ln pi + (n−

∑d−1

i=1
Ti(x)) ln(1−

∑d−1

i=1
pi)}

= exp{
∑d−1

i=1
θiTi(x)−K(θ)}.

With μ being the counting measure we see that (Pθ)θ∈Δis a regular (d−1) parameter
exponential family with natural parameter θ ∈ R

d−1 that satisfies (A1) and (A2).
The distributions in the reduced model are then
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Pθ ◦ T−1 = M(n, γ(θ)), θ ∈ R
d−1,

where M(n, p) denotes the multinomial distribution with parameters n and p =
(p1, ..., pd) ∈ So

d.

Problem 1.6. Verify the statements in the previous example regarding (A1) and
(A2).

Problem 1.7. Let X1, ..., Xn be i.i.d. Bernoulli variables with success probability
p ∈ (0, 1). Then the joint distribution on X = {0, 1}n is given by ((1−p)δ0+pδ1)

⊗n,
where δa is the δ-distribution that is concentrated at point a. Set

θ = κ(p) := ln(p/(1− p)), p = γ(θ) :=
exp{θ}

1 + exp{θ} ,

K(θ) = n ln(1 + eθ), Δ = R,

T (x) =
∑n

i=1
xi, x = (x1, ..., xn) ∈ {0, 1}n.

Then the family of distributions (Pθ)θ∈Δ = ((1−γ(θ))δ0 +γ(θ)δ1)
⊗n has the p.m.f.

fθ = exp{θT −K(θ)} and is thus a one-parameter exponential family with natural
parameter θ and generating statistic T. The distributions in the reduced model are
Pθ ◦ T−1 = B(n, γ(θ)), θ ∈ R.

Problem 1.8.∗ Sometimes, the parameter set (0, 1) of the binomial distribution
B(n, p) is extended by putting B(n, 0) = δ0 and B(n, 1) = δn. Show that the ex-
tended family B(n, p), p ∈ [0, 1], cannot be represented as an exponential family.

Problem 1.9.∗ The family of Poisson distributions (Po(λ))λ>0 with p.m.f.

poλ(k) =
λk

k!
exp{−λ}, k ∈ N, λ > 0,

can be represented as a one-parameter exponential family in natural form.

Example 1.10. The exponential families in Example 1.5 and in the Problems 1.7
and 1.9 are regular, i.e., their natural parameter sets are open. This property is
often met, but there is an important exponential family that does not share this
property. Let W (t), t > 0, be a standard Wiener process and ν and σ be fixed
positive constants . For a > 0 we denote by Ta = inf{t : νt + σW (t) ≥ a} the first
passage time at which the process νt+σW (t) crosses the level a. It can be shown (see
Seshadri (1993)) that Ta is finite with probability one and that it has a distribution,
called the inverse Gaussian distribution Gi(λ,m), that has the Lebesgue density

giλ,m(x) =

√
λ

2πx3
exp{− λ

2m2

(x−m)2

x
}I(0,∞)(x), (1.14)

where λ = (a/σ)2 and m = a/ν. Letting m → ∞ we get as the density of the first
passage time of the standard Wiener process

giλ,∞(x) =

√
λ

2πx3
exp{− λ

2x
}I(0,∞)(x). (1.15)
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To present the densities giλ,m in standard exponential form we set X = (0,∞) and

introduce the measure μ by μ(dx) = (2πx3)−1/2λ(dx) on B(0,∞). If T1(x) = x,
T2(x) = 1/x,

(θ1, θ2) = (− λ

2m2
,−λ

2
), K(θ1, θ2) = 2

√
θ1θ2 −

1

2
ln(−2θ2),

then
dGi(λ,m)

dμ
(x) = exp{θ1x + θ2

1

x
−K(θ1, θ2)}.

The natural parameter set is Δ = (−∞, 0] × (−∞, 0) which is not open. This set
corresponds to the set (0,∞)× (0,∞] in the original parametrization.

Normal distributions are exponential families. The two-parameter case is
studied in the next example. The one-parameter cases, where either the vari-
ance or the mean is known, are considered in Lemma 1.37 and Example 1.38,
respectively.

Example 1.11. Let X be an observation from a normal distribution N(μ, σ2),
where (μ, σ2) ∈ Λ = R × (0,∞) is unknown. The density ϕμ,σ2 of the distribution
N(μ, σ2) with respect to the Lebesgue measure λ on R is

ϕμ,σ2(x) = (2πσ2)−1/2 exp
{
−(2σ2)−1(x− μ)2

}
= exp

{
κ1(μ, σ

2)T1(x) + κ2(μ, σ
2)T2(x)− (1/2)[μ2/σ2 + ln(2πσ2)]

}
,

where

(T1(x), T2(x)) =
(
x, x2) , (1.16)

(θ1, θ2) =
(
κ1(μ, σ

2), κ2(μ, σ
2)
)

:=
(
μ/σ2,−1/(2σ2)

)
,(

μ, σ2) = (γ1(θ), γ2(θ)) := (−θ1/(2θ2),−1/(2θ2)).

Hence N(μ, σ2), (μ, σ2) ∈ R × (0,∞), is a reparametrized exponential family with
generating statistic T = (T1, T2) and ϕμ,σ2 turns into

fθ(x) = exp {θ1T1(x) + θ2T2(x)−K(θ)} , where

K(θ) = −(1/2)[−θ2
1/(2θ2) + ln(−θ2/π)], θ ∈ R× (−∞, 0). (1.17)

The set Δ = R× (−∞, 0) is the natural parameter set as
∫

exp {θ1T1(x) + θ2T2(x)}λ(dx) <∞

if and only if (θ1, θ2) ∈ R × (−∞, 0). Thus we have a regular two-parameter expo-
nential family, represented in natural form by fθ, θ ∈ R× (−∞, 0), and represented
in reparametrized form by ϕμ,σ2 , (μ, σ2) ∈ R × (0,∞). The latter is based on the
statistically relevant parameters μ and σ2.

Suppose now that we have a sample of size n; i.e., let X1, ..., Xn be i.i.d. with
distribution N(μ, σ2). Then by Proposition 1.4 N⊗n(μ, σ2), (μ, σ2) ∈ R × (0,∞), is
again an exponential family, but now with the generating statistic

T⊕n(x1, ..., xn) = (
∑n

i=1
xi,
∑n

i=1
x2

i ).
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Problem 1.12.∗ The family of distributions in the reduced model (N⊗n(μ, σ2)) ◦
T−1
⊕n has the Lebesgue density σ−2ϕnμ,nσ2(s1)hn−1(s2/σ

2 − s2
1/(nσ

2)), where hn−1

is the Lebesgue density of a χ2-distribution with n− 1 degrees of freedom.

Next we consider some exponential families that appear as distributions
of nonnegative random variables.

Example 1.13. Let (Ga(λ, β))λ,β>0 be the family of gamma distributions which
have the Lebesgue densities

gaλ,β(x) =
βλ

Γ (λ)
xλ−1 exp{−βx}I(0,∞)(x), x ∈ R, λ, β > 0.

We introduce the measure μ by μ(dx) = I(0,∞) (x)x−1λ(dx), and set T1(x) = lnx,
T2(x) = −x, x > 0. The μ-density is then given by (1.6), with K(λ, β) = lnΓ (λ)−
λ lnβ, and (Ga(λ, β))λ,β>0 becomes a two-parameter exponential family in natural
form with natural parameter θ = (λ, β) ∈ Δ = (0,∞) × (0,∞) and generating
statistic T (x) = (lnx,−x).

Problem 1.14. Represent the family (Ga(λ, β))λ,β>0 for a fixed known λ, as well
as for a fixed known β, as a one-parameter exponential family in natural form.
Extend this representation to the case of an i.i.d. sample X1, ..., Xn where the dis-
tribution of X1 belongs to the gamma family.

Problem 1.15.∗ Let (Be(α, β))α,β>0 be the family of beta distributions, which
have the Lebesgue densities

beα,β(x) =
Γ (α + β)

Γ (α)Γ (β)
xα−1(1− x)β−1I(0,1)(x), x ∈ R, α, β > 0.

It can be represented as a two-parameter exponential family in natural form.

Perhaps the most important and useful analytic property of an exponential
family in natural form is that in its expectations, differentiations with respect
to the coordinates of θ = (θ1, ..., θd) ∈ Δ0 and integration with respect to
x ∈ X can be exchanged. Denote by C = {z : z = u + iv, u, v ∈ R} the
set of complex numbers, where u and v are the real and imaginary parts
of z, respectively. Similarly, we set C

d = {z : z = u + iv, u, v ∈ R
d} and

again denote by u and v the real and imaginary parts of the vector z ∈ C
d.

A function ψ = ψ1 + iψ2 is called measurable if ψ1 and ψ2 are real-valued
measurable functions and denote this again by ψ : X →m C. We set for any
μ ∈M(A)

U = {u : u ∈ R
d,

∫
|ψ(x)| exp{〈u, T (x)〉}μ(dx) <∞}.

Then with z = u + iv the relation | exp{iα}| = 1 yields | exp{〈z, T (x)〉}| =
| exp{〈u, T (x)〉}| so that the function

Mψ(z) =
∫
ψ(x) exp{〈z, T (x)〉}μ(dx)
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is well defined on F = U + iRd = {z : z = u+ iv, u ∈ U, v ∈ R
d}. For brevity,

we introduce the notation

Dα : =
∂m1+···+md

∂zm1
1 · · · ∂zmd

d

, α = (m1, ...,md) ∈ N
d,

|α| =
∑d

l=1
ml, zα = zm1

1 · · · zmd

d .

We recall that for an open set A ⊆ C
d a function f : A→ C, is called analytic

if, for every z0 ∈ A, f can be expanded in a power series

f(z) =
∑∞

k=0

∑
α:|α|=k

1
m1! · · ·md!

aα(z − z0)α

which is absolutely convergent in some neighborhood of z0. In this case f is
infinitely often differentiable and it holds

Dαf(z0) = aα. (1.18)

The following result has been established in the literature in several different
versions. Presumably, the first proof was presented in Lehmann (1959).

Lemma 1.16. For every θ0 ∈ U
0 there exists some ε > 0 such that

∫
exp{ε ‖T (x)‖}|ψ(x)| exp{〈θ0, T (x)〉}μ(dx) <∞. (1.19)

The function Mψ(z) =
∫
ψ(x) exp{〈z, T (x)〉}μ(dx) is analytic in the interior

F
0 = U

0 + iRd of F, and it holds for α = (m1, ...,md),

DαMψ(z) =
∫
ψ(x)Tm1

1 (x) · · · Tmd

d (x) exp{〈z, T (x)〉}μ(dx)

=
∫
ψ(x)Dα exp{〈z, T (x)〉}μ(dx), z ∈ F

0.

Proof. Fix z0 = (z1,0, ..., zd,0) ∈ U
0 + iRd and z = (z1, ..., zd) and de-

note by ui and ui,0 the real parts of z and z0, respectively. The inequalities
‖T‖ ≤

∑d
i=1 |Ti| and exp{|x|} ≤ exp{x} + exp{−x} imply (1.19). The latter

inequality and
∑n

k=0 |w|k/k! ≤ exp{|w|} yields for ‖z − z0‖ ≤ δ

|ψ(x) exp{〈z0, T (x)〉}|
∑n

l=0

| 〈z − z0, T (x)〉 |l
l!

≤ | ψ(x) exp{
∑d

j=1
uj,0Tj(x)} | exp{δ

∑d

j=1
|Tj(x)|}

≤
∑

ε1,...,εd∈{−1,0,1}
|ψ(x)| exp{

∑d

j=1
(uj,0 + εjδ)Tj(x)}.



1.1 Exponential Families 11

For sufficiently small δ and the vectors (u1,0 + ε1δ, ..., ud,0 + εdδ) belong to U
0

so that the function on the right-hand side of the above inequality is integrable
with respect to μ. Hence by Lebesgue’s theorem (see Theorem A.18),

Mψ(z) =
∫
ψ(x) exp{〈z0, T (x)〉}

∑∞

k=0

〈z − z0, T (x)〉k

k!
μ(dx)

=
∑∞

k=0

∑
|α|=k

1
m1! · · ·md!

aα(z − z0)α,

where
aα =

∫
ψ(x)Tm1

1 (x) · · · Tmd
1 (x) exp{〈z0, T (x)〉}μ(dx).

The relation aα = Dαf(z0) in (1.18) with f = Mψ completes the proof.

Theorem 1.17. Let (Pθ)θ∈Δ be an exponential family in natural form as
given by (1.5). Then for every θ ∈ Δ0 there exists an ε > 0 with

Eθ exp{ε ‖T‖} <∞, (1.20)

so that
Eθ ‖T‖a <∞ for every a > 0. (1.21)

The function K is infinitely often differentiable in Δ0 and it holds for every
α = (m1, ...,md) ∈ N

d,

EθT
m1
1 · · · Tmd

d = exp{−K(θ)}Dα exp{K(θ)}. (1.22)

Proof. The statement (1.20) follows from (1.19), and (1.21) is implied by
(1.20). From Lemma 1.16 we can see for ψ(x) ≡ 1 that the real-valued function
exp{K(θ)} =

∫
exp{〈θ, T 〉}dμ is infinitely often differentiable in U

0 = Δ0.
Because

∫
exp{〈θ, T 〉}dμ �= 0, the function K(θ) is also infinitely often differ-

entiable. To prove (1.22) we note that by Lemma 1.16

exp{K(θ)}EθT
m1
1 · · · Tmd

d =
∫
Tm1

1 (x) · · · Tmd

d (x) exp{〈θ, T (x)〉}μ(dx)

=
∫
Dα exp{〈θ, T (x)〉}μ(dx) = Dα

∫
exp{〈θ, T (x)〉}μ(dx)

= Dα exp{K(θ)}.

Remark 1.18. In the previous lemma we have proved the existence of all mo-
ments of T provided the parameter belongs to the interior of Δ. For the bound-
ary points, in general, this statements is no longer true as the following example
shows. Consider the inverse Gaussian distribution Gi(λ,m) with natural parameters
(θ1, θ2) =

(
−λ/(2m2),−λ/2

)
∈ (−∞, 0]× (−∞, 0) and Lebesgue density giλ,m from

(1.14) for θ1 = 0, i.e., giλ,∞ in (1.15). Obviously E0,θ2T1 =
∫∞
0

x giλ,∞(x)dx = ∞.
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There is a simple explanation for this effect. We have pointed out in Example 1.10
that giλ,m is the density of the first passage time at which the process νt + σW (t)

crosses the level a, where λ = (a/σ)2 and m = a/ν. The case m = ∞ corresponds
to ν = 0, i.e., there is no positive drift. In this case the Wiener process hits the level
a very late so that the hitting time is finite with probability one, but the expected
value is infinite.

For brevity, we introduce the notation

∇ =
(

∂

∂θ1
, ...,

∂

∂θd

)T

and ∇∇T =
(

∂2

∂θi∂θj

)
1≤i,j≤d

.

The following formulas for calculating the means and covariances of T1, ..., Td
are direct consequences of (1.22).

Corollary 1.19. Under the assumptions of Theorem 1.17, and conditions
(A1) and (A2), for every θ ∈ Δ0 the mean vector and the covariance ma-
trix of T are given by

EθT = ∇K(θ), Cθ(T ) = ∇∇TK(θ). (1.23)

The matrix ∇∇TK(θ) is nonsingular for every θ ∈ Δ0 and the infinitely often
differentiable function K is strictly convex in Δ0.

Proof. Let θ ∈ Δ0. From (1.22) we get for any θ ∈ Δ0 and Dα = ∂
∂θi

,

EθTi = exp{−K(θ)} ∂

∂θi
exp{K(θ)} =

∂K(θ)
∂θi

.

This proves the first statement. Similarly with Dα = ∂2

∂θi∂θj
,

EθTiTj = exp{−K(θ)} ∂2

∂θi∂θj
exp{K(θ)}

=
∂K(θ)
∂θi

∂K(θ)
∂θj

+
∂2K(θ)
∂θi∂θj

=
∂K(θ)
∂θi

∂K(θ)
∂θj

+
∂2K(θ)
∂θi∂θj

.

The nonsingularity of ∇∇TK(θ) follows from Cθ(T ) = ∇∇TK(θ) and the
fact that by assumption (A1) the components of T are not a.s. linearly de-
pendent, and Problem 1.3. We already know from (1.4) that K is convex. The
nonsingularity of ∇∇TK(θ) implies that K is strictly convex.

We illustrate the above results by examples.

Example 1.20. It has been shown in Example 1.13 that (Ga(α, β))α,β>0 is a two
parameter exponential family in natural form with natural parameter (λ, β) and gen-
erating statistic T (x) = (T1(x), T2(x)), where by K(λ, β) = lnΓ (λ)−λ lnβ, λ, β > 0.
From (1.23) we get, with Ψ = Γ ′/Γ ,

EθT = (Ψ(λ)− lnβ,−λ

β
) and Cθ(T ) =

(
Ψ ′(λ) − 1

β

− 1
β

λ
β2

)
.
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Example 1.21. Let X1, X2, ... be a Bernoulli sequence with success probability p,
where p ∈ (0, 1). For a fixed given k ∈ {1, 2, ...} let X = min{n : X1 + · · · + Xn =
k} − k. Thus, X + k is the number of times one has to play a game with winning
probability p in independent repetitions until k games have been won. X follows a
negative binomial distribution Nb(k, η) with p.m.f.

nbk,p(x) =
(x + k − 1)!

x!(k − 1)!
pk(1− p)x, x = 0, 1, 2, ...

Put θ = κ(p) = ln(1−p), and μ({x}) = (x+k−1)!/(x!(k−1)!). Then the distribution
of X has the density fθ(x) = exp{θx + k ln(1 − exp{θ})} with respect to μ. This
shows that Nb(k, 1 − eθ) is a one-parameter exponential family with T (x) = x and
K(θ) = −k ln(1− exp{θ}). From (1.23) we get

Eκ(p)T = k
1− p

p
and Vκ(p)(T ) = k

1− p

p2
.

In the previous examples we have already studied different ways of
parametrizing an exponential family. However, among all parametrizations
there is one in particular, not mentioned so far, that has a special meaning.
This is the so-called mean value parametrization which is considered at the
conclusion of this section. To prepare for this parametrization we need the
following well-known result (see, e.g., Brown (1986) and Witting (1985)).

Theorem 1.22. Under the assumptions of (A1) and (A2) the mapping

γm : θ �→ ∇K(θ) = EθT (1.24)

is a diffeomorphism of Δ0 onto the open set γm(Δ0).

Proof. We already know from Corollary 1.19 that K is strictly convex.
This yields for every θ1, θ2 ∈ Δ0 with θ1 �= θ2,

K(θ1) > K(θ2) + 〈(θ1 − θ2),∇K(θ2)〉 ,
K(θ2) > K(θ1) + 〈(θ2 − θ1),∇K(θ1)〉 .

Hence, 〈θ2 − θ1,∇K(θ1)−∇K(θ2)〉 < 0, so that θ1 �= θ2 implies ∇K(θ1) �=
∇K(θ2) and γm is a bijection. As by Proposition 1.16 K is infinitely often
differentiable we see that the mapping γm is continuously differentiable. An
application of the global inverse function theorem (see, e.g., Theorem 3.2.8 in
Duistermaat and Kolk (2004)) completes the proof.

Brown (1986) proved under the so-called steepness condition a stronger re-
sult which at the same time characterizes the range γm(Δ0). We come back to
this result later when we study maximum likelihood estimators in exponential
families in Section 7.5.

By denoting the inverse mapping of γm by κm, we can represent the expo-
nential family in the mean value parametrization, at least for θ ∈ Δ0, by

Pκm(μ), μ ∈ γm(Δ0).


