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Preface

The theory of series in the 17th and 18th centuries poses several interesting
problems to historians. Indeed, mathematicians of the time derived numer-
ous results that range from the binomial theorem to the Taylor formula,
from the power series expansions of elementary functions to trigonometric
series, from Stirling’s series to series solution of differential equations, from
the Euler–Maclaurin summation formula to the Lagrange inversion theorem,
from Laplace’s theory of generating functions to the calculus of operations,
etc. Most of these results were, however, derived using methods that would
be found unacceptable today, thus, if we look back to the theory of series
prior to Cauchy without reconstructing internal motivations and the concep-
tual background, it appears as a corpus of manipulative techniques lacking
in rigor whose results seem to be the puzzling fruit of the mind of a ma-
gician or diviner rather than the penetrating and complex work of great
mathematicians.

For this reason, in this monograph, not only do I describe the entire
complex of 17th- and 18th-century procedures and results concerning series,
but also I reconstruct the implicit and explicit principles upon which they
are based, draw attention to the underlying philosophy, highlight competing
approaches, and investigate the mathematical context where the series the-
ory originated. My aim is to improve the understanding of the framework of
17th- and 18th-century mathematics and avoid trivializing the complexity
of historical development by bringing it into line with modern concepts and
views and by tacitly assuming that certain results belong, in some unprob-
lematic sense, to a unified theory that has come down to us today.

The initial and final points of my monograph require some clarification.
The point of departure is the publication of a paper by Viète, Variorum
de rebus mathematicis responsorum. Liber VIII (1593), where geometrical
series are discussed and π is expressed in the form of an infinite product.
Even though previous tracks of infinite series can be found, Viète’s paper,
when considered in the context of the new rising symbolic algebra, appears
to be a step forward in a path –very slow to begin with, but that developed
much more rapidly after 1650– that has made series an essential instru-
ment in mathematics. The point of arrival is the early 1820s when Cauchy
published Cours d’analyse and Résumé des leçons données à l’École Royale
Polytechnique sur le calcul infinitésimal, which can be considered to mark
the definitive abandonment of the 18th-century formal approach to the series
theory.

My main arguments can be summarised as follows. The mathematicians
who first used series were interested in their capacity to represent geometrical
quantities and had an intuitive idea of convergence. They thought that a
series represented a quantity and had a quantitative meaning if, and only if,

vii



viii Preface

it was convergent to this quantity. However, a distinction between finite and
infinite sums was lacking, and this gave rise to formal procedures consisting
of the infinite extension of finite procedures. In the works of mathematicians
such as Newton and Leibniz, the quantitative and the formal aspect co-
existed and formal manipulations were a tool for deriving convergent series.

As from the 1720s, several results began to upset the previously estab-
lished balance between the quantitative and the formal. Mathematicians in-
troduced recurrent series, which stressed the law of formation of coefficients,
independently of the convergence of series. The attempt to improve the ac-
celeration of series subsequently led to the emergence of asymptotic series,
which showed the possibility of using divergent series to obtain appropriate
approximations. Furthermore, the investigation of continued fractions and
infinite products and certain applications of series (for instance, in numerical
analysis and in number theory) increasingly stressed the formal aspects.

In this context, Euler offered a unitary interpretation of the complex
of results concerning series, which even allowed the acceptance of those
findings that did not form part of the early theory. A series was thought to
be the result of a formal transformation of an analytical quantity expressed
in a closed form. This transformation was considered sufficient to give a
meaning to the series, even when the latter was not convergent. However,
mathematicians were not free to invent transformations by a free creative
act. They limited themselves to using the same transformations that were
used in the original theory or at least were compatible with it. This seemed
to guarantee that the new more formal conception was a generalization of
earlier conception, which remained the essential basis from which all the
parts of the series theory were subsequently generated.

The more formal Eulerian approach was widely predominant during the
second part of the 18th-century for two main reasons. First, mathematicians
who were critical of it were not able to eliminate the formal aspects of the
early concept and found a really new theory: They always used the formal
methodology that had led to asymptotic series and to the combinatorial use
of series. Second, the formal concept of series contributed to the growth of
mathematics. It led to many new discoveries and even to a new branch of
analysis: the calculus of operations.

The formal approach became unsuited to most advanced mathematical
research toward the end of the 18th century and the beginning of the 19th
century. Applied mathematics encouraged investigations and introduction
of new functions in analysis, but formal methodology was unable to treat
quantities that were not elementary quantities and series that were not power
series. The need to use trigonometric series to enable the analytical inves-
tigation of heat led Fourier to reject the formal concept of series and assert
an entirely quantitative notion of series. Similarly, the need to introduce
hypergeometric and gamma functions into analysis and to have an adequate
analytical theory of them forced Gauss to highlight the quantitative meaning
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of the sum of series and to reject formal manipulations. The new approach
based only upon convergence was the basis of Cauchy’s treatises.

Given the purposes of this book, I cannot avoid dealing with some top-
ics that are closely connected to series theory and are crucial to an under-
standing of its historical evolution: Not only do these include other infinite
processes (continued fractions and infinite products) but also certain basic
mathematical notions (quantity, numbers, functions) and the 18th-century
concept of analysis.

This book is divided into four parts. The first part starts with a chapter
devoted to the use of series prior to the rise of the calculus (Chapter 1),
where I deal principally with Viète, Grégoire de Saint-Vincent, Mengoli,
Wallis, and Gregory. I then move on to investigate the conception of the
founders of the calculus (Leibniz in Chapter 2; Newton in Chapter 4). On the
basis of this examination, and after discussing the contributions of Johann
and Jacob Bernoulli (Chapters 3 and 5) and the notion of a quantity and of
a number (Chapter 7), I offer an interpretative scheme of the early theory
of series in Chapter 8. The first part also includes the appearance of Taylor
series in Newton and Taylor (Chapter 6) and the rise of the problem of the
sum of a divergent series in one of Grandi’s writings and the ensuing debate
in Leibniz, Varignon, Daniel Bernoulli, and Goldbach (Chapter 9).

In the second part, I illustrate the development of series theory from the
1720s to the 1750s. De Moivre’s recurrent series and Bernoulli’s method for
solving equations are the subject of Chapter 10. Chapter 11 deals with the
attempt to improve the acceleration of series and Stirling’s series, the first
example of asymptotic series. Chapter 12 examines the geometric conception
of Colin Maclaurin. Most of the second part is devoted to Euler, “the
master of all us,” to use an expression that Libri [1846, 51] ascribes to
Laplace. From 1730 to 1750, Euler obtained many important results, which
I examine in Chapters 13 to 17. In particular, I shall concentrate on the
problem of interpolation and some of Euler’s first findings (Chapter 13),
on Euler’s derivation of the Euler–Maclaurin summation formula (Chapter
14), on issues connected to the interpretation of asymptotic series (Chapter
15), on the theory of infinite products and continued fractions (Chapter 16),
and on the application of series to number theory (Chapter 17). Chapter
18 is a digression on some basic principles of analysis during the period
from the 1740s to the 1810s, which is essential for understanding series
theory in the second half of the 18th century. In particular, the relationship
between analysis and geometry, the notion of a function, and the principle of
generality of algebra are examined. In Chapter 19, I discuss some criticisms
of certain procedures and how Euler rejected them by giving a merely formal
interpretation of the notion of the sum.

The third part is devoted to the period when formal conception held
undisputed sway. I begin by illustrating some of the greatest successes of
the formal approach during the second part of the 18th century: the La-
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grange inversion theorem, which is discussed in Chapter 20, the calculus
of operations, examined in Chapter 21, and Laplace’s theory of generating
functions (the subject of Chapter 22). The problem of the representation
of transcendental quantities and their analytical investigation is treated in
Chapters 23, 24, and 25.

Integration by series and series solutions to differential equations were
already known by the beginning of the calculus, but they underwent a re-
markable development after Euler: Some examples from Euler, Laplace and
Legendre are given in Chapter 26. I then deal with trigonometric series for
which mathematicians applied the same procedure as that used for power
series. This prevented them from being fully understood (Chapter 27).

The attempts to prove the binomial theorem, Lagrange’s view of the
Taylor theorem, and other significant developments that took place between
the end of the 18th century and the beginning of 19th century are the subject
matter of Chapter 28.

Chapters 29 and 30 focus on the problematic attempt of Legendre to
enlarge the realm of accepted functions and to the emergence of techniques
of inequalities in d’Alembert’s and Lagrange’s work.

The fourth and final part is devoted to the crisis in formal methods. It
deals with Fourier’s investigations of Fourier series (Chapter 31), Gauss’s
work on hypergeometric and gamma functions (Chapter 32), and Cauchy’s
contributions on series during the early 1820s (Chapter 33). The concep-
tions of these mathematicians differ from all other mathematicians discussed
in this book since they belong to a new historical phase. However, the dis-
cussion of their approach allows me to illustrate some hypotheses about the
abandonment of 18th-century series theory.

In order to write this monograph I have drawn on various papers of mine,
in particular:

Some parts of “True and fictitious quantities in Leibniz’s theory of series”,
published in Studia Leibnitiana, 32 (2000), pp. 43–67 (copyright Franz
Steiner Verlag GmbH, Stuttgart) are reproduced in Chapters 2, 3, and
9.

Some parts of “Functions, functional relations and the laws of continuity
in Euler”, published in Historia Mathematica, 27 (2000), pp. 107–
132 (copyright Elsevier), and “Analytical symbols and geometrical fig-
ures. Eighteenth century analysis as nonfigural geometry”, published
in Studies in History and Philosophy of Science Part A, 32 (2001), pp.
535–555 (copyright Elsevier), are reproduced in Chapter 18.

Some parts of “Some aspects of Euler’s theory of series. Inexplicable func-
tions and the Euler–Maclaurin summation formula”, published in His-
toria Mathematica, 25 (1998), pp. 290–317 (copyright Elsevier), are
reproduced in Chapters 13, 14, and 24.
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Some parts of “The value of an infinite sum. Some observations on the Eu-
lerian theory of series”, published in Sciences et Techniques en Per-
spective, 4 (2000), pp. 73–113, are reproduced in Chapters 15 and
19.

Some parts of “Convergence and formal manipulation in the theory of series
from 1730 to 1815”, published in Historia Mathematica, 34 (2007) pp.
62–88 (copyright Elsevier), are reproduced in Chapters 26, 27 and 31.

Some parts of “The foundational aspects of Gauss’s work on the hyper-
geometric, factorial and digamma functions”, published in Archive
for History of Exact Sciences, 61 (2007), 457-518 (copyright Springer-
Verlag) are reproduced in Chapters 29, 30, and 32.

I would like to thank Studia Leibnitiana, Sciences et Techniques en Per-
spective, Studies in History and Philosophy of Science, Historia Mathemat-
ica, and Archive for History of Exact Sciences for their permission to include
material from the above-mentioned articles.

Finally, I would like to thank Craig Fraser and Jesper Lützen for their
suggestions that have been helpful in the preparation of this volume.

Afragola, Italy
May 2007
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Part I

From the beginnings of the 17th
century to about 1720:
Convergence and formal
manipulation

In the first part of the present book, I examine the emergence of series theory
and its development up to around 1720.

Series were introduced in mathematics mainly to solve geometric prob-
lems. Their use, which was initially rather sporadic, began to take on im-
portance around 1650 and was crucial to the rise of the calculus. In Newton
and Leibniz’s times many results were obtained: They came to form an
organic corpus of knowledge that constituted the early theory of series.1

From the very beginning mathematicians had an intuitive idea of con-
vergence and they thought that convergent series2 could represent geometric
quantities.3 However, convergence was not considered as a preliminary con-
dition for handling series. Mathematicians did not distinguish between op-
erations on infinite series and operations on finite series, and they formally
manipulated infinite series by applying the same rules that were employed
for finite sums. Therefore, series theory had a twofold aspect, the first based
upon convergence, the second upon formal manipulation.

The formal aspect was not caused by the imprecision or vagueness of
certain formulations and certain concepts; rather it was rooted in the ba-
sic notion of 17th- and 18th-century mathematics, the notion of quantity.
Sometimes, especially in the first years, the formal aspect was almost hidden
by the simplicity of the employed series and from the immediacy of geomet-
ric reference. At other times, the formal aspect appeared. This occurred
mainly when the attention was focused on the problem of finding the devel-
opment of given quantities. In early series theory, mathematicians thought

1The term ”theory” is, of course, not intended in the sense of a formal theory but
instead as an organic set of principles, rules, methods, and logical deductions concerning
a specific subject.

2Two terminological specifications are necessary. First, during the 17th and 18th cen-
turies, mathematicians used the term ”series” to denote both series and sequences. This
could give rise to confusion. I shall therefore distinguish a series

∑∞
n=1an from a sequence

{an}∞n=1. Second, prior to Cauchy, the term ”convergence” usually denoted that the se-
quence an was decreasing and tended toward 0. I prefer to employ the term ”convergence”
in Cauchy’s sense, namely a series is convergent if it has a finite sum, except for quotation
and some particular cases that are explicitly indicated.

3I shall discuss the notion of quantity later on. At this moment I use the term ”geo-
metric quantity” to refer to lines or other geometrical objects connected to a curve, such
as ordinate, abscissa, arc length, subtangent, normal, area between curves and axes, etc.

1



2 Convergence and Formal Manipulation

that the coexistence of the two aspects of series theory was guaranteed

(a) by the assumption that the expansion into series of a given quantity
was convergent at least for an interval of values of the variable,

(b) by the possibility of postponing the investigation of convergence to
the phase of application of a certain series to specific geometrical,
mechanical or numerical problems.

Only in a few isolated cases did mathematicians recognize tensions or
difficulties between convergence and formal manipulation.

Part I is divided into nine chapters. In the first chapter, I examine
the earliest researches on series, infinite products, and continued fractions
mainly by examining the works of Viète, Grégoire de Saint-Vincent, Men-
goli, Wallis, Mercator, and James Gregory. In the following five chapters, I
explore the early theory of series with particular attention to the relation-
ship between convergence and formal manipulation and to the geometrical
context in which the theory was originated. I concentrate upon the writ-
ings of Leibniz (Chapters 2 and 3), Johann Bernoulli (Chapter 3), Newton
(Chapter 4), Jacob Bernoulli (Chapter 5), and Taylor (Chapter 6). This
investigation provides the basis for an analysis of the notion of quantity
and a comprehensive interpretation of early theory series (Chapters 7 and
8). Finally, Chapter 9 is devoted to the question of Grandi’s series and the
early debate on divergent series.



1 Series before the rise of the calculus

Even though series were occasionally found earlier, it is only from the 17th
century that they began to be a topic of importance in mathematics. Their
use mainly arose in the context of the problem of quadratures and rectifi-
cations of curves. During the 17th century, mathematicians attempted to
find new methods for squaring curved lines, which avoided the difficulty of
the so-called method of exhaustion.4 This method, which had been one of
the greatest successes of Greek geometry, made it possible to determine the
area A of a given figure by means of a complex procedure divisible in two
phases.

1. One or two sequences of polygons were constructed so that the areas of
these polygons approximated to the given figure and suggested that
the sought area A was equal to a certain area P .

2. One proved A = P by means of a double reductio ad absurdum (namely,
one showed that neither A > P nor A < P was true).

A classic example is the quadrature of the parabolic segment obtained
by Archimedes5. As the first step in the proof, one considers the triangle
ABC with area F , which is greater than one-half of the parabolic segment
ACB with area P (see Fig. 1). Then, one considers the diameters B1V1

and B1V2 such that AV1 = AV2 = AH
2 and constructs the triangles AB1C

and BB2C. These triangles are greater than one-half of the corresponding
parabolic segments AB1C and BB2C. Moreover, both the triangles AB1C
and BB2C are equal to 1

8F and, consequently, their sum is 1
4F . The process

can be continued so as to construct a sequence Hn such that

• Hn is a polygon formed by the sum of the triangles,

• at the nth step, the area of Hn is 1
4n−1 F ,

• the polygons Hn exhaust (namely, fill up entirely) the segment,

• the sum Sn of the areas of all the triangles up to the nth step is given
by the finite geometric progression

Sn = F +
F

4
+

F

16
+

F

64
+ . . . +

F

4n−1
. (1)

After having shown that

Sn +
1
3

F

4n−1
=

4
3
F , (2)

Archimedes proved that the area of the parabolic segment is 4
3F by

reasoning as follows.
4The name is due to Grégoire de Saint-Vincent [1647, 740].
5See Archimedes [QA, 233–252].

3



4 Convergence and Formal Manipulation

                     A                 V1        H             V2              B

B1 B2

    C

Fig. 1

• If P > 4
3F , then P − 4

3F > 0 and one can continue the exhaustion
process until one obtains a sum Sn such that P −Sn < P − 3

4F . Hence,
Sn > 3

4F , which contradicts formula (2).

• If P < 4
3F , then 4

3F − P > 0. Since the triangles constructed become
increasingly smaller, at a certain step n, the area F

4n−1 of the polygon
Hn becomes less than 4

3F − P . From (2), one obtains

4
3
F − Sn =

1
3

F

4n−1
<

F

4n−1
<

4
3
F − P.

Hence, Sn > P , which is impossible.

During the 17th century, the method of exhaustion was always considered
as a model of a rigorous mathematical reasoning, although it was thought
to be too difficult, especially because of the double reductio ad absurdum.
It was also thought to be too particular, since it was connected to specific
properties of certain geometrical figures and the reasoning used in a specific
case could not be used in others. In effect, the method of exhaustion was not
a method of finding or discovery, but rather it was a method of justification
of known results. Consequently, mathematicians searched for new methods
that were easier and had a more general application. This led in a very
natural way to the consideration of series and even infinite products and
continued fractions. For instance, in the above-mentioned quadrature of
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the parabola, it is possible to avoid the double reductio ad absurdum by
using the series

∑∞
n=0

1
4n . It is no wonder that series are found in many

17th-century works concerning the quadratures of curves and almost all the
precursors of the calculus run up against series. In particular, the attempt
to merge Cavalieri’s geometrical method of indivisibles with the emerging
use of algebra led to the investigation of several series.

∗ ∗ ∗

Geometric series played a crucial role in earlier research on series. In the
1590s, geometric series6 were mentioned in a work by Francois Viète, Vari-
orum de rebus mathematicis responsorum, in which he tackled the problem
of the quadrature of circle. In this paper Viète determined the sum of a
geometric series

∑∞
i=1 ai. His starting point was Proposition 12 in Book 5 of

Euclid’s Elements: If any number of magnitudes are proportional, then one
of the antecedents is to one of the consequents as the sum of the antecedents
is to the sum of the consequents (see Euclid [E]). In modern symbols, if
sn =

∑n
i=1 ai, then

a1 : a2 = (sn − an) : (sn − a1).

Hence,
a1 − a2

a1
=

a1 − an

sn − an
.

By assuming that the terms of the geometric series were decreasing, Viète
obtained

a1 − a2

a1
=

a1

s
, (3)

where s =
∑∞

i=1 ai. He justified (3) by stating that the magnitudes an were
changed into nothing (in nihil) when the series was continued ad infinitum.7

As an example, Viète considered the series

∞∑

n=0

1
4n

=
4
3

and explicitly noted that it fitted the Archimedean quadrature of the parabola.

6It worthwhile pointing out that geometric series had already appeared earlier. N.
Oresme dealt with the nature and summation of geometric series in a manuscript, the
Quaestiones super geometriam Euclidis, which was only published in 1961 (On Oresme’s
treatment of series, see Mazet [2003]). Oresme’s results seem to have had little influence
on the rise of series theory in 17th century.

7See Viète [1593, 397–398].
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A few decades later, Grégoire de Saint-Vincent made geometric series
a crucial instrument of his method of quadratures.8 He wrote a remark-
able treatise, the Opus geometricum, devoted to the quadrature of conics,
which was published in 1647 though its essential aspects dated back to be-
fore 1625. Grégoire observed that the classic problems inherited from the
Ancients had not been solved after many centuries; he therefore thought
that new techniques and new methods needed to be discovered (unde novas
artes et methodo novas iudicam excogitandas) to fill the lacunae of ancient
geometry [1647, 51–52]. Such new methods were grounded precisely on in-
finite geometric series, which he discussed at length in the second book of
the Opus geometricum.

Saint-Vincent defined a geometric series to be “a finite quantity divided
by an uninterrupted sequence according to a given ratio” and distinguished
series from progressions [1647, 54]. He used the term “progression” to mean
both a finite sequence of the terms of a geometric series (which he understood
as infinite) and the sum of this finite sequence. Saint-Vincent used the term
“limit” to denote the sum of a geometric series and stated that the “limit”
of a progression was the end of the series that the progression did not reach
–even if it continued indefinitely; however, the progression could approach
this limit more than any given quantity [1647, 54].

Saint-Vincent, as well Viète, had an intuitive but clear idea of what the
sum of series was (whatever words they used to denote the sum). By us-
ing more recent terminology, we could state that, in their opinion, a series∑∞

k=0 ak had a sum S if the sequence of nth sums Sn =
∑n

k=0 ak was conver-
gent to S; namely, if it approached S indefinitely when n increased so that
the difference between Sn and S (in absolute value) became less than any
given quantity. As we shall see below, this idea of the sum lay at the heart
of the series theory during both the 17th century and, in a more complicated
form, the 18th century.

Basing his argument on the concept of the sum, Saint-Vincent examined
the famous paradox of Achilles and the turtle. He showed that Achilles gains
on the turtle according to a decreasing geometric series, which has a finite
sum. Therefore, Achilles does reach the turtle and one can also determine
the point where the turtle is reached by summing the series [1647, 97–98].

Saint-Vincent obtained several results by applying geometric series.9

One of the most interesting is the following proposition concerning the
quadrature of the hyperbola:

Let AY and AX be the asymptote of the hyperbola HKM [see
Fig. 2]. If the segment AX is divided into segments AB, AC,

8On Grégrorie de Saint-Vincent, see Dhombres [1995].
9Saint-Vincent, in particular, determined the sums of

∑∞
n=0 qn and

∑∞
n=0 qkn, for an

integer k [1647, 115–149] and constructed two geometric series with different n-th terms
but with the same sum [1647, 97–98].
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CD, DE that are in continued proportion, then the areas BCKH,
CDLK,DEMN are equal10 (Saint Vincent [1647, 586]).

       Y

          H

                                              K
                                                       L

                            M

A     B C D E                       X

Fig. 2

Saint-Vincent did not employ the term “logarithm”. This term had al-
ready been introduced at that time although it was used with a meaning that
differed considerably from the modern one. Indeed, the word “logarithms”
denoted the terms of an arithmetical progression that were matched with
the terms of a geometric progression in sequence11. By using the term log-
arithm in this sense, Saint-Vincent’s theorem can be formulated by stating
that the areas BCKH, CDLK, DEMN are the logarithms of the abscissas
of the hyperbola HKM . This formulation was made explicit by de Sarasa
in 1649.12

∗ ∗ ∗

Pietro Mengoli was another mathematician who made a remarkable con-
tribution to the rising theory of series. He was taught mathematics by
Cavalieri and was influenced by Saint-Vincent and Torricelli13. In 1650,

10In other words, if the abscissa are in a geometric progression, then the areas are in an
arithmetic progression.

11See Burn [2001, 4].
12As regards different historical interpretations of the actual contributions of Saint-

Vincent and de Serasa to the study of natural logarithms, see Burn [2001].
13I point out that Torricelli gave a geometric proof of the sum of a geometric series in his

De dimensione Parabolae [1644]. For Torricelli’s proof, I refer to Panza [1992, 307–308].
A similar geometrical proof, given by Leibniz, is discussed in Chapter 2.
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Mengoli published several results concerning series in Novae quadraturae
arithmeticae, seu de additione fractionum, a treatise that stemmed from the
examination of the Archimedean quadrature of parabola, as he stated in the
introduction.14 Mengoli based his argument upon two axioms:

1. If infinite magnitudes have an infinite extension, then one can take a
certain number of these magnitudes such that they exceed any finite
extension (In modern terms, if the sum of a series is infinite, then
the partial sums become greater than any positive number) (Mengoli
[1650, 18]).

2. If infinite magnitudes have a finite extension and if they are thought of
as being arranged and gathered together to form another extension,
then these two extensions are equal (that is to say, if a series with
positive terms15 converges to a finite number, then any rearrangement
of the series converges to the same number) (Mengoli [1650, 19]).

From these axioms Mengoli derived various properties of the series of
magnitudes. In particular,

a. if the sum of any number of a sequence of infinite quantities is bounded,
then the series has a finite extension (in modern words, if the partial
sums of a series are bounded, the series is convergent) (Mengoli [1650,
18]);

b. if a series has the finite extension S and A is a quantity less than S,
then there is a finite number of the given magnitudes such that their
sum exceeds A [namely, there exists a partial sum Sn of the series such
that Sn < A (< Sn+1)] (Mengoli [1650, 19]).

Mengoli applied these axioms and properties to the determination of the
sum of various numerical series by conceiving the numbers present in such
series as specific values of geometric quantities. He represented the terms,
partial sums and remainder of series by means of segments. In order to sum
the series ∞∑

n=1

1
n(n + 1)

,

Mengoli employed a relation, which he had proved in his Novae quadraturae
arithmeticae [1650, 9] and which, using modern symbols, can be written as

a2 − a1

a1a2
+

a3 − a2

a2a3
+

a4 − a3

a3a4
+ . . . +

an − an−1

an−1an
=

an − a1

a1an
,

14On Mengoli’s contribution to series theory, see Agostini [1941].
15Since Mengoli referred to geometrical quantities, he tacitly assumed that the terms of

series were positive.



1 Series Before the Rise of the Calculus 9

This formula makes it possible to establish that the partial sums of∑∞
n=1

1
n(n+1) are

Sn =
1

1 · 2 +
1

2 · 3 + . . . +
1

n(n + 1)
=

n

n + 1
, (4)

Since n
n+1 < 1, the series has a finite extension S. This extension is precisely

equal to 1. Indeed, if S > 1, then there should exist a partial sum Sn such
that Sn > 1, which is impossible. Now, let S < 1 be. Since the numbers

n
n+1 approach 1 indefinitely when n increases, the partial sums

Sn =
n

n + 1

would become greater than S when n is large enough. This is also impossible.
Consequently, S = 1.

Similarly, Mengoli obtained the sum of many other series, such as
∞∑

n=1

1
n(n + 2)

=
3
4
,

∞∑

n=1

1
n(n + 3)

=
11
18

,

∞∑

n=1

1
n(n + 1)(n + 2)

=
1
4
,

∞∑

n=1

1
(2n + 1)(2n + 3)(2n + 5)

=
1
12

.

Moreover, in the introduction to Novae quadraturae arithmeticae, Mengoli
showed that the harmonic series did not converge.16 In modern terms, his
proof can be formulated as follows. Since

1
n − 1

+
1
n

+
1

n + 1
>

3
n

,

one has

S = 1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+
1
9

+
1
10

+ . . .

= 1 +
(

1
2

+
1
3

+
1
4

)

+
(

1
5

+
1
6

+
1
7

)

+
(

1
8

+
1
9

+
1
10

+
)

. . .

> 1 +
3
3

+
3
6

+
3
9

+
3
12

+ . . .

= 1 + 1 +
1
2

+
1
3

+
1
4

+ . . .

= 1 + S.
16This result was not new (see Oresme [A]).
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Consequently, S cannot be a finite quantity.
In the introduction to Novae quadraturae arithmeticae, Mengoli also took

the series ∞∑

n=0

1
n2

into consideration. He failed to calculate the sum of such a series, but this
problem was subsequently tackled by Jakob Bernoulli, and became known
as the Basel problem. It was considered a very interesting problem of pure
mathematics and its solution was one of Euler’s most important successes.

Mengoli also wrote Geometriae speciosae elementa17 [1659] and Circolo
[1672], where he rediscovered an infinite product expansion for π/2, which
had already been found by Wallis in a way that I shall now go on to examine.

∗ ∗ ∗

The use of series was worked on extensively by John Wallis. In Arith-
metica infinitorum [1656] he tried to provide an arithmetical version of the
method of indivisibles; this led him to deal with a large number of series
by means of a peculiar methodology that had an enormous influence on
later mathematicians.18 As Maierù [1994, 118–119] noted, Wallis’s treat-
ment of series developed in a number of particular cases and makes use of
the specific geometric properties of particular figures. To illustrate Wallis’s
method,19 consider the problem of finding the area under the curves y = xk

(k = 1, 2, . . . ) and over the segment [0, a] (see Fig. 3, where the curve y = xk

is represented by means of PSR, PQ = AB = a, and RQ = BC = ak).
Following Cavalieri, Wallis regarded the figure PQR as consisting of an in-
finite number of parallel lines, every one of them having length equal to xk.
Therefore, if one divides the segment PQ = AB = a into n pieces of length
h = a

n , where n is infinite, the sum of these infinite lines is of the type

0k + hk + (2h)k + (3h)k + . . . + (nh)k, k = 1, 2, . . . . (5)

Similarly, the area of the rectangle is

ak + ak + ak + . . . + ak = (nh)k + (nh)k + (nh)k + . . . + (nh)k, k = 1, 2, . . . .

The ratio between the parabola PQR and the rectangle ABCD is

Area parabola PSR

Area rectangle ABCD
=

0k + 1k + 2k + 3k + . . . + nk

nk + nk + nk + nk + . . . + nk
, k = 1, 2, . . . . (6)

This procedure led Wallis to consider the problem of determining the values
17For this work, I refer to Massa [1997].
18On Wallis’s method of quadrature, see Scott [1938], Panza [1995, 135–176], and Maierù

[1994], [1995], and [2000].
19See Wallis [1656, 1–52].
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Fig. 3

of
0k + 1k + 2k + 3k + . . . + nk

nk + nk + nk + nk + . . . + nk
, (7)

for n = ∞ and k = 1, 2, 3, . . ..20 He stated

The simplest method of investigation . . . is to consider a cer-
tain number of individual cases, and to observe the emergent ra-
tios, and to compare these with one another, so that a universal
proposition may be established by induction. (Wallis [1656, 1])

He first considered the case k = 1 and observed that

0+1
1+1 = 1

2
0+1+2
2+2+2 = 1

2
0+1+2+3
3+3+3+3 = 1

2
0+1+2+3+4
4+4+4+4+4 = 1

2 .

20In modern terms, he sought

lim
n→∞

1k + 2k + 3k + . . . + nk

(n + 1)nk
.

The divergent series
∑

j jk appears in Wallis’s work as intermediate steps during the
analytical manipulation of geometrical entities.
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By induction, Wallis asserted that

0 + 1 + 2 + 3 + . . . + n

n + n + n + n + . . . + n
=

1
2
.

Wallis then considered the case k = 2. Since

0+1
1+1 = 1

2 = 1
3 + 1

6
0+1+4
4+4+4 = 5

12 = 1
3 + 1

6·2
0+1+4+9
9+9+9+9 = 14

36 = 1
3 + 1

6·3
0 + 1 + 4 + 9+16
16+16+16+16+16 = 30

80 = 1
3 + 1

6·4 ,

he stated
02 + 12 + 22 + 32 + . . . + n2

n2 + n2 + n2 + n2 + . . . + n2
=

1
3

+
1
6n

.

The ratio approached 1
3 as the number of terms increased, and

02 + 12 + 22 + 32 + . . . + n2

n2 + n2 + n2 + n2 + . . . + n2
=

1
3

for n = ∞. In case k = 3, Wallis proceeded in a similar way and found

03 + 13 + 23 + 33 + . . . + n3

n3 + n3 + n3 + n3 + . . . + n3
=

1
4

+
1
4n

and
03 + 13 + 23 + 33 + . . . + n3

n3 + n3 + n3 + n3 + . . . + n3
=

1
4

for n = ∞. By generalizing these results, Wallis asserted21

0k + 1k + 2k + 3k + . . . + nk

nk + nk + nk + nk + . . . + nk
=

1
k + 1

. (8)

Wallis did not stop here. He continued to generalize in order to give a
meaning to (8) even when k �= 1, 2, 3, . . .. He first stated that if the value 0
was assigned to k, then one obtained

00 + 10 + 20 + 30 + . . . + n0

n0 + n0 + n0 + n0 + . . . + n0
=

1
1
.

He then sought to justify the assignment of fractional values to k in the
following way. If we denote22 the series 0k + 1k + 2k + 3k + . . . + nk by Ak,

21Of course, from this formula and (6), one can deduce that the area under the parabola

y = xk from 0 to a is ak+1

k+1

(
=
∑n

j=0 jk
)
.

22The symbolism is mine.
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and the reciprocal of their sums (the corresponding ratio, in Wallis’s terms)
by bk(= k + 1), then formula (8) can be written in the form

Ak

nk + nk + . . . + nk
=

1
bk

.

Wallis observed that
√

04 +
√

14 +
√

24 +
√

34 + . . . = 02 + 12 + 22 + 32 + . . . .

The terms n2 =
√

n4 of A2 are the square roots of the terms of A4 and,
therefore, A2 can be viewed as the series “interpolating” A0 and A4. The
corresponding ratios of A0, A2, and A4 are the numbers b0 = 1, b2 = 3, and
b4 = 5, which are in arithmetic progression (see table below).

A0 = 00 + 10 + 20 + 30 + . . . + n0 –> b0 = 1
A2 = 02 + 12 + 22 + 32 + . . . + n2 –> b2 = 3
A4 = 04 + 14 + 24 + 34 + . . . + n4 –> b4 = 5

At this point Wallis considered A√ =
√

0 +
√

1 +
√

2 +
√

3 + . . . and
stated that it was the series interpolating A0 and A1 since it behaved with
respect to A0 and A1 as A2 behaved with respect to A0 and A4. By analogy,
the value of √

0 +
√

1 +
√

2 +
√

3 + . . . +
√

n√
n +

√
n +

√
n +

√
n + . . . +

√
n

ought to be a number 1
b such that b0 = 1, b and b1 = 2 (namely, the corre-

sponding ratios of A0 = 1, A√, and A1 = 2) were in arithmetic progression.
Hence, b = 1

2 + 1. By observing that for k = 1
2 , formula (8) becomes

01/2 + 11/2 + 21/2 + 31/2 + . . . + n1/2

n1/2 + n1/2 + n1/2 + n1/2 + . . . + n1/2
=

1
1
2 + 1

,

Wallis concluded that n
1
2 =

√
n.

Similarly, Wallis observed that

A1 = 3
√

03 + 3
√

13 + 3
√

23 + 3
√

33 + . . . = 0 + 1 + 2 + 3 + . . . ,

A2 =
(

3
√

03
)2

+
(

3
√

13
)2

+
(

3
√

23
)2

+
(

3
√

33
)2

+ . . .=02 + 12 + 22 + 32 + . . . ,

and that the terms n = 3
√

n3 of A1 were the cube roots of the terms of A3

and the terms n2 =
(

3
√

n3
)2

of A2 were the squares of cube roots. For this
reason A1 and A2 could be viewed as the series interpolating A0 and A3.
The corresponding ratios of A0, A1, A2, A3 (b0 = 1, b1 = 2, b2 = 3, b3 = 4)
were in arithmetical progression. Wallis then considered

3
√

0 + 3
√

1 + 3
√

2 + 3
√

3 + . . . + 3
√

n
3
√

n + 3
√

n + 3
√

n + 3
√

n + . . . 3
√

n
=

1
r

(9)
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and
(

3
√

0
)2

+
(

3
√

1
)2

+
(

3
√

2
)2

+
(

3
√

3
)2

+ . . . + ( 3
√

n)2

( 3
√

n)2 + ( 3
√

n)2 + ( 3
√

n)2 + ( 3
√

n)2 + . . . ( 3
√

n)2
=

1
q

(10)

and assumed that

3
√

0 + 3
√

1 + 3
√

2 + 3
√

3 and
(

3
√

0
)2

+
(

3
√

1
)2

+
(

3
√

2
)2

+
(

3
√

3
)2

behaved with respect to

A0 and A1

in the same way as A1 and A2 behaved with respect to A0 and A3. By
analogy he concluded that b0, r, q, b1 had to be in arithmetical progression
as b0, b1, b2, b3. Therefore,

r =
4
3

and q =
5
3
.

This made it possible to write (9) and (10) as

01/3 + 11/3 + 21/3 + 31/3 + . . . + n1/3

n1/3 + n1/3 + n1/3 + n1/3 + . . . n1/3
=

1
1 + 1

3

and

02/3 + 12/3 + 22/3 + 32/3 + . . . + n2/3

n2/3 + n2/3 + n2/3 + n2/3 + . . . n2/3
=

1
1 + 2

3

.

Consequently, 3
√

n was equal to n1/3 and ( 3
√

n)2 was equal to n2/3. In this
way Wallis was able to find the meaning of the power xα, where α was a
rational number (n

l
k = k

√
nl). He even considered the case in which α was

an irrational and a negative number.
Wallis’s analogical procedure (later known as Wallis’s interpolation) was

of great importance in the 18th century. It can be considered as an answer
to the following problem:

Given a sequence Pk, defined for integral values of k, find the
meaning of Pα where α is a nonintegral number.
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In the case Wallis considered, Pk were the sequences xk and

0k + 1k + 2k + 3k + . . . + nk

nk + nk + nk + nk + . . . + nk
,

and the problem was reduced to the interpolation of the number sequence

1
k + 1

, k = 0, 1, 2, . . . .

From a modern point of view, this problem is meaningless. A modern
mathematician attributes meaning to new operations, formulas, or symbols
using appropriate definitions. Operations, formulas, and symbols do not
have a “natural” meaning. Thus, if xn is defined only for an integer value
of n, then any meaning can be assigned to a new symbol such as x1/2.

Wallis viewed the matter differently. New combinations of symbols, such
as x1/2 and x0, were not introduced arbitrarily. Mathematical objects were
not given by definition, but they existed in nature (or were an idealization
of natural objects). It seemed obvious to them that x1/2 and x0 had a
“natural” meaning and that mathematicians had to discover it. When a
new symbol or a new object had to be introduced, mathematicians asked
“What is the value (or the meaning) of the symbol?” and not “How shall
we define it?”

For Wallis, interpolating xn required investigating the objects x, x2, . . .
and reconstructing the “nature” of these objects just as one reconstructed
the nature of a physical phenomenon by interpolating physical data. When
he met with the undefined symbolic notation x1/2, he did not take x1/2 =

√
x

by a useful but arbitrary definition; rather he “discovered” that the true
meaning23 of x1/2 was

√
x.

In Arithmetica infinitorum,24 Wallis reduced the problem of the quadra-
ture of the circle to determining the corresponding ratio of the series whose
general term is ζp =

√
R2 − p2a2. To do this, he considered the series whose

general terms are

(R2 − p2a2)0, (R2 − p2a2)1, (R2 − p2a2)2, (R2 − p2a2)3, . . . (11)

which have for their corresponding ratios

1,
2
3
,

8
15

,
48
105

, . . . .

If the series ζp =
√

R2 − p2a2 is interpolated between the first and second
terms of (11), the corresponding ratio of

ζp =
√

R2 − p2a2

23See also Ferraro [1998, 291–293].
24See Wallis [1656, 89–182].
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is given by the interpolated value of 1, 2
3 , 8

15 , 48
105 , . . . between 1 and 2

3 . Wallis
introduced the symbol � to denote the sought-after number and constructed
several numerical tables such as

1 1 1 1
�

1 2 3 4

1 3 6 10

1 4 10 20

where

• the numbers in the first row and column are 1,

• those in the second row and column are the natural numbers
{n}n=1,2,..., ∞,

• those in the third row and column are
{

n(n+1)
1·2

}

n=1,2,...,∞
(triangular

numbers),

• those in the fourth row and column are
{

n(n+1)(n+2)
1·2·3

}

n=1,2,...,∞
(tri-

angular pyramidal number),

• . . .

After a long sequence of calculations, he succeeded in expressing � as
the infinite product

� =
(

4
π

)

=
3 · 3 · 5 · 5 · 7 · 7 . . .

2 · 4 · 4 · 6 · 6 · 8 . . .
. (12)

∗ ∗ ∗

Formula (12) was not the first infinite product to be found in the history
of mathematics. In his Variorum de rebus mathematicis responsorum [1593],
Viète had already squared the circle by means of an infinite product. He
assumed the circle to be a polygon with infinite sides and considered regular
inscribed polygons of 4, 8, 16, . . . sides. By using geometric properties of
these polygons he represented π in the form25

2
π

=

√
1
2

√

1
2

+
1
2

√
1
2

√
√
√
√1

2
+

1
2

√

1
2

+
1
2

√
1
2

. . . . (13)

25See Viète [1593, 400].
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In the Arithmetica infinitorum,26 Wallis also published an expansion of 4
π

into continued fractions. He had submitted (12) to Lord Brouncker, who
expressed 4

π in the form

4
π

= 1 +
1

2+
9

2+
25
2+

49
2+

. (14)

This formula was published by Wallis in the Arithmetica Infinitorum,
Proposition 191. On this occasion Wallis introduced the term “continued
fraction”. However, he did not expound the procedure used by Lord
Brouncker to derive (14).

It should be emphasised that when Brouncker obtained (14), continued
fractions were already known, at least since 1613 when Cataldi had shown
how a root

√
p could be expanded into a continued fraction. Earlier, in his

Algebra [1572, 37–38], Bombelli had published a procedure for calculating
the approximate value of a root which can be interpreted a posteriori as a
procedure for developing numbers into continued fractions.

To compute the value of
√

13, Bombelli first observed that 3 is the great-
est integer less than

√
13. Then he considered the difference

√
13 − 3 = x

(for the sake of simplicity, I use the letter x to denote this difference, though
Bombelli did not use symbols of this kind). The first approximation of x
(say x1) is given by 2

3 because 13 − 32 = 4 and

x1 =
4

2 · 3 =
4
6

=
2
3
.

To find a second approximation x2, he set

x2 =
4

6 + 2
3

=
3
5
.

The third approximation is

x3 =
4

6 + 3
5

=
20
33

.

Similarly, he found

x4 =
66
109

, x5 =
109
180

, x6 =
720
1189

.

The approximation can be improved as desired.
In modern terms, Bombelli’s procedure can be described as follows. If

one sets √
p = n + x,

26See Wallis [1665, 181–193].


