
 

 

Statistics and Computing     

Series Editors: 
J. Chambers 
D. Hand 
W. Härdle 
 
 



Statistics and Computing 
 
Brusco/Stahl: Branch and Bound Applications in Combinatorial Data Analysis 
Chambers: Software for Data Analysis: Programming with R 
Dalgaard: Introductory Statistics with R 
Gentle: Elements of Computational Statistics 
Gentle: Numerical Linear Algebra for Applications in Statistics 
Gentle: Random Number Generation and Monte Carlo Methods, 2nd ed. 
Härdle/Klinke/Turlach: XploRe: An Interactive Statistical Computing Environment 
Hörmann/Leydold/Derflinger: Automatic Nonuniform Random Variate Generation 
Krause/Olson: The Basics of S-PLUS, 4th ed. 
Lange: Numerical Analysis for Statisticians 
Lemmon/Schafer: Developing Statistical Software in Fortran 95 
Loader: Local Regression and Likelihood 
Ó Ruanaidh/Fitzgerald: Numerical Bayesian Methods Applied to Signal Processing 
Pannatier: VARIOWIN: Software for Spatial Data Analysis in 2D 
Pinheiro/Bates: Mixed-Effects Models in S and S-PLUS 
Unwin/Theus/Hofmann: Graphics of Large Datasets: Visualizing a Million 
Venables/Ripley: Modern Applied Statistics with S, 4th ed. 
Venables/Ripley: S Programming 
Wilkinson: The Grammar of Graphics, 2nd ed. 
 
 
 



John M. Chambers

Programming with R

Software for Data Analysis



David Hand 
Department of Mathematics   
South Kensington Campus  
Imperial College London  

W. Härdle 
Institut für Statistik und

 Ökonometrie 
Humboldt-Universität zu

 Berlin 
Spandauer Str. 1 
D-10178 Berlin 
Germany 

Department of Statistics–Sequoia Hall 
John Chambers 

390 Serra Mall  
Stanford University  
Stanford, CA 94305-4065 
USA 

London, SW7 2AZ
United Kingdom

All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now know or hereafter developed is forbidden. 

not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are 

springer.com

e-ISBN: 978-0-387-75936-4ISBN: 978-0-387-75935-7 

© 2008 Springer Science+Business Media, LLC

Printed on acid-free paper.

countries. 
Mac OS® X - Operating System software - is a registered trademark of Apple Computer, Inc. 
MATLAB® is a trademark of The MathWorks, Inc. 

countries. 
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. 
S-PLUS® is a registered trademark of Insightful Corporation. 
UNIX® is a registered trademark of The Open Group. 

of Microsoft Corporation in the U.S. and/or other countries. 
Star Trek and related marks are trademarks of CBS Studios, Inc. 

Windows® and/or other Microsoft products referenced herein are either registered trademarks or trademarks 

Java™ is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other  

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other  

Department of Statistics–Sequoia
 Hall 

John Chambers 

390 Serra Mall  
Stanford University  
Stanford, CA 94305-4065 
USA 

Library of Congress Control Number: 2008922937

jmc@r-project.org

Series Editors: 

DOI: 10.1007/978-0-387-75936-4 

9 8 7 6 5 4 3 



Preface

This is a book about Software for Data Analysis: using computer software
to extract information from some source of data by organizing, visualizing,
modeling, or performing any other relevant computation on the data. We
all seem to be swimming in oceans of data in the modern world, and tasks
ranging from scientific research to managing a business require us to extract
meaningful information from the data using computer software.

This book is aimed at those who need to select, modify, and create
software to explore data. In a word, programming. Our programming will
center on the R system. R is an open-source software project widely used
for computing with data and giving users a huge base of techniques. Hence,
Programming with R.

R provides a general language for interactive computations, supported by
techniques for data organization, graphics, numerical computations, model-
fitting, simulation, and many other tasks. The core system itself is greatly
supplemented and enriched by a huge and rapidly growing collection of soft-
ware packages built on R and, like R, largely implemented as open-source
software. Furthermore, R is designed to encourage learning and develop-
ing, with easy starting mechanisms for programming and also techniques
to help you move on to more serious applications. The complete picture—
the R system, the language, the available packages, and the programming
environment—constitutes an unmatched resource for computing with data.

At the same time, the “with” word in Programming with R is impor-
tant. No software system is sufficient for exploring data, and we emphasize
interfaces between systems to take advantage of their respective strengths.

Is it worth taking time to develop or extend your skills in such program-
ming? Yes, because the investment can pay off both in the ability to ask
questions and in the trust you can have in the answers. Exploring data with
the right questions and providing trustworthy answers to them are the key
to analyzing data, and the twin principles that will guide us.

v



vi

What’s in the book?

A sequence of chapters in the book takes the reader on successive steps
from user to programmer to contributor, in the gradual progress that R

encourages. Specifically: using R; simple programming; packages; classes
and methods; inter-system interfaces (Chapters 2; 3; 4; 9 and 10; 11 and
12). The order reflects a natural progression, but the chapters are largely
independent, with many cross references to encourage browsing.

Other chapters explore computational techniques needed at all stages:
basic computations; graphics; computing with text (Chapters 6; 7; 8).
Lastly, a chapter (13) discusses how R works and the appendix covers some
topics in the history of the language.

Woven throughout are a number of reasonably serious examples, ranging
from a few paragraphs to several pages, some of them continued elsewhere
as they illustrate different techniques. See “Examples” in the index. I
encourage you to explore these as leisurely as time permits, thinking about
how the computations evolve, and how you would approach these or similar
examples.

The book has a companion R package, SoDA, obtainable from the main
CRAN repository, as described in Chapter 4. A number of the functions and
classes developed in the book are included in the package. The package
also contains code for most of the examples; see the documentation for
"Examples" in the package.

Even at five hundred pages, the book can only cover a fraction of the
relevant topics, and some of those receive a pretty condensed treatment.
Spending time alternately on reading, thinking, and interactive computation
will help clarify much of the discussion, I hope. Also, the final word is with
the online documentation and especially with the software; a substantial
benefit of open-source software is the ability to drill down and see what’s
really happening.

Who should read this book?

I’ve written this book with three overlapping groups of readers generally
in mind.

First, “data analysts”; that is, anyone with an interest in exploring data,
especially in serious scientific studies. This includes statisticians, certainly,
but increasingly others in a wide range of disciplines where data-rich studies
now require such exploration. Helping to enable exploration is our mission



vii

here. I hope and expect that you will find that working with R and re-
lated software enhances your ability to learn from the data relevant to your
interests.

If you have not used R or S-Plus R© before, you should precede this book
(or at least supplement it) with a more basic presentation. There are a
number of books and an even larger number of Web sites. Try searching
with a combination of “introduction” or “introductory” along with “R”.
Books by W. John Braun and Duncan J. Murdoch [2], Michael Crawley
[11], Peter Dalgaard [12], and John Verzani [24], among others, are general
introductions (both to R and to statistics). Other books and Web sites are
beginning to appear that introduce R or S-Plus with a particular area of
application in mind; again, some Web searching with suitable terms may
find a presentation attuned to your interests.

A second group of intended readers are people involved in research or
teaching related to statistical techniques and theory. R and other modern
software systems have become essential in the research itself and in commu-
nicating its results to the community at large. Most graduate-level programs
in statistics now provide some introduction to R. This book is intended to
guide you on the followup, in which your software becomes more important
to your research, and often a way to share results and techniques with the
community. I encourage you to push forward and organize your software to
be reusable and extendible, including the prospect of creating an R package
to communicate your work to others. Many of the R packages now available
derive from such efforts..

The third target group are those more directly interested in software
and programming, particularly software for data analysis. The efforts of the
R community have made it an excellent medium for “packaging” software
and providing it to a large community of users. R is maintained on all the
widely used operating systems for computing with data and is easy for users
to install. Its package mechanism is similarly well maintained, both in the
central CRAN repository and in other repositories. Chapter 4 covers both
using packages and creating your own. R can also incorporate work done in
other systems, through a wide range of inter-system interfaces (discussed in
Chapters 11 and 12).

Many potential readers in the first and second groups will have some
experience with R or other software for statistics, but will view their involve-
ment as doing only what’s absolutely necessary to “get the answers”. This
book will encourage moving on to think of the interaction with the software
as an important and valuable part of your activity. You may feel inhibited by
not having done much programming before. Don’t be. Programming with



viii

R can be approached gradually, moving from easy and informal to more
ambitious projects. As you use R, one of its strengths is its flexibility. By
making simple changes to the commands you are using, you can customize
interactive graphics or analysis to suit your needs. This is the takeoff point
for programming: As Chapters 3 and 4 show, you can move from this first
personalizing of your computations through increasingly ambitious steps to
create your own software. The end result may well be your own contribution
to the world of R-based software.

How should you read this book?

Any way that you find helpful or enjoyable, of course. But an author
often imagines a conversation with a reader, and it may be useful to share
my version of that. In many of the discussions, I imagine a reader pausing to
decide how to proceed, whether with a specific technical point or to choose
a direction for a new stage in a growing involvement with software for data
analysis. Various chapters chart such stages in a voyage that many R users
have taken from initial, casual computing to a full role as a contributor to
the community. Most topics will also be clearer if you can combine reading
with hands-on interaction with R and other software, in particular using the
Examples in the SoDA package.

This pausing for reflection and computing admittedly takes a little time.
Often, you will just want a “recipe” for a specific task—what is often called
the “cookbook” approach. By “cookbook” in software we usually imply that
one looks a topic up in the index and finds a corresponding explicit recipe.
That should work sometimes with this book, but we concentrate more on
general techniques and extended examples, with the hope that these will
equip readers to deal with a wider range of tasks. For the reader in a hurry,
I try to insert pointers to online documentation and other resources.

As an enthusiastic cook, though, I would point out that the great cook-
books offer a range of approaches, similar to the distinction here. Some, such
as the essential Joy of Cooking do indeed emphasize brief, explicit recipes.
The best of these books are among the cook’s most valuable resources. Other
books, such as Jacques Pépin’s masterful La Technique, teach you just that:
techniques to be applied. Still others, such as the classic Mastering the Art
of French Cooking by Julia Child and friends, are about learning and about
underlying concepts as much as about specific techniques. It’s the latter
two approaches that most resemble the goals of the present book. The book
presents a number of explicit recipes, but the deeper emphasis is in on con-
cepts and techniques. And behind those in turn, there will be two general
principles of good software for data analyis.



ix

Acknowledgments

The ideas discussed in the book, as well as the software itself, are the
results of projects involving many people and stretching back more than
thirty years (see the appendix for a little history).

Such a scope of participants and time makes identifying all the indi-
viduals a hopeless task, so I will take refuge in identifying groups, for the
most part. The most recent group, and the largest, consists of the “con-
tributors to R”, not easy to delimit but certainly comprising hundreds of
people at the least. Centrally, my colleagues in R-core, responsible for the
survival, dissemination, and evolution of R itself. These are supplemented by
other volunteers providing additional essential support for package manage-
ment and distribution, both generally and specifically for repositories such
as CRAN, BioConductor, omegahat, RForge and others, as well as the main-
tainers of essential information resources—archives of mailing lists, search
engines, and many tutorial documents. Then the authors of the thousands
of packages and other software forming an unprecedented base of techniques;
finally, the interested users who question and prod through the mailing lists
and other communication channels, seeking improvements. This commu-
nity as a whole is responsible for realizing something we could only hazily
articulate thirty-plus years ago, and in a form and at a scale far beyond our
imaginings.

More narrowly from the viewpoint of this book, discussions within R-core

have been invaluable in teaching me about R, and about the many techniques
and facilities described throughout the book. I am only too aware of the
many remaining gaps in my knowledge, and of course am responsible for all
inaccuracies in the descriptions herein.

Looking back to the earlier evolution of the S language and software,
time has brought an increasing appreciation of the contribution of colleagues
and management in Bell Labs research in that era, providing a nourishing
environment for our efforts, perhaps indeed a unique environment. Rick
Becker, Allan Wilks, Trevor Hastie, Daryl Pregibon, Diane Lambert, and
W. S. Cleveland, along with many others, made essential contributions.

Since retiring from Bell Labs in 2005, I have had the opportunity to
interact with a number of groups, including students and faculty at several
universities. Teaching and discussions at Stanford over the last two academic
years have been very helpful, as were previous interactions at UCLA and
at Auckland University. My thanks to all involved, with special thanks to
Trevor Hastie, Mark Hansen, Ross Ihaka and Chris Wild.

A number of the ideas and opinions in the book benefited from collab-



x

orations and discussions with Duncan Temple Lang, and from discussions
with Robert Gentleman, Luke Tierney, and other experts on R, not that any
of them should be considered at all responsible for defects therein.

The late Gene Roddenberry provided us all with some handy terms, and
much else to be enjoyed and learned from.

Each of our books since the beginning of S has had the benefit of the
editorial guidance of John Kimmel; it has been a true and valuable collab-
oration, long may it continue.

John Chambers
Palo Alto, California

January, 2008

PS: The Web page stat.stanford.edu/~jmc4/errata contains correc-
tions and notes on developments since the initial publication of the book.



Contents

1 Introduction: Principles and Concepts 1
1.1 Exploration: The Mission . . . . . . . . . . . . . . . . . . . . 1
1.2 Trustworthy Software: The Prime Directive . . . . . . . . . . 3
1.3 Concepts for Programming with R . . . . . . . . . . . . . . . 4
1.4 The R System and the S Language . . . . . . . . . . . . . . . 9

2 Using R 11
2.1 Starting R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 An Interactive Session . . . . . . . . . . . . . . . . . . . . . . 13
2.3 The Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Objects and Names . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Functions and Packages . . . . . . . . . . . . . . . . . . . . . 25
2.6 Getting R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Online Information About R . . . . . . . . . . . . . . . . . . . 31
2.8 What’s Hard About Using R? . . . . . . . . . . . . . . . . . . 34

3 Programming with R: The Basics 37
3.1 From Commands to Functions . . . . . . . . . . . . . . . . . 37
3.2 Functions and Functional Programming . . . . . . . . . . . . 43
3.3 Function Objects and Function Calls . . . . . . . . . . . . . . 50
3.4 The Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Interactive Tracing and Editing . . . . . . . . . . . . . . . . . 67
3.7 Conditions: Errors and Warnings . . . . . . . . . . . . . . . . 74
3.8 Testing R Software . . . . . . . . . . . . . . . . . . . . . . . . 76

4 R Packages 79
4.1 Introduction: Why Write a Package? . . . . . . . . . . . . . . 79
4.2 The Package Concept and Tools . . . . . . . . . . . . . . . . 80

xi



xii CONTENTS

4.3 Creating a Package . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Documentation for Packages . . . . . . . . . . . . . . . . . . . 95
4.5 Testing Packages . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.6 Package Namespaces . . . . . . . . . . . . . . . . . . . . . . . 103
4.7 Including C Software in Packages . . . . . . . . . . . . . . . . 108
4.8 Interfaces to Other Software . . . . . . . . . . . . . . . . . . . 108

5 Objects 111
5.1 Objects, Names, and References . . . . . . . . . . . . . . . . . 111
5.2 Replacement Expressions . . . . . . . . . . . . . . . . . . . . 115
5.3 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.4 Non-local Assignments; Closures . . . . . . . . . . . . . . . . 125
5.5 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Reading and Writing Objects and Data . . . . . . . . . . . . 135

6 Basic Data and Computations 139
6.1 The Evolution of Data in the S Language . . . . . . . . . . . 140
6.2 Object Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3 Vectors and Vector Structures . . . . . . . . . . . . . . . . . . 143
6.4 Vectorizing Computations . . . . . . . . . . . . . . . . . . . . 157
6.5 Statistical Data: Data Frames . . . . . . . . . . . . . . . . . . 166
6.6 Operators: Arithmetic, Comparison, Logic . . . . . . . . . . . 184
6.7 Computations on Numeric Data . . . . . . . . . . . . . . . . . 191
6.8 Matrices and Matrix Computations . . . . . . . . . . . . . . . 200
6.9 Fitting Statistical models . . . . . . . . . . . . . . . . . . . . 218
6.10 Programming Random Simulations . . . . . . . . . . . . . . . 221

7 Data Visualization and Graphics 237
7.1 Using Graphics in R . . . . . . . . . . . . . . . . . . . . . . . 238
7.2 The x-y Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.3 The Common Graphics Model . . . . . . . . . . . . . . . . . . 253
7.4 The graphics Package . . . . . . . . . . . . . . . . . . . . . . 263
7.5 The grid Package . . . . . . . . . . . . . . . . . . . . . . . . 271
7.6 Trellis Graphics and the lattice Package . . . . . . . . . . . 280

8 Computing with Text 289
8.1 Text Computations for Data Analysis . . . . . . . . . . . . . 289
8.2 Importing Text Data . . . . . . . . . . . . . . . . . . . . . . . 294
8.3 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . 298
8.4 Text Computations in R . . . . . . . . . . . . . . . . . . . . . 304



CONTENTS xiii

8.5 Using and Writing Perl . . . . . . . . . . . . . . . . . . . . . . 309
8.6 Examples of Text Computations . . . . . . . . . . . . . . . . 318

9 New Classes 331
9.1 Introduction: Why Classes? . . . . . . . . . . . . . . . . . . . 331
9.2 Programming with New Classes . . . . . . . . . . . . . . . . . 334
9.3 Inheritance and Inter-class Relations . . . . . . . . . . . . . . 344
9.4 Virtual Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 351
9.5 Creating and Validating Objects . . . . . . . . . . . . . . . . 359
9.6 Programming with S3 Classes . . . . . . . . . . . . . . . . . . 362
9.7 Example: Binary Trees . . . . . . . . . . . . . . . . . . . . . . 369
9.8 Example: Data Frames . . . . . . . . . . . . . . . . . . . . . . 375

10 Methods and Generic Functions 381
10.1 Introduction: Why Methods? . . . . . . . . . . . . . . . . . . 381
10.2 Method Definitions . . . . . . . . . . . . . . . . . . . . . . . . 384
10.3 New Methods for Old Functions . . . . . . . . . . . . . . . . . 387
10.4 Programming Techniques for Methods . . . . . . . . . . . . . 389
10.5 Generic Functions . . . . . . . . . . . . . . . . . . . . . . . . 396
10.6 How Method Selection Works . . . . . . . . . . . . . . . . . . 405

11 Interfaces I: C and Fortran 411
11.1 Interfaces to C and Fortran . . . . . . . . . . . . . . . . . . . . 411
11.2 Calling R-Independent Subroutines . . . . . . . . . . . . . . . 415
11.3 Calling R-Dependent Subroutines . . . . . . . . . . . . . . . . 420
11.4 Computations in C++ . . . . . . . . . . . . . . . . . . . . . . 425
11.5 Loading and Registering Compiled Routines . . . . . . . . . . 426

12 Interfaces II: Other Systems 429
12.1 Choosing an Interface . . . . . . . . . . . . . . . . . . . . . . 430
12.2 Text- and File-Based Interfaces . . . . . . . . . . . . . . . . . 432
12.3 Functional Interfaces . . . . . . . . . . . . . . . . . . . . . . . 433
12.4 Object-Based Interfaces . . . . . . . . . . . . . . . . . . . . . 435
12.5 Interfaces to OOP Languages . . . . . . . . . . . . . . . . . . 437
12.6 Interfaces to C++ . . . . . . . . . . . . . . . . . . . . . . . . . 440
12.7 Interfaces to Databases and Spreadsheets . . . . . . . . . . . 446
12.8 Interfaces without R . . . . . . . . . . . . . . . . . . . . . . . 450



xiv CONTENTS

13 How R Works 453
13.1 The R Program . . . . . . . . . . . . . . . . . . . . . . . . . . 453
13.2 The R Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . 454
13.3 Calls to R Functions . . . . . . . . . . . . . . . . . . . . . . . 460
13.4 Calls to Primitive Functions . . . . . . . . . . . . . . . . . . . 463
13.5 Assignments and Replacements . . . . . . . . . . . . . . . . . 465
13.6 The Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
13.7 Memory Management for R Objects . . . . . . . . . . . . . . 471

A Some Notes on the History of S 475

Bibliography 479

Index 481

Index of R Functions and Documentation 489

Index of R Classes and Types 497



Chapter 1

Introduction: Principles and
Concepts

This chapter presents some of the concepts and principles that
recur throughout the book. We begin with the two guiding prin-
ciples: the mission to explore and the responsibility to be trust-
worthy (Sections 1.1 and 1.2). With these as guidelines, we then
introduce some concepts for programming with R (Section 1.3,
page 4) and add some justification for our emphasis on that sys-
tem (Section 1.4, page 9).

1.1 Exploration: The Mission

The first principle I propose is that our Mission, as users and creators of soft-
ware for data analysis, is to enable the best and most thorough exploration
of data possible. That means that users of the software must be able to ask
the meaningful questions about their applications, quickly and flexibly.

Notice that speed here is human speed, measured in clock time. It’s
the time that the actual computations take, but usually more importantly,
it’s also the time required to formulate the question and to organize the
data in a way to answer it. This is the exploration, and software for data
analysis makes it possible. A wide range of techniques is needed to access
and transform data, to make predictions or summaries, to communicate
results to others, and to deal with ongoing processes.

Whenever we consider techniques for these and other requirements in the
chapters that follow, the first principle we will try to apply is the Mission:

1



2 CHAPTER 1. INTRODUCTION: PRINCIPLES AND CONCEPTS

How can these techniques help people to carry out this specific kind of
exploration?

Ensuring that software for data analysis exists for such purposes is an
important, exciting, and challenging activity. Later chapters examine how
we can select and develop software using R and other systems.

The importance, excitement, and challenge all come from the central
role that data and computing have come to play in modern society. Science,
business and many other areas of society continually rely on understanding
data, and that understanding frequently involves large and complicated data
processes.

A few examples current as the book is written can suggest the flavor:

• Many ambitious projects are underway or proposed to deploy sensor
networks, that is, coordinated networks of devices to record a variety
of measurements in an ongoing program. The data resulting is essen-
tial to understand environmental quality, the mechanisms of weather
and climate, and the future of biodiversity in the earth’s ecosystems.
In both scale and diversity, the challenge is unprecedented, and will
require merging techniques from many disciplines.

• Astronomy and cosmology are undergoing profound changes as a result
of large-scale digital mappings enabled by both satellite and ground
recording of huge quantities of data. The scale of data collected allows
questions to be addressed in an overall sense that before could only be
examined in a few, local regions.

• Much business activity is now carried out largely through distributed,
computerized processes that both generate large and complex streams
of data and also offer through such data an unprecedented opportu-
nity to understand one’s business quantitatively. Telecommunications
in North America, for example, generates databases with conceptually
billions of records. To explore and understand such data has great
attraction for the business (and for society), but is enormously chal-
lenging.

These and many other possible examples illustrate the importance of what
John Tukey long ago characterized as “the peaceful collision of computing
and data analysis”. Progress on any of these examples will require the ability
to explore the data, flexibly and in a reasonable time frame.



1.2. TRUSTWORTHY SOFTWARE: THE PRIME DIRECTIVE 3

1.2 Trustworthy Software: The Prime Directive

Exploration is our mission; we and those who use our software want to
find new paths to understand the data and the underlying processes. The
mission is, indeed, to boldly go where no one has gone before. But, we need
boldness to be balanced by our responsibility. We have a responsibility for
the results of data analysis that provides a key compensating principle.

The complexity of the data processes and of the computations applied
to them mean that those who receive the results of modern data analysis
have limited opportunity to verify the results by direct observation. Users of
the analysis have no option but to trust the analysis, and by extension the
software that produced it. Both the data analyst and the software provider
therefore have a strong responsibility to produce a result that is trustworthy,
and, if possible, one that can be shown to be trustworthy.

This is the second principle: the computations and the software for data
analysis should be trustworthy: they should do what they claim, and be seen
to do so. Neither those who view the results of data analysis nor, in many
cases, the statisticians performing the analysis can directly validate exten-
sive computations on large and complicated data processes. Ironically, the
steadily increasing computer power applied to data analysis often distances
the results further from direct checking by the recipient. The many com-
putational steps between original data source and displayed results must all
be truthful, or the effect of the analysis may be worthless, if not pernicious.
This places an obligation on all creators of software to program in such a
way that the computations can be understood and trusted. This obligation
I label the Prime Directive.

Note that the directive in no sense discourages exploratory or approx-
imate methods. As John Tukey often remarked, better an approximate
answer to the right question than an exact answer to the wrong question.
We should seek answers boldly, but always explaining the nature of the
method applied, in an open and understandable format, supported by as
much evidence of its quality as can be produced. As we will see, a number
of more technically specific choices can help us satisfy this obligation.

Readers who have seen the Star Trek R© television series1 may recognize
the term “prime directive”. Captains Kirk, Picard, and Janeway and their
crews were bound by a directive which (slightly paraphrased) was: Do noth-
ing to interfere with the natural course of a new civilization. Do not distort

1Actually, at least five series, from “The Original” in 1966 through “Enterprise”, not
counting the animated version, plus many films. See startrek.com and the many reruns
if this is a gap in your cultural background.



4 CHAPTER 1. INTRODUCTION: PRINCIPLES AND CONCEPTS

the development. Our directive is not to distort the message of the data,
and to provide computations whose content can be trusted and understood.

The prime directive of the space explorers, notice, was not their mission
but rather an important safeguard to apply in pursuing that mission. Their
mission was to explore, to “boldly go where no one has gone before”, and
all that. That’s really our mission too: to explore how software can add
new abilities for data analysis. And our own prime directive, likewise, is an
important caution and guiding principle as we create the software to support
our mission.

Here, then, are two motivating principles: the mission, which is bold
exploration; and the prime directive, trustworthy software. We will examine
in the rest of the book how to select and program software for data analysis,
with these principles as guides. A few aspects of R will prove to be especially
relevant; let’s examine those next.

1.3 Concepts for Programming with R

The software and the programming techniques to be discussed in later chap-
ters tend to share some concepts that make them helpful for data analysis.
Exploiting these concepts will often benefit both the effectiveness of pro-
gramming and the quality of the results. Each of the concepts arises nat-
urally in later chapters, but it’s worth outlining them together here for an
overall picture of our strategy in programming for data analysis.

Functional Programming

Software in R is written in a functional style that helps both to understand
the intent and to ensure that the implementation corresponds to that intent.
Computations are organized around functions, which can encapsulate spe-
cific, meaningful computational results, with implementations that can be
examined for their correctness. The style derives from a more formal theory
of functional programming that restricts the computations to obtain well-
defined or even formally verifiable results. Clearly, programming in a fully
functional manner would contribute to trustworthy software. The S lan-
guage does not enforce a strict functional programming approach, but does
carry over some of the flavor, particularly when you make some effort to
emphasize simple functional definitions with minimal use of non-functional
computations.

As the scope of the software expands, much of the benefit from functional
style can be retained by using functional methods to deal with varied types



1.3. CONCEPTS FOR PROGRAMMING WITH R 5

of data, within the general goal defined by the generic function.

Classes and Methods

The natural complement to functional style in programming is the definition
of classes of objects. Where functions should clearly encapsulate the actions
in our analysis, classes should encapsulate the nature of the objects used
and returned by calls to functions. The duality between function calls and
objects is a recurrent theme of programming with R. In the design of new
classes, we seek to capture an underlying concept of what the objects mean.
The relevant techniques combine directly specifying the contents (the slots),
relating the new class to existing classes (the inheritance), and expressing
how objects should be created and validated (methods for initializing and
validating).

Method definitions knit together functions and classes. Well-designed
methods extend the generic definition of what a function does to provide a
specific computational method when the argument or arguments come from
specified classes, or inherit from those classes. In contrast to methods that
are solely class-based, as in common object-oriented programming languages
such as C++ or Java, methods in R are part of a rich but complex network
of functional and object-based computation.

The ability to define classes and methods in fact is itself a major advan-
tage in adhering to the Prime Directive. It gives us a way to isolate and
define formally what information certain objects should contain and how
those objects should behave when functions are applied to them.

Data Frames

Trustworthy data analysis depends first on trust in the data being analyzed.
Not so much that the data must be perfect, which is impossible in nearly
any application and in any case beyond our control, but rather that trust
in the analysis depends on trust in the relation between the data as we use
it and the data as it has entered the process and then has been recorded,
organized and transformed.

In serious modern applications, the data usually comes from a process
external to the analysis, whether generated by scientific observations, com-
mercial transactions or any of many other human activities. To access the
data for analysis by well-defined and trustworthy computations, we will ben-
efit from having a description, or model, for the data that corresponds to
its natural home (often in DBMS or spreadsheet software), but can also be



6 CHAPTER 1. INTRODUCTION: PRINCIPLES AND CONCEPTS

a meaningful basis for data as used in the analysis. Transformations and
restructuring will often be needed, but these should be understandable and
defensible.

The model we will emphasize is the data frame, essentially a formulation
of the traditional view of observations and variables. The data frame has a
long history in the S language but modern techniques for classes and meth-
ods allow us to extend the use of the concept. Particularly useful techniques
arise from using the data frame concept both within R, for model-fitting,
data visualization, and other computations, and also for effective commu-
nication with other systems. Spreadsheets and relational database software
both relate naturally to this model; by using it along with unambiguous
mechanisms for interfacing with such software, the meaning and structure
of the data can be preserved. Not all applications suit this approach by
any means, but the general data frame model provides a valuable basis for
trustworthy organization and treatment of many sources of data.

Open Source Software

Turning to the general characteristics of the languages and systems avail-
able, note that many of those discussed in this book are open-source software
systems; for example, R, Perl, Python, many of the database systems, and the
Linux operating system. These systems all provide access to source code
sufficient to generate a working version of the software. The arrangement is
not equivalent to “public-domain” software, by which people usually mean
essentially unrestricted use and copying. Instead, most open-source systems
come with a copyright, usually held by a related group or foundation, and
with a license restricting the use and modification of the software. There
are several versions of license, the best known being the Gnu General Pub-
lic License and its variants (see gnu.org/copyleft/gpl.html), the famous
GPL. R is distributed under a version of this license (see the "COPYING" file
in the home directory of R). A variety of other licenses exists; those accepted
by the Open Source Initiative are described at opensource.org/licenses.

Distinctions among open-source licenses generate a good deal of heat
in some discussions, often centered on what effect the license has on the
usability of the software for commercial purposes. For our focus, particularly
for the concern with trustworthy software for data analysis, these issues are
not directly relevant. The popularity of open-source systems certainly owes
a lot to their being thought of as “free”, but for our goal of trustworthy
software, this is also not the essential property. Two other characteristics
contribute more. First, the simple openness itself allows any sufficiently



1.3. CONCEPTS FOR PROGRAMMING WITH R 7

competent observer to enquire fully about what is actually being computed.
There are no intrinsic limitations to the validation of the software, in the
sense that it is all there. Admittedly, only a minority of users are likely to
delve very far into the details of the software, but some do. The ability to
examine and critique every part of the software makes for an open-ended
scope for verifying the results.

Second, open-source systems demonstrably generate a spirit of commu-
nity among contributors and active users. User groups, e-mail lists, chat
rooms and other socializing mechanisms abound, with vigorous discussion
and controversy, but also with a great deal of effort devoted to testing and
extension of the systems. The active and demanding community is a key to
trustworthy software, as well as to making useful tools readily available.

Algorithms and Interfaces

R is explicitly seen as built on a set of routines accessed by an interface,
in particular by making use of computations in C or Fortran. User-written
extensions can make use of such interfaces, but the core of R is itself built on
them as well. Aside from routines that implement R-dependent techniques,
there are many basic computations for numerical results, data manipulation,
simulation, and other specific computational tasks. These implementations
we can term algorithms. Many of the core computations on which the R

software depends are now implemented by collections of such software that
are widely used and tested. The algorithm collections have a long history,
often predating the larger-scale open-source systems. It’s an important con-
cept in programming with R to seek out such algorithms and make them
part of a new computation. You should be able to import the trust built up
in the non-R implementation to make your own software more trustworthy.

Major collections on a large scale and many smaller, specialized al-
gorithms have been written, generally in the form of subroutines in For-

tran, C, and a few other general programming languages. Thirty-plus years
ago, when I was writing Computational Methods for Data Analysis, those
who wanted to do innovative data analysis often had to work directly from
such routines for numerical computations or simulation, among other topics.
That book expected readers to search out the routines and install them in
the readers’ own computing environment, with many details left unspecified.

An important and perhaps under-appreciated contribution of R and
other systems has been to embed high-quality algorithms for many computa-
tions in the system itself, automatically available to users. For example, key
parts of the LAPACK collection of computations for numerical linear algebra



8 CHAPTER 1. INTRODUCTION: PRINCIPLES AND CONCEPTS

are included in R, providing a basis for fitting linear models and for other
matrix computations. Other routines in the collection may not be included,
perhaps because they apply to special datatypes or computations not often
encountered. These routines can still be used with R in nearly all cases, by
writing an interface to the routine (see Chapter 11).

Similarly, the internal code for pseudo-random number generation in-
cludes most of the well-regarded and thoroughly tested algorithms for this
purpose. Other tasks, such as sorting and searching, also use quality al-
gorithms. Open-source systems provide an advantage when incorporating
such algorithms, because alert users can examine in detail the support for
computations. In the case of R, users do indeed question and debate the
behavior of the system, sometimes at great length, but overall to the benefit
of our trust in programming with R.

The best of the algorithm collections offer another important boost for
trustworthy software in that the software may have been used in a wide
variety of applications, including some where quality of results is critically
important. Collections such as LAPACK are among the best-tested substan-
tial software projects in existence, and not only by users of higher-level
systems. Their adaptability to a wide range of situations is also a frequent
benefit.

The process of incorporating quality algorithms in a user-oriented system
such as R is ongoing. Users can and should seek out the best computations
for their needs, and endeavor to make these available for their own use and,
through packages, for others as well.

Incorporating algorithms in the sense of subroutines in C or Fortran is a
special case of what we call inter-system interfaces in this book. The general
concept is similar to that for algorithms. Many excellent software systems
exist for a variety of purposes, including text-manipulation, spreadsheets,
database management, and many others. Our approach to software for data
analysis emphasizes R as the central system, for reasons outlined in the next
section. In any case, most users will prefer to have a single home system for
their data analysis.

That does not mean that we should or can absorb all computations di-
rectly into R. This book emphasizes the value of expressing computations in
a natural way while making use of high-quality implementations in whatever
system is suitable. A variety of techniques, explored in Chapter 12, allows
us to retain a consistent approach in programming with R at the same time.



1.4. THE R SYSTEM AND THE S LANGUAGE 9

1.4 The R System and the S Language

This book includes computations in a variety of languages and systems, for
tasks ranging from database management to text processing. Not all systems
receive equal treatment, however. The central activity is data analysis,
and the discussion is from the perspective that our data analysis is mainly
expressed in R; when we examine computations, the results are seen from an
interactive session with R. This view does not preclude computations done
partly or entirely in other systems, and these computations may be complete
in themselves. The data analysis that the software serves, however, is nearly
always considered to be in R.

Chapter 2 covers the use of R broadly but briefly (if you have no expe-
rience with it, you might want to consult one of the introductory books or
other sources mentioned on page vii in the preface). The present section
give a brief summary of the system and relates it to the philosophy of the
book.

R is an open-source software system, supported by a group of volunteers
from many countries. The central control is in the hands of a group called
R-core, with the active collaboration of a much larger group of contributors.
The base system provides an interactive language for numerical computa-
tions, data management, graphics and a variety of related calculations. It
can be installed on Windows, Mac OS X, and Linux operating systems, with
a variety of graphical user interfaces. Most importantly, the base system
is supported by well over a thousand packages on the central repository
cran.r-project.org and in other collections.

R began as a research project of Ross Ihaka and Robert Gentleman in the
1990s, described in a paper in 1996 [17]. It has since expanded into software
used to implement and communicate most new statistical techniques. The
software in R implements a version of the S language, which was designed
much earlier by a group of us at Bell Laboratories, described in a series of
books ([1], [6], and [5] in the bibliography).

The S-Plus system also implements the S language. Many of the com-
putations discussed in the book work in S-Plus as well, although there are
important differences in the evaluation model, noted in later chapters. For
more on the history of S, see Appendix A, page 475.

The majority of the software in R is itself written in the same language
used for interacting with the system, a dialect of the S language. The lan-
guage evolved in essentially its present form during the 1980s, with a gen-
erally functional style, in the sense used on page 4: The basic unit of pro-
gramming is a function. Function calls usually compute an object that is a



10 CHAPTER 1. INTRODUCTION: PRINCIPLES AND CONCEPTS

function of the objects passed in as arguments, without side effects to those
arguments. Subsequent evolution of the language introduced formal classes
and methods, again in the sense discussed in the previous section. Methods
are specializations of functions according to the class of one or more of the
arguments. Classes define the content of objects, both directly and through
inheritance. R has added a number of features to the language, while remain-
ing largely compatible with S. All these topics are discussed in the present
book, particularly in Chapters 3 for functions and basic programming, 9 for
classes, and 10 for methods.

So why concentrate on R? Clearly, and not at all coincidentally, R reflects
the same philosophy that evolved through the S language and the approach
to data analysis at Bell Labs, and which largely led me to the concepts I’m
proposing in this book. It is relevant that S began as a medium for statistics
researchers to express their own computations, in support of research into
data analysis and its applications. A direct connection leads from there to
the large community that now uses R similarly to implement new ideas in
statistics, resulting in the huge resource of R packages.

Added to the characteristics of the language is R’s open-source nature,
exposing the system to continual scrutiny by users. It includes some al-
gorithms for numerical computations and simulation that likewise reflect
modern, open-source computational standards in these fields. The LAPACK

software for numerical linear algebra is an example, providing trustworthy
computations to support statistical methods that depend on linear algebra.

Although there is plenty of room for improvement and for new ideas, I
believe R currently represents the best medium for quality software in sup-
port of data analysis, and for the implementation of the principles espoused
in the present book. From the perspective of our first development of S

some thirty-plus years ago, it’s a cause for much gratitude and not a little
amazement.



Chapter 2

Using R

This chapter covers the essentials for using R to explore data in-
teractively. Section 2.1 covers basic access to an R session. Users
interact with R through a single language for both data analy-
sis and programming (Section 2.3, page 19). The key concepts
are function calls in the language and the objects created and
used by those calls (2.4, 24), two concepts that recur through-
out the book. The huge body of available software is organized
around packages that can be attached to the session, once they
are installed (2.5, 25). The system itself can be downloaded and
installed from repositories on the Web (2.6, 29); there are also
a number of resources on the Web for information about R (2.7,
31).

Lastly, we examine aspects of R that may raise difficulties for
some new users (2.8, 34).

2.1 Starting R

R runs on the commonly used platforms for personal computing: Windows R©,
Mac OS X R©, Linux, and some versions of UNIX R©. In the usual desktop en-
vironments for these platforms, users will typically start R as they would
most applications, by clicking on the R icon or on the R file in a folder of
applications.

An application will then appear looking much like other applications
on the platform: for example, a window and associated toolbar. In the

11



12 CHAPTER 2. USING R

standard version, at least on most platforms, the application is called the
"R Console". In Windows recently it looked like this:

The application has a number of drop-down menus; some are typical of most
applications ("File", "Edit", and "Help"). Others such as "Packages" are
special to R. The real action in running R, however, is not with the menus
but in the console window itself. Here the user is expected to type input to R

in the form of expressions; the program underlying the application responds
by doing some computation and if appropriate by displaying a version of the
results for the user to look at (printed results normally in the same console
window, graphics typically in another window).

This interaction between user and system continues, and constitutes an
R session. The session is the fundamental user interface to R. The following
section describes the logic behind it. A session has a simple model for
user interaction, but one that is fundamentally different from users’ most
common experience with personal computers (in applications such as word
processors, Web browsers, or audio/video systems). First-time users may
feel abandoned, left to flounder on their own with little guidance about what
to do and even less help when they do something wrong. More guidance is
available than may be obvious, but such users are not entirely wrong in their



2.2. AN INTERACTIVE SESSION 13

reaction. After intervening sections present the essential concepts involved
in using R, Section 2.8, page 34 revisits this question.

2.2 An Interactive Session

Everything that you do interactively with R happens in a session. A session
starts when you start up R, typically as described above. A session can
also be started from other special interfaces or from a command shell (the
original design), without changing the fundamental concept and with the
basic appearance remaining as shown in this section and in the rest of the
book. Some other interfaces arise in customizing the session, on page 17.

During an R session, you (the user) provide expressions for evaluation
by R, for the purpose of doing any sort of computation, displaying results,
and creating objects for further use. The session ends when you decide to
quit from R.

All the expressions evaluated in the session are just that: general ex-
pressions in R’s version of the S language. Documentation may mention
“commands” in R, but the term just refers to a complete expression that
you type interactively or otherwise hand to R for evaluation. There’s only
one language, used for either interactive data analysis or for programming,
and described in section 2.3. Later sections in the book come back to ex-
amine it in more detail, especially in Chapter 3.

The R evaluator displays a prompt, and the user responds by typing a
line of text. Printed output from the evaluation and other messages appear
following the input line.

Examples in the book will be displayed in this form, with the default
prompts preceding the user’s input:

> quantile(Declination)
0% 25% 50% 75% 100%

-27.98 -11.25 8.56 17.46 27.30

The "> " at the beginning of the example is the (default) prompt string. In
this example the user responded with

quantile(Declination)

The evaluator will keep prompting until the input can be interpreted as a
complete expression; if the user had left off the closing ")", the evaluator
would have prompted for more input. Since the input here is a complete
expression, the system evaluated it. To be pedantic, it parsed the input text



14 CHAPTER 2. USING R

and evaluated the resulting object. The evaluation in this case amounts to
calling a function named quantile.

The printed output may suggest a table, and that’s intentional. But in
fact nothing special happened; the standard action by the evaluator is to
print the object that is the value of the expression. All evaluated expressions
are objects; the printed output corresponds to the object; specifically, the
form of printed output is determined by the kind of object, by its class (tech-
nically, through a method selected for that class). The call to quantile()

returned a numeric vector, that is, an object of class "numeric". A method
was selected based on this class, and the method was called to print the
result shown. The quantile() function expects a vector of numbers as its
argument; with just this one argument it returns a numeric vector containing
the minimum, maximum, median and quartiles.

The method for printing numeric vectors prints the values in the vec-
tor, five of them in this case. Numeric objects can optionally have a names

attribute; if they do, the method prints the names as labels above the num-
bers. So the "0%" and so on are part of the object. The designer of the
quantile() function helpfully chose a names attribute for the result that
makes it easier to interpret when printed.

All these details are unimportant if you’re just calling quantile() to
summarize some data, but the important general concept is this: Objects
are the center of computations in R, along with the function calls that create
and use those objects. The duality of objects and function calls will recur
in many of our discussions.

Computing with existing software hinges largely on using and creating
objects, via the large number of available functions. Programming, that is,
creating new software, starts with the simple creation of function objects.
More ambitious projects often use a paradigm of creating new classes of
objects, along with new or modified functions and methods that link the
functions and classes. In all the details of programming, the fundamental
duality of objects and functions remains an underlying concept.

Essentially all expressions are evaluated as function calls, but the lan-
guage includes some forms that don’t look like function calls. Included are
the usual operators, such as arithmetic, discussed on page 21. Another use-
ful operator is `?`, which looks up R help for the topic that follows the
question mark. To learn about the function quantile():

> ?quantile

In standard GUI interfaces, the documentation will appear in a separate
window, and can be generated from a pull-down menu as well as from the



2.2. AN INTERACTIVE SESSION 15

`?` operator.
Graphical displays provide some of the most powerful techniques in data

analysis, and functions for data visualization and other graphics are an es-
sential part of R:

> plot(Date, Declination)

Here the user typed another expression, plot(Date, Declination); in this
case producing a scatter plot as a side effect, but no printed output. The
graphics during an interactive session typically appear in one or more sepa-
rate windows created by the GUI, in this example a window using the native
quartz() graphics device for Mac OS X. Graphic output can also be produced
in a form suitable for inclusion in a document, such as output in a general
file format (PDF or postscript, for example). Computations for graphics are
discussed in more detail in Chapter 7.

The sequence of expression and evaluation shown in the examples is es-
sentially all there is to an interactive session. The user supplies expressions
and the system evaluates them, one after another. Expressions that pro-
duce simple summaries or plots are usually done to see something, either
graphics or printed output. Aside from such immediate gratification, most
expressions are there in order to assign objects, which can then be used in
later computations:

> fitK <- gam(Kyphosis ∼ s(Age, 4) + Number, family = binomial)

Evaluating this expression calls the function gam() and assigns the value of
the call, associating that object with the name fitK. For the rest of the



16 CHAPTER 2. USING R

session, unless some other assignment to this name is carried out, fitK can
be used in any expression to refer to that object; for example, coef(fitK)

would call a function to extract some coefficients from fitK (which is in this
example a fitted model).

Assignments are a powerful and interesting part of the language. The
basic idea is all we need for now, and is in any case the key concept: As-
signment associates an object with a name. The term “associates” has a
specific meaning here. Whenever any expression is evaluated, the context
of the evaluation includes a local environment, and it is into this environ-
ment that the object is assigned, under the corresponding name. The object
and name are associated in the environment, by the assignment operation.
From then on, the name can be used as a reference to the object in the en-
vironment. When the assignment takes place at the “top level” (in an input
expression in the session), the environment involved is the global environ-
ment. The global environment is part of the current session, and all objects
assigned there remain available for further computations in the session.

Environments are an important part of programming with R. They are
also tricky to deal with, because they behave differently from other objects.
Discussion of environments continues in Section 2.4, page 24.

A session ends when the user quits from R, either by evaluating the
expression q() or by some other mechanism provided by the user interface.
Before ending the session, the system offers the user a chance to save all the
objects in the global environment at the end of the session:

> q()
Save workspace image? [y/n/c]: y

If the user answers yes, then when a new session is started in the same
working directory, the global environment will be restored. Technically, the
environment is restored, not the session. Some actions you took in the
session, such as attaching packages or using options(), may not be restored,
if they don’t correspond to objects in the global environment.

Unfortunately, your session may end involuntarily: the evaluator may be
forced to terminate the session or some outside event may kill the process.
R tries to save the workspace even when fatal errors occur in low-level C

or Fortran computations, and such disasters should be rare in the core R

computations and in well-tested packages. But to be truly safe, you should
explicitly back up important results to a file if they will be difficult to re-
create. See documentation for functions save() and dump() for suitable
techniques.


