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Preface

Stochastic differential equations model stochastic evolution as time evolves.
These models have a variety of applications in many disciplines and emerge
naturally in the study of many phenomena. Examples of these applications
are physics (see, e.g., [176] for a review), astronomy [202], mechanics [147],
economics [26], mathematical finance [115], geology [69], genetic analysis (see,
e.g., [110], [132], and [155]), ecology [111], cognitive psychology (see, e.g., [102],
and [221]), neurology [109], biology [194], biomedical sciences [20], epidemiol-
ogy [17], political analysis and social processes [55], and many other fields of
science and engineering. Although stochastic differential equations are quite
popular models in the above-mentioned disciplines, there is a lot of mathemat-
ics behind them that is usually not trivial and for which details are not known
to practitioners or experts of other fields. In order to make this book useful
to a wider audience, we decided to keep the mathematical level of the book
sufficiently low and often rely on heuristic arguments to stress the underlying
ideas of the concepts introduced rather than insist on technical details. Math-
ematically oriented readers may find this approach inconvenient, but detailed
references are always given in the text.

As the title of the book mentions, the aim of the book is twofold. The first
is to recall the theory and implement methods for the simulation of paths of
stochastic processes {Xt, t ≥ 0} solutions to stochastic differential equations
(SDEs). In this respect, the title of the book is too ambitious in the sense
that only SDEs with Gaussian noise are considered (i.e., processes for which
the writing dXt = S(Xt)dt + σ(Xt)dWt has a meaning in the Itô sense).
This part of the book contains a review of well-established results and their
implementations in the R language, but also some fairly recent results on
simulation.

The second part of the book is dedicated to the review of some methods
of estimation for these classes of stochastic processes. While there is a well-
established theory on estimation for continuous-time observations from these
processes [149], the literature about discrete-time observations is dispersed
(though vaste) in several journals. Of course, real data (e.g., from finance [47],
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[88]) always lead to dealing with discrete-time observations {Xti
, i = 1, . . . , n},

and many of the results from the continuous-time case do not hold or cannot
be applied (for example, the likelihood of the observations is almost always
unavailable in explicit form). It should be noted that only the observations are
discrete whilst the underlying model is continuous; hence most of the standard
theory on discrete-time Markov processes does not hold as well.

Different schemes of observations can be considered depending on the na-
ture of the data, and the estimation part of the problem is not necessarily
the same for the different schemes. One case, which is considered “natural,”
is the fixed-∆ scheme, in which the time step between two subsequent ob-
servations Xti and Xti+∆n is fixed; i.e., ∆n = ∆ (or is bounded away from
zero) and independent from n. In this case, the process is observed on the
time interval [0, T = n∆] and the asymptotics considered as n → ∞ (large-
sample asymptotics). The underlying model might be ergodic or stationary
and possibly homogeneous. For such a scheme, the time step ∆ might have
some influence on estimators because, for example, the transition density of
the process is usually not known in explicit form and has to be approximated
via simulations. This is the most difficult case to handle.

Another scheme is the “high frequency” scheme, in which the observational
step size ∆n decreases with n and two cases are possible: the time interval is
fixed, say [0, T = n∆n], or n∆n increases as well. In the first case, neither ho-
mogeneity nor erogidicy are needed, but consistent estimators are not always
available. On the contrary, in the “rapidly increasing experimental design,”
when ∆n → 0 and n∆n → ∞ but n∆2

n → 0, consistent estimators can be
obtained along with some distributional results.

Other interesting schemes of partially observed processes, missing at ran-
dom [75], thresholded processes (see, e.g., [116], [118]), observations with er-
rors (quantized or interval data, see, e.g., [66], [67], [97]), or large sample and
“small diffusion” asymptotics have also recently appeared in the literature
(see, e.g., [222], [217]). This book covers essentially the parametric estimation
under the large-sample asymptotics scheme (n∆n → ∞) with either fixed
∆n = ∆ or ∆n → 0 with n∆k

n → 0 for some k ≥ 2. The final chapter con-
tains a miscellaneous selection of results, including nonparametric estimation,
model selection, and change-point problems.

This book is intended for practitioners and is not a theoretical book, so
this second part just recalls briefly the main results and the ideas behind the
methods and implements several of them in the R language. A selection of
the results has necessarily been made. This part of the book also shows the
difference between the theory of estimation for discrete-time observations and
the actual performance of such estimators once implemented. Further, the
effect of approximation schemes on estimators is investigated throughout the
text. Theoretical results are recalled as “Facts” and regularity conditions as
“Assumptions” and numbered by chapter in the text.
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So what is this book about?

This book is about ready to be used, R-efficient code for simulation schemes of
stochastic differential equations and some related estimation methods based
on discrete sampled observations from such models. We hope that the code
presented here and the updated survey on the subject might be of help for
practitioners, postgraduate and PhD students, and researchers in the field
who might want to implement new methods and ideas using R as a statistical
environment.

What this book is not about

This book is not intended to be a theoretical book or an exhaustive collection
of all the statistical methods available for discretely observed diffusion pro-
cesses. This book might be thought of as a companion book to some advanced
theoretical publication (already available or forthcoming) on the subject. Al-
though this book is not even a textbook, some previous drafts of it have been
used with success in mathematical finance classes for the numerical simulation
and empirical analysis of financial time series.

What comes with the book

All the algorithms presented in the book are written in pure R code but,
because of the speed needed in real-world applications, we have rewritten
some of the R code in the C language and assembled everything in a package
called sde freely available on CRAN, the Comprehensive R Archive Network.
R and C functions have the same end-user interface; hence all the code of the
examples in the book will run smoothly regardless of the underlying coding
language. A minimal knowledge of the R environment at the introductory level
is assumed, although brief recalls to the main R concepts, limited to what is
relevant to this text, are given at the end of the book. Some crucial aspects
of implementation are discussed in the main body of the book to make them
more effective.

What is missing?

This book essentially covers one-dimensional diffusion processes driven by the
Wiener process. Today’s literature is vast and wider than this choice. In partic-
ular, it focuses also on multidimensional diffusion processes and stochastic dif-
ferential equations driven by Lévy processes. To keep the book self-contained
and at an introductory level and to preserve some homogeneity within the
text, we decided to restrict the field. This also allows simple and easy-to-
understand R code to be written for each of the techniques presented.
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Notation

Var : the variance operator

E : the expected value operator

N(µ, σ2) : the Gaussian law with mean µ and variance σ2

χ2
d : chi-squared distribution with d degrees of freedom

td : Student t distribution with d degrees of freedom

Iν(x) : modified Bessel function of the first kind of order ν

R : the real line

N : the set of natural numbers 1, 2, . . .
d→ : convergence in distribution
p→ : convergence in probability

a.s.→ : almost sure convergence

B(R) : Borel σ-algebra on R

χA,1A : indicator function of the set A

x ∧ y : min(x, y)

x ∨ y : max(x, y)

(f(x))+ : max(f(x), 0)

Φ(z) : cumulative distribution function of standard Gaussian law

[x] : integer part of x

<X,X>t, [X,X]t : quadratic variation process associated to Xt

Vt(X) : simple variation of process X

∝ : proportional to



XVIII Notation

fvi
(v1, v2, . . . , vn) : ∂

∂vi
f(v1, v2, . . . , vn)

fvi,vj
(v1, v2, . . . , vn) : ∂2

∂vivj
f(v1, v2, . . . , vn), etc.

∂θf(v1, v2, . . . , vn; θ) : ∂
∂θf(v1, v2, . . . , vn; θ)

∂k
θ f(v1, v2, . . . , vn; θ) : ∂k

∂θk f(v1, v2, . . . , vn; θ)

Πn(A) : partition of the interval A = [a, b] in n subintervals of [a = x0, x1),
[x1, x2), . . . , [xn−1, xn = b]

||Πn|| : maxj |xj+1 − xj |

C2
0 (R) : space of functions with compact support and continuous derivatives

up to order 2

L2([0, T ]) : space of functions from [0, T ] → R endowed by the L2 norm

||f ||2 : the L2 norm of f

Wt : Brownian motion or Wiener process

i.i.d. : independent and identically distributed

AIC : Akaike information criterion

CIR : Cox-Ingersoll-Ross

CRAN : the Comprehensive R Archive Network

CKLS : Chan-Karolyi-Longstaff-Sanders

EA : exact algorithm

GMM : generalized method of moments

MCMC : Markov chain Monte Carlo

MISE : mean integrated square error
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Stochastic Processes and Stochastic
Differential Equations

This chapter reviews basic material on stochastic processes and statistics as
well as stochastic calculus, mostly borrowed from [170], [130], and [193]. It
also covers basic notions on simulation of commonly used stochastic processes
such as random walks and Brownian motion and also recalls some Monte Carlo
concepts. Even if the reader is assumed to be familiar with these basic notions,
we will present them here in order to introduce the notation we will use
throughout the text. We will limit our attention mainly to one-dimensional,
real random variables and stochastic processes. We also restrict our attention
to parametric models with multidimensional parameters.

1.1 Elements of probability and random variables

A probability space is a triple (Ω,A, P ) whereΩ is the sample space of possible
outcomes of a random experiment; A is a σ-algebra: i.e., A is a collection of
sets such that i) the empty set ∅ is in A; ii) if A ∈ A, then the complementary
set Ā ∈ A; iii) if A1, A2, . . . ∈ A, then

∞⋃
i=1

Ai ∈ A .

P is a probability measure on (Ω,A). In practice, A forms the collection
of events for which a probability can be assigned. Given a probability space
(Ω,A, P ), a random variable X is defined as a measurable function from Ω to
R,

X : Ω 7→ R .

In the above, the term measurable intuitively means that it is always possible
to calculate probabilities related to the random variable X. More precisely,
denote by B(R) the Borel σ-algebra on R (i.e., the σ-algebra generated by
the open sets of R) and let X−1 be the inverse function of X. Then, X is
measurable if

S.M. Iacus, Simulation and Inference for Stochastic Differential Equations,
doi: 10.1007/978-0-387-75839-8 1, © Springer Science+Business Media, LLC 2008
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∀A ∈ B(R), ∃B ∈ A : X−1(A) = B;

i.e., such that it is always possible to measure the set of values assumed by X
using the probability measure P on the original space Ω,

P (X ∈ A) = P ({ω ∈ Ω : X(ω) ∈ A}) = P ({ω ∈ Ω : ω ∈ X−1(A)}) = P (B),

for A ∈ B(R) and B ∈ A.

Distribution and density function

The function F (x) = P (X ≤ x) = P (X(ω) ∈ (−∞, x]) is called the
cumulative distribution function: it is a nondecreasing function such that
limx→−∞ F (x) = 0, limx→+∞ F (x) = 1, and F is right continuous. If F is
absolutely continuous, its derivative f(x) is called a density function, which is
a Lebesgue integrable nonnegative function whose integral over the real line
is equal to one. Loosely speaking, if F (x) is the probability that the random
variable X takes values less than or equal to x, the quantity f(x)dx can be
thought of as the probability that the random variable takes values in the in-
finitesimal interval [x, x+ dx). If the random variable takes only a countable
set of values, then it is said to be discrete and its density at point x is defined
as P (X = x). In the continuous case, P (X = x) = 0 always.

Independence

Two random variables X and Y are independent if

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for any two sets A and B in R.

1.1.1 Mean, variance, and moments

The mean (or expected value) of a continuous random variable X with distri-
bution function F is defined as

EX =
∫

Ω

X(ω)dP (ω) =
∫

R
xdF (x)

provided that the integral is finite. If X has a density, then EX =
∫

R xf(x)dx
and the integral is the standard Riemann integral; otherwise integrals in dP or
dF should be thought of as integrals in the abstract sense. If Ω is countable,
the expected value is defined as

EX =
∑
ω∈Ω

X(ω)P (ω)

or, equivalently, when X is a discrete random variable, the expected value
reduces to EX =

∑
x∈I xP (X = x), where I is the set of possible values of

X. The variance is defined as
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VarX = E (X − EX)2 =
∫

Ω

(X(ω)− EX)2dP (ω) ,

and the kth moment is defined as

EXk =
∫

Ω

Xk(ω)dP (ω) .

In general, for any measurable function g(·), Eg(X) is defined as

Eg(X) =
∫

Ω

g(X(ω))dP (ω) ,

provided that the integral is finite.

Types of convergence

Let {Fn}n∈N be a sequence of distribution functions for the sequence of ran-
dom variables {Xn}n∈N. Assume that

lim
n→∞

Fn(x) = F (x)

for all x ∈ R such that F (·) is continuous in x, where F is the distribution
function of some random variableX. Then, the sequenceXn is said to converge
in distribution to the random variable X, and this is denoted by Xn

d→ X.
This only means that the distributions Fn of the random variables converge to
another distribution F , but nothing is said about the random variables itself.
So this convergence is only about the probabilistic behavior of the random
variables on some intervals (−∞, x], x ∈ R.

A sequence of random variables Xn is said to converge in probability to a
random variable X if, for any ε > 0,

lim
n→∞

P (|Xn −X| ≥ ε) = 0.

This is denoted by Xn
p→ X and it is a pointwise convergence of the proba-

bilities. This convergence implies the convergence in distribution. Sometimes
we use the notation

p− lim
n→∞

|Xn −X| = 0

for the convergence in probability. A stronger type of convergence is defined
as the probability of the limit in the sense P (limn→∞Xn = X) = 1 or, more
precisely,

P ({ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}) = 1.

When this happens, Xn is said to converge to X almost surely and is denoted
by Xn

a.s.→ X. Almost sure convergence implies convergence in probability.
A sequence of random variables Xn is said to converge in the rth mean to

a random variable X if
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lim
n→∞

E|Xn −X|r = 0, r ≥ 1.

The convergence in the r-th mean implies the convergence in probability
thanks to Chebyshev’s inequality, and if Xn converges to X in the rth mean,
then it also converges in the sth mean for all r > s ≥ 1. Mean square conver-
gence is a particular case of interest and corresponds to the case r = 2. This
type of convergence will be used in Section 1.9 to define the Itô integral.

1.1.2 Change of measure and Radon-Nikodým derivative

In some situations, for example in mathematical finance, it is necessary to
reassign the probabilities to the events in Ω, switching from a measure P to
another one P̃ . This is done with the help of a random variable, say Z, which
reweights the elements in Ω. This change of measure should be done set-by-set
instead of ω-by-ω (see, e.g., [209]) as

P̃ (A) =
∫

A

Z(ω)dP (ω) , (1.1)

where Z is assumed to be almost surely nonnegative and such that EZ = 1.
The new P̃ is then a true probability measure and, for any nonnegative random
variable X, the equality

ẼX = E(XZ)

holds, where ẼX =
∫

Ω
X(ω)dP̃ (ω). Two measures P and P̃ are said to be

equivalent if they assign probability 0 to the same sets. The previous change of
measure from P to P̃ trivially guarantee that the two measures are equivalent
when Z is strictly positive. Another way to read the change of measure in
(1.1) is to say that Z is the Radon-Nikodým derivative of P̃ with respect to
P . Indeed, a formal differentiation of (1.1) allows us to write

Z =
dP̃
dP

. (1.2)

Fact 1.1 (Theorem 1.6.7 [209]) Let P and P̃ be two equivalent measures
on (Ω,A). Then, there exists a random variable Z, almost surely positive,
such that EZ = 1 and

P̃ (A) =
∫

A

Z(ω)dP (ω)

for every A ∈ A.

The Radon-Nikodým derivative is an essential requirement in statistics
because Z plays the role of the likelihood ratio in the inference for diffusion
processes.
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1.2 Random number generation

Every book on simulation points the attention of the reader to the quality of
random number generators. This is of course one central point in simulation
studies. R developers and R users are in fact quite careful in the implementa-
tions and use of random number generators. We will not go into details, but
we just warn the reader about the possibilities available in R and what is used
in the examples in this book.

The random number generator can be specified in R via the RNGkind
function. The default generator of uniform pseudo random numbers is the
Mersenne-Twister and is the one used throughout the book. Other methods
available as of this writing are Wichmann-Hill, Marsaglia-Multicarry, Super-
Duper, and two versions of Knuth-TAOCP random number generators. The
user can implement and provide his own method as well. Specifically, for
the normal random number generators, available methods are Kinderman-
Ramage, Buggy Kinderman-Ramage, Ahrens-Dieter, Box-Muller, and the de-
fault Inversion method, as explained in [229]. For this case as well, the user
can provide her own algorithm. For other than normal variates, R implements
quite advanced pseudo random number generators. For each of these, the
reader has to look at the manual page of the corresponding r* functions (e.g.,
rgamma, rt, rbeta, etc.).

For reproducibility of all the numerical results in the book we chose to use
a fixed initialization seed before any listing of R code. We use everywhere the
function set.seed(123), and the reader should do the same if she wants to
obtain the same results.

1.3 The Monte Carlo method

Suppose we are given a random variable X and are interested in the evaluation
of Eg(X) where g(·) is some known function. If we are able to draw n pseudo
random numbers x1, . . . , xn from the distribution of X, then we can think
about approximating Eg(X) with the sample mean of the g(xi),

Eg(X) ' 1
n

n∑
i=1

g(xi) = ḡn . (1.3)

The expression (1.3) is not just symbolic but holds true in the sense of the law
of large numbers whenever E|g(X)| <∞. Moreover, the central limit theorem
guarantees that

ḡn
d→ N

(
Eg(X),

1
n

Var(g(X))
)
,

where N(m, s2) denotes the distribution of the Gaussian random variable with
expected value m and variance s2. In the end, the number we estimate with
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simulations will have a deviation from the true expected value Eg(X) of order
1/
√
n. Given that P (|Z| < 1.96) ' 0.95, Z ∼ N(0, 1), one can construct an

interval for the estimate ḡn of the form(
Eg(X)− 1.96

σ√
n
,Eg(X) + 1.96

σ√
n

)
,

with σ =
√

Varg(X), which is interpreted that the Monte Carlo estimate of
Eg(X) above is included in the interval above 95% of the time. The confidence
interval depends on Varg(X), and usually this quantity has to be estimated
through the sample as well. Indeed, one can estimate it as the sample variance
of Monte Carlo replications as

σ̂2 =
1

n− 1

n∑
i=1

(g(xi)− ḡn)2

and use the following 95% level Monte Carlo confidence interval1 for Eg(X):(
ḡn − 1.96

σ̂√
n
, ḡn + 1.96

σ̂√
n

)
.

The quantity σ̂/
√
n is called the standard error. The standard error is itself a

random quantity and thus subject to variability; hence one should interpret
this value as a “qualitative” measure of accuracy.

One more remark is that the rate of convergence
√
n is not particularly

fast but at least is independent of the smoothness of g(·). Moreover, if we need
to increase the quality of our approximation, we just need to draw additional
samples2 instead of rerunning the whole simulation.

About Monte Carlo intervals length

In some cases, Monte Carlo intervals are not very informative if the variance
of Y = g(X) is too large. The next example, taken from [156], is one such
case. Let Y = g(X) = eβX with X ∼ N(0, 1), and assume we are interested in
Eg(X) with β = 5. The analytical value can be calculated as eβ2/2 = 268337.3,
and the true standard deviation σ =

√
e2β2 − eβ2 = 72004899337, quite a big

number with respect to the mean of Y . Suppose we want to estimate EY
via the Monte Carlo method using 100000 replications and construct 95%
confidence intervals using the true standard deviation σ and the estimated
standard error. The following R code does the job.
1 Again, this means that the interval covers the true value 95% of the time.
2 A warning note: Of course one should take care of the seed of the random number

generator to avoid duplicated samples. If we have already run n replications and
we want to add n′ new samples, we cannot simply rerun the algorithm for a length
of n′ with the same original seed because in this case we are just replicating the
first n′ samples among the n original ones, hence inducing bias without increasing
accuracy.
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> # ex1 .01.R
> set.seed (123)
> n <- 1000000
> beta <-5
> x <- rnorm(n)
> y <- exp(beta*x)
>
> # true value of E(Y)
> exp(beta^2/2)
[1] 268337.3
> # MC estimation of E(Y)
> mc.mean <- mean(y)
> mc.mean
[1] 199659.2
> mc.sd <- sd(y)
> true.sd <- sqrt(exp(2*beta ^2) - exp(beta ^2))
>
> # MC conf. interval based on true sigma
> mc.mean - true.sd*1.96/sqrt(n)
[1] -140929943
> mc.mean + true.sd*1.96/sqrt(n)
[1] 141329262
>
> # MC conf. interval based on estimated sigma
> mc.mean - mc.sd*1.96/sqrt(n)
[1] 94515.51
> mc.mean + mc.sd*1.96/sqrt(n)
[1] 304802.9
>
> plot (1:n,cumsum(y)/(1:n),type="l",axes=F,xlab="n",
+ ylab=expression(hat(g)[n]),ylim=c(0 ,350000))
> axis(1,seq(0,n,length =5))
> axis(2,seq (0 ,350000 , length =6))
> abline(h=268337.3) # true value
> abline(h=mc.mean -mc.sd*1.96/sqrt(n),lty=3) # MC conf interval
> abline(h=mc.mean+mc.sd*1.96/sqrt(n),lty=3)
> abline(h=mc.mean ,lty =2) # MC estimate
> box()

Running this code in R, we obtain the two intervals

(−140929943; 141329262) using σ

and
(94515.51; 304802.9) using σ̂

with an estimated value of Eg(X), ĝn = 199659.2. As one can see, the confi-
dence interval based on σ contains the true value of Eg(X) but is too large
and hence meaningless. The confidence interval based on σ̂ is smaller but
still large. The first effect is due to the big variance of g(X), while the sec-
ond is due to the fact that the sample variance underestimates the true one
(σ̂ = 53644741). The reason is that, in this particular case, the state of asymp-
totic normality after n = 1000000 replications is not yet reached (the reader
is invited to look at this with a plot(density(y))) and thus the estimator σ̂
is not necessarily an unbiased estimator of the true σ. Looking at Figure 1.1
one can expect that the Monte Carlo confidence interval for smaller values of
n (the reader can try with n = 100000) does not even contain the true value.
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Fig. 1.1. The very slow convergence of the Monte Carlo estimate associated with
a target true value with too high variability (see Section 1.3). The solid line is
the target value, dotted lines are upper and lower limits of the Monte Carlo 95%
confidence interval, and the dashed line is the estimated value ĝn.

1.4 Variance reduction techniques

The example in the last section gives evidence that in order to have less vari-
ability in Monte Carlo methods and hence use a smaller number of replications
in simulations, one needs to try to reduce variability with some workaround.
There are several methods of variance reduction for Monte Carlo estimators.
We review here just the ones that can be applied in our context, but inter-
esting reviews on methods for other classes of problems and processes can be
found, for example, in [156] and [125]. Here we just show the basic ideas, while
applications to stochastic differential equations are postponed to Section 2.15.
We do not include the treatment of sequences with low discrepancy3 because
this is beyond the scope of this book.

3 Discrepancy is a measure of goodness of fit for uniform random variates in high
dimensions. Low-discrepancy sequences are such that numerical integration on
this grid of points allows for a direct variance reduction. The reader can refer to
the review paper [153].
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1.4.1 Preferential sampling

The idea of this method is to express Eg(X) in a different form in order to
reduce its variance. Let f(·) be the density of X; thus

Eg(X) =
∫

R
g(x)f(x)dx.

Introduce now another strictly positive density h(·). Then,

Eg(X) =
∫

R

g(x)f(x)
h(x)

h(x)dx

and

Eg(X) = E
(
g(Y )f(Y )
h(Y )

)
= Eg̃(Y ) ,

with Y a random variable with density h(·), and denote g̃(·) = g(·)f(·)/h(·).
If we are able to determine an h(·) such that Varg̃(Y ) < Varg(X), then we
have reached our goal. But let us calculate Varg̃(Y ),

Varg̃(Y ) = Eg̃(Y )2 − (Eg̃(Y ))2 =
∫

R

g2(x)f2(x)
h(x)

dx− (Eg(X))2 .

If g() is strictly positive, by choosing h(x) = g(x)f(x)/Eg(X), we obtain
Varg̃(Y ) = 0, which is nice only in theory because, of course, we don’t know
Eg(X). But the expression of h(x) suggests a way to obtain a useful approxi-
mation: just take h̃(x) = |g(x)f(x)| (or something close to it), then normalize
it by the value of its integral, and use

h(x) =
h̃(x)∫

R h̃(x)dx
.

Of course this is simple to say and hard to solve in specific problems, as inte-
gration should be done analytically and not using the Monte Carlo technique
again. Moreover, the choice of h(·) changes from case to case. We show an
example, again taken from [156], which is quite interesting and is a standard
application of the method in finance. Suppose we want to calculate Eg(X) with
g(x) = max(0,K − eβx) = (K − eβx)+, K and β constants, and X ∼ N(0, 1).
This is the price of a put option in the Black and Scholes framework [36, 162],
and the explicit solution, which is known, reads as

E
(
K − eβX

)
+

= KΦ

(
log(K)
β

)
− e

1
2 β2

Φ

(
log(K)
β

− β

)
,

where Φ is the cumulative distribution function of the standard Gaussian
law; i.e., Φ(x) = P (Z < z) with Z ∼ N(0, 1). The true value, in the case
K = β = 1, is Eg(X) = 0.2384217. Let’s see what happens in Monte Carlo
simulations.
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> # ex1 .02.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
> x <- rnorm(n)
> y <- sapply(x, function(x) max(0,K-exp(beta*x)))
>
> # the true value
> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta -beta)
[1] 0.2384217
>
> t.test(y[1:100]) # first 100 simulations

One Sample t-test

data: y[1:100]
t = 7.701 , df = 99, p-value = 1.043e-11
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.1526982 0.2586975

sample estimates:
mean of x
0.2056978

> t.test(y[1:1000]) # first 1000 simulations

One Sample t-test

data: y[1:1000]
t = 24.8772 , df = 999, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2131347 0.2496388

sample estimates:
mean of x
0.2313868

> t.test(y) # all simulation results

One Sample t-test

data: y
t = 80.3557 , df = 9999, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2326121 0.2442446

sample estimates:
mean of x
0.2384284

Results of simulations are reported in Table 1.1 (a). Note that on the
algorithm we have used the function sapply instead of the (apparently) more
natural (but wrong) line of code
y <- max(0, K-exp(beta*x))

as this will only return one value, actually the maximum value among 0 and all
the yi = K − eβ∗xi . This is one place where, vector-wise functions need to be
used in the correct order. Note also the use of t.test, which actually performs
both estimation and construction of the confidence intervals for Y = Eg(X).

We now try to rewrite Eg(X) as Eg′(Y ) (where g′ is a function different
from g) in order to reduce its variance. Indeed, Eg(X) can be rewritten as
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Table 1.1. Evaluation of the price of a put option with the Monte Carlo method.
The true value is 0.2384217, with (b) and without (a) applying the variance reduction
technique of Section 1.4.1.

n ĝn 95% conf. interval

100 0.206 (0.153 ; 0.259)
1000 0.231 (0.213 ; 0.250)
10000 0.238 (0.232 ; 0.244)

n ĝn 95% conf. interval

100 0.234 (0.222 ; 0.245)
1000 0.236 (0.233 ; 0.240)
10000 0.238 (0.237 ; 0.239)

(a) (b)

∫
R

(1− eβx)+
β|x|

β|x|e
− 1

2 x2

√
2π

dx,

setting K = 1 and noticing that ex − 1 ' x for x close to 0. By the change of
variable x =

√
y for x > 0 and x = −√y for x < 0, the integral above can be

rewritten as ∫ ∞

0

(
1− eβ

√
y
)
+

+
(
1− e−β

√
y
)
+√

2π
√
y

e−
1
2 y

2
dy,

from which we remark that f(y) = λe−λy, with λ = 1
2 , is the density of the

exponential distribution. Therefore,

Eg(X) = E


(
1− eβ

√
Y
)

+
+
(
1− e−β

√
Y
)

+√
2π
√
Y


can be evaluated as the expected value of a function of the exponential random
variable Y . The following algorithm executes the calculation, and results are
reported in Table 1.1 (b), from which the reduction in variance is quite evident.
> # ex1 .03.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
>
> x <- rexp(n,rate =0.5)
> h <- function(x) (max(0,1-exp(beta*sqrt(x))) +
+ max(0,1-exp(-beta*sqrt(x))))/sqrt(2*pi*x)
> y <- sapply(x, h)
>
> # the true value
> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta -beta)
[1] 0.2384217
>
> t.test(y[1:100]) # first 100 simulations
> t.test(y[1:1000]) # first 1000 simulations
> t.test(y) # all simulation results
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1.4.2 Control variables

The very simple case of variance reduction via control variables is as follows.
Suppose that we want to calculate Eg(X). If we can rewrite it in the form

Eg(X) = E(g(X)− h(X)) + Eh(X) ,

where Eh(X) can be calculated explicitly and g(X)− h(X) has variance less
than g(X), then by estimating E(g(X)− h(X)) via the Monte Carlo method,
we obtain a reduction in variance.

Call-put parity example

Continuing with the example of the previous section, consider the price of a
call option

c(X) = E
(
eβX −K

)
+
.

It is easy to show that c(X) − p(X) = e
1
2 β2 −K, where p is the price of the

put option. Hence we can write c(X) = p(X) + e
1
2 β2 − K. It is also known

(see, e.g., [154]) that the variance of p(X) is less than the variance of c(X).
Thus we obtained an estimator of c(X) with reduced bias. The exact formula
for c(X) is also known and reads as

E
(
eβX −K

)
+

= e
1
2 β2

Φ

(
β − log(K)

β

)
−KΦ

(
− log(K)

β

)
.

The following R code shows this empirically, and the results are reported in
Table 1.2.
> # ex1 .04.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
>
> x <- rnorm(n)
> y <- sapply(x, function(x) max(0,exp(beta*x)-K))
>
> # the true value
> exp(beta^2/2)*pnorm(beta -log(K)/beta)-K*pnorm(-log(K)/beta)
>
> t.test(y[1:100]) # first 100 simulations
> t.test(y[1:1000]) # first 1000 simulations
> t.test(y) # all simulation results
>
> set.seed (123)
> x <- rexp(n,rate =0.5)
> h <- function(x) (max(0,1-exp(beta*sqrt(x))) +
+ max(0,1-exp(-beta*sqrt(x))))/sqrt(2*pi*x)
> y <- sapply(x, h)
>
> # variance reduction
> # CALL = PUT + e^{0.5*beta ^2} - K
> z <- y +exp (0.5*beta ^2) - K
>
> t.test(z[1:100]) # first 100 simulations
> t.test(z[1:1000]) # first 1000 simulations
> t.test(z) # all simulation results
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Table 1.2. Evaluation of the price of a call option with the Monte Carlo method.
The true value is 0.887143 with (b) and without (a) applying the variance reduction
technique of Section 1.4.2.

n ĝn 95% conf. interval

100 0.858 (0.542 ; 1.174)
1000 0.903 (0.780 ; 1.026)
10000 0.885 (0.844 ; 0.925)

n ĝn 95% conf. interval

100 0.882 (0.871 ; 0.894)
1000 0.885 (0.881 ; 0.889)
10000 0.887 (0.886 ; 0.888)

(a) (b)

Table 1.3. Evaluation of the price of a put option with the Monte Carlo method.
The true value is 0.2384217 with (b) and without (a) applying the variance reduction
technique of Section 1.4.3.

n ĝn 95% conf. interval

100 0.206 (0.153 ; 0.259)
1000 0.231 (0.213 ; 0.250)
10000 0.238 (0.232 ; 0.244)

n ĝn 95% conf. interval

100 0.226 (0.202 ; 0.250)
1000 0.235 (0.226 ; 0.242)
10000 0.238 (0.235 ; 0.240)

(a) (b)

1.4.3 Antithetic sampling

The idea of antithetic sampling can be applied when it is possible to find
transformations of X that leave its measure unchanged (for example, if X is
Gaussian, then −X is Gaussian as well). Suppose that we want to calculate

I =
∫ 1

0

g(x)dx = Eg(X) ,

withX ∼ U(0, 1). The transformation x 7→ 1−x leaves the measure unchanged
(i.e., 1−X ∼ U(0, 1)), and I can be rewritten as

I =
1
2

∫ 1

0

(g(x)+g(1−x))dx =
1
2

E(g(X)+g(1−X)) =
1
2

E(g(X)+g(h(X))) .

Therefore, we have a variance reduction if

Var
(

1
2

(g(X) + g(h(X)))
)
< Var

(
1
2
g(X)

)
,

which is equivalent to saying that Cov(g(X), g(h(X))) < 0. If h(x) is a
monotonic function of x (as in the example above), this is always the case. This
way of proceeding has the effect of reducing the variance but also increasing
the accuracy of the calculation of the mean.4 Going back to the example of
4 It does not correct higher-order moment estimation, though.



14 1 Stochastic Processes and Stochastic Differential Equations

the calculation of the price of a put option, one should calculate it using X
and −X and then averaging as follows:
> # ex1 .05.R
> set.seed (123)
> n <- 10000
> beta <-1
> K <- 1
> x <- rnorm(n)
> y1 <- sapply(x, function(x) max(0,K-exp(beta*x)))
> y2 <- sapply(-x, function(x) max(0,K-exp(beta*x)))
>
> y <- (y1+y2)/2
> # the true value
> K*pnorm(log(K)/beta)-exp(beta^2/2)*pnorm(log(K)/beta -beta)
>
> t.test(y[1:100]) # first 100 simulations
> t.test(y[1:1000]) # first 1000 simulations
> t.test(y) # all simulation results

The results are reported in Table 1.3. Notice that we have applied this method
to the naive Monte Carlo estimator and not the one built on the exponential
distribution Y , as in that case −Y is no longer an exponential distribution.

1.5 Generalities of stochastic processes

Let (ω,A, P ) a probability space. A real valued stochastic process is a family
of random variables {Xγ , γ ∈ Γ} defined on Ω × Γ taking values in R. Thus,
the random variables of the family (measurable for every γ ∈ Γ ) are functions
of the form

X(γ, ω) : Γ ×Ω 7→ R .

For Γ = N, we have a discrete-time process, and for Γ ⊂ R we have a
continuous-time process. We are mainly interested in continuous-time pro-
cesses with Γ = [0,∞), and we always think of [0,∞) as the time axis. We
will denote a continuous-time stochastic process as X = {Xt, t ≥ 0}. Some-
times, to avoid multiple subscripts, we will also adopt the usual notation
X(t) to denote Xt. For a fixed value of ω, say ω̄, {X(t, ω̄), t ≥ 0} (respectively
{X(n, ω̄), n ∈ N} for the discrete case) is called the path or trajectory of
the process and represents one possible evolution of the process. For a fixed
t, say t̄, the set of values {X(t̄, ω), ω ∈ Ω} (respectively {X(n̄, ω), ω ∈ Ω})
represents the set of possible states of the process at time t̄ (respectively n).

1.5.1 Filtrations

Consider the probability space (Ω,A, P ). A filtration {Ft, t ≥ 0} is an in-
creasing family of sub-σ-algebras of A indexed by t ≥ 0; i.e., for each
s, t ≥ 0 such that s < t, we have Fs ⊂ Ft with F0 = {Ω, ∅}. To each
process {X(t), t ≥ 0} and for each t, we can associate a σ-algebra denoted by
Ft = σ(X(s); 0 ≤ s ≤ t), which is the σ-algebra generated by the process X
up to time t; i.e., the smallest σ-algebra of A that makes X(s, ω) measurable


