Energy Harvesting Technologies

Shashank Priya · Daniel J. Inman Editors

Energy Harvesting Technologies

Editors Shashank Priya Virginia Tech Center for Intelligent Material Systems and Structures Department of Mechanical Engineering 304A Holden Hall Blacksburg, VA 24061 spriya@mse.vt.edu

Daniel J. Inman Virginia Tech Center for Intelligent Material Systems and Structures Department of Mechanical Engineering 310 Durham Hall Blacksburg, VA 24061 dinman@vt.edu

ISBN 978-0-387-76463-4 DOI 10.1007/978-0-387-76464-1 e-ISBN 978-0-387-76464-1

Library of Congress Control Number: 2008934452

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Preface

Energy harvesting materials and systems have emerged as a prominent research area and continues to grow at rapid pace. A wide range of applications are targeted for the harvesters, including distributed wireless sensor nodes for structural health monitoring, embedded and implanted sensor nodes for medical applications, recharging the batteries of large systems, monitoring tire pressure in automobiles, powering unmanned vehicles, and running security systems in household conditions. Recent development includes the components and devices at micro–macro scales covering materials, electronics, and integration. The growing demand for energy harvesters has motivated the publication of this book to present the current state of knowledge in this field.

The book is addressed to students, researchers, application engineers, educators, developers, and producers of energy harvesting materials and systems. The chapters mainly consist of technical reviews, discussions, and basic knowledge in the design and fabrication of energy harvesting systems. It brings the leading researchers in the world in the field of energy harvesting and associated fields on to one platform to provide a comprehensive overview of the fundamentals and developments. The book has good mix of researchers from academics, industry, and national laboratories. All the important energy harvesting technologies including piezoelectric, inductive, thermoelectric, and microbatteries are addressed by the leading authors. Furthermore, the book covers the principles and design rules of the energy harvesting circuits in depth. The chapters on demonstrated applications of the energy harvesting-based technologies will allow readers to conceptualize the promise of the field.

The first section in the book provides discussions on background, theoretical models, equivalent circuit models, lumped models, distributed models, and basic principles for design and fabrication of bulk and MEMS-based vibration-based energy harvesting systems. The second section addresses the theory and design rules required for the fabrication of the efficient electronics. The third section discusses the progress in the field of thermoelectric energy harvesting systems. The fourth section addresses the important subject of storage systems. The fifth section describes some of the prototype demonstrations reported so far utilizing energy harvesting being formalized by a nationwide committee consisting of researchers from academia and

industry. This standard will lay the basic rules for conducting and reporting the research on vibration energy harvesting. The publication of this standard follows the annual energy harvesting workshop. Fourth workshop in this series will be held at Virginia Tech on January 28–29, 2009. It is worthwhile to mention here that this workshop in the last 3 years has grown in size and numbers with growing participation from academia and industry.

The chapters published here are mostly the invited technical submissions from the authors. The editors did not make any judgment on the quality and organization of the text in the chapters and it was mostly left to the decision of the authors. In this regard, the editors do not accept the responsibility for any technical errors present in the chapters and those should be directly discussed with the authors of the relevant chapter.

It was an honor editing this book consisting of contributions from knowledgeable and generous colleagues. Thanks to all the authors for their timely assistance and cooperation during the course of this book. Without their continual support, this work would not have been possible. We hope that readers will find the book informative and instructive and provide suggestions and comments to further improve the text in eventual second edition.

Blacksburg, VA

Shashank Priya and Dan J. Inman

Contents

Part I Piezoelectric and Electromagnetic Energy Harvesting

Piezoe	electric l	Energy Harvesting	3
Hyunu	ık Kim, `	Yonas Tadesse, and Shashank Priya	
1.1	Energy	/ Harvesting Basics	4
1.2	Case S	tudy: Piezoelectric Plates Bonded to Long	
	Cantile	ever Beam with tip mass	7
1.3	Piezoe	lectric Materials	9
	1.3.1	Piezoelectric Polycrystalline Ceramics	10
	1.3.2	Piezoelectric Single Crystal Materials	11
	1.3.3	Piezoelectric and Electrostrictive Polymers	13
	1.3.4	Piezoelectric Thin Films	14
1.4	Piezoe	lectric Transducers	16
1.5	Meso-	macro-scale Energy Harvesters	16
	1.5.1	Mechanical Energy Harvester Using Laser	
		Micromachining	16
	1.5.2	Mechanical Energy Harvester Using Piezoelectric	
		Fibers	20
1.6	Piezoe	lectric Microgenerator	21
	1.6.1	Piezoelectric Microcantilevers	21
1.7	Energy	Harvesting Circuits	24
1.8	Strateg	ies for Enhancing the Performance	
	of Ene	rgy Harvester	26
	1.8.1	Multi-modal Energy Harvesting	26
	1.8.2	Magnetoelectric Composites	29
	1.8.3	Self-Tuning	31
	1.8.4	Frequency Pumping	32
	1.8.5	Wide-Bandwidth Transducers	33
1.9	Selecte	ed Applications	33
	1.9.1	Border Security Sensors	33
	1.9.2	Biomedical Applications	35
1.10	Summ	ary	35
Refere	nces	,	36

2	Electro	omechar	nical Modeling of Cantilevered Piezoelectric Energy		
	Harve	sters for	Persistent Base Motions	41	
	Alper l	Erturk an	d Daniel J. Inman		
	2.1	Introdu	ction	41	
	2.2	Amplitu	ude-Wise Correction of the Lumped Parameter Model	44	
		2.2.1	Uncoupled Lumped Parameter Base Excitation Model	45	
		2.2.2	Uncoupled Distributed Parameter Base Excitation		
			Model	46	
		2.2.3	Correction Factors for the Lumped Parameter Model	50	
		2.2.4	Correction Factor in the Piezoelectrically Coupled		
			Lumped Parameter Equations	55	
	2.3	Coupled	d Distributed Parameter Models		
		and Clo	osed-Form Solutions	57	
		2.3.1	Modeling Assumptions	57	
		2.3.2	Mathematical Background	58	
		2.3.3	Unimorph Configuration	61	
		2.3.4	Bimorph Configurations	64	
		2.3.5	Single-Mode Electromechanical Equations	67	
		2.3.6	Experimental Validation	69	
	Refere	nces		76	
2	Doufou	manaa I	Valuation of Vibratian Dagad Diagoalastria Energy		
3	Scover	mance r	Evaluation of vibration-based Flezoelectric Energy	70	
	Yi-Chung Shu				
	3.1	Ing Shu Introdu	ction	70	
	5.1	3 1 1	Piezoelectric Bulk Power Generators	81	
		3.1.1	Piezoelectric Micro Power Generators	82	
		3.1.2	Conversion Efficiency and Electrically Induced	62	
		5.1.5	Demping	83	
		214	Damping	03	
	2 2	J.1.4	ab	04 04	
	5.2	Appioa	Standard AC DC Harvasting Circuit	04 04	
		3.2.1	Standard AC-DC Harvesting Circuit	04 90	
	2.2	J.Z.Z Deculte		09	
	5.5		Chandand Interfere	92	
		2.2.1		92	
	2.4	5.5.2 Conclus		90 100	
	5.4 Defense		SIOII	100	
	Keiere	nces		100	
4	Piezoe	lectric E	Quivalent Circuit Models	107	
	Björn I	Kichter, J	ens Iwietel and Jorg Wallaschek	107	
	4.1	Model 1	Based Design	107	
		4.1.1	Basic Configurations of Piezoelectric Generators	108	
	4.2	Linear (Constitutive Equations for Piezoelectric Material	108	

Contents

	4.3	Piezoe	lectric Equivalent Circuit Models for Systems with Fixed	
		Mecha	nical Boundary	. 109
		4.3.1	Quasi-Static Regime	. 110
		4.3.2	Single Degree of Freedom Model for Dynamic	
			Regime	111
		4.3.3	Multi-Degree of Freedom Model for Dynamic	
			Regime	113
		4.3.4	Experimental Parameter Identification	. 114
		4.3.5	Case Study	. 116
	4.4	Analyt	ical Determination of the Parameters of the Equivalent	
		Circuit	Models	. 117
		4.4.1	General Procedure for Analytical Bimorph Model	. 118
		4.4.2	Determination of the Parameters of the Piezoelectric	
			Equivalent Circuit Models using the Analytical	
			Model	119
	4.5	Equiva	lent Circuit Model for Base Excited Piezoelectric	
		System	1S	. 120
	4.6	Overal	1 PEG System Analyses Using Piezoelectric Equivalent	
		Circuit	Models	. 121
		4.6.1	Piezoelectric Equivalent Circuit Model with Electrical	
			Load	122
		4.6.2	Analysis of the Maximum Power Output	. 122
		4.6.3	Experimental Validation of the Piezoelectric	
			Equivalent Circuit Model for Base Excitation	124
		4.6.4	Effect of Geometry	. 125
		4.6.5	Modeling of the Coupling Between the PEG and Its	
			Excitation Source, Additional Degrees of Freedom	126
	4.7	Summa	ary	. 127
	Refere	nces	•	. 128
5	Electr	omagne	tic Energy Harvesting	. 129
	Stephe	n P Beel	by and Terence O'Donnell	
	5.1	Introdu		. 129
	5.2	Basic I	Principles	. 130
	5.3	Wire-W	Vound Coil Properties	. 132
	5.4	Micro-	Fabricated Coils	. 134
	5.5	Magne	tic Materials	. 136
	5.6	Scaling	g of Electromagnetic Vibration Generators	. 139
	5.7	Scaling	g of Electromagnetic Damping	. 142
	5.8	Maxim	hising Power from an EM Generator	. 145
	5.9	Review	v of Existing Devices	. 146
	5.10	Micros	cale Implementations	. 146
	5.11	Macro	-Scale Implementations	. 151
			1	

5.12	Commercial Devices	154
5.13	Conclusions	158
Referen	nces	159

Part II Energy Harvesting Circuits and Architectures

6	On the	e Optimal Energy Harvesting from a Vibration Source Using	
	a Piez	oelectric Stack	. 165
	Jamil I	M. Renno, Mohammed F. Daqaq and Daniel J. Inman	
	6.1	Introduction	. 166
	6.2	One-dimensional Electromechanical Analytic Model	. 168
	6.3	Power Optimization	. 172
	6.4	Optimality of the Parallel- <i>RL</i> Circuit	. 173
		6.4.1 The Purely Resistive Circuit	. 175
		6.4.2 The Parallel- <i>RL</i> Circuit	. 183
	6.5	The Series-RL Circuit	. 188
		6.5.1 Optimality Results for Series RL-Circuit	. 189
	6.6	Conclusions	. 192
	Refere	nces	. 192
7	Energ	v Harvesting Wireless Sensors	. 195
	S.W. A	Arms, C.P. Townsend, D.L. Churchill, M.J. Hamel,	
	M. Au	gustin, D. Yeary, and N. Phan	
	7.1	Introduction	. 195
	7.2	Background	. 196
	7.3	Tracking Helicopter Component Loads with	
		Energy Harvesting Wireless Sensors	196
	7.4	Monitoring Large Bridge Spans with Solar-Powered	
		Wireless Sensors	204
	7.5	About MicroStrain Inc	. 207
	Refere	nces	. 207
8	Energ	v Harvesting using Non-linear Techniques	. 209
	Daniel	Guyomar, Claude Richard, Adrien Badel, Elie Lefeuvre	
	and M	ickaël Lallart	
	8.1	Introduction	. 210
	8.2	Introduction to Nonlinear Techniques and their Application	
		to Vibration Control	211
		8.2.1 Principles	. 211
	8.3	Energy Harvesting Using Nonlinear Techniques in Steady-State	
		Case	221
		8.3.1 Principles	. 222
		8.3.2 Analysis Without Induction of Vibration Damping	. 223

		8.3.3 Damping Effect	xt	227
		8.3.4 Experimental	Validation	232
	8.4	Energy Harvesting in P	ulsed Operation	236
		8.4.1 SSHI Techniqu	ie	237
		8.4.2 Performance C	omparison	243
		8.4.3 Experimental	Validation	244
	8.5	Other Nonlinear Energy	Harvesting Techniques	247
		8.5.1 Series SSHI Te	echnique	247
		8.5.2 Theoretical De	velopment with Damping Effect	251
		8.5.3 Synchronous I	Electric Charge Extraction (SECE)	
		Technique	-	254
		8.5.4 Experimental	Validation	258
	8.6	Energy Harvesting Tech	nniques under Broadband Excitation	262
		8.6.1 Multimodal Vi	brations	263
		8.6.2 Random Vibra	tions	263
	8.7	Conclusion		265
	Refere	ices		265
9	Power	Sources for Wireless S	ensor Networks	267
	Dan St	eingart		
	9.1	Introduction		267
	9.2	Primary Batteries		271
	9.3	Energy harvesting		273
		9.3.1 Energy Harves	ting versus Energy Scavenging	273
		9.3.2 Photonic Meth	ods	274
		9.3.3 Vibrational Me	ethods	276
		9.3.4 Thermal Meth	ods	279
	9.4	Alternative Methods		280
		9.4.1 RF Power		280
		9.4.2 Radioactive Sc	ources	281
	9.5	Power Conversion		281
	9.6	Energy Storage		281
	9.7	Examples		282
		9.7.1 Sensors in a C	ave	282
		9.7.2 Sensors in an I	ndustrial Plant	282
		9.7.3 Sensors in Nat	ure	283
	9.8	Conclusion		284
	Refere	ices		284
10	Harve	ting Microelectronic C	ircuits	287
	Gabrie	A. Rincón-Mora		
	10.1	Harvesting Sources		288
		10.1.1 Energy and Po	wer	288
		10.1.2 Energy Source	s	289

10.2	Power Conditioning
	10.2.1 Microsystem
	10.2.2 Linear DC–DC Converters
	10.2.3 Switching DC–DC Converters
	10.2.4 Switching AC–DC Converters
	10.2.5 Comparison
10.3	Power Losses
	10.3.1 Conduction Losses
	10.3.2 Switching Losses
	10.3.3 Quiescent Losses
	10.3.4 Losses Across Load
10.4	Sample System: Electrostatic Harvester
	10.4.1 Harvesting Current
	10.4.2 Trickle Charging Scheme
	10.4.3 Harvesting Microelectronic Circuit
10.5	Summary

Part III Thermoelectrics

11	Thern	noelectric Energy Harvesting	325
	G. Jeff	frey Snyder	
	11.1	Harvesting Heat	325
	11.2	Thermoelectric Generators	326
	11.3	Design of a Thermoelectric Energy Harvester	328
	11.4	General Considerations	328
	11.5	Thermoelectric Efficiency	328
	11.6	Matched Thermal Resistance	330
	11.7	Heat Flux	332
	11.8	Matching Thermoelectrics to Heat Exchangers	332
		11.8.1 Thin Film Devices	334
	11.9	Additional Considerations	335
	11.10	Summary	335
	Refere	ences	335
12	Optim	nized Thermoelectrics For Energy Harvesting Applications	337
	James	L. Bierschenk	227
	12.1	Desis The survey of a static The serve	
	12.2	Basic Inermoelectric Theory	338
	12.3		
	12.4	System Level Design Considerations	
	12.5	System Optimization for Maximum Power Output	344
	12.6	Design Considerations for Maximizing Voltage Output	347
	12.7	Conclusions	350
	Refere	ences	350

Part IV Microbatteries

13	Thin	Film Batteries for Energy Harvesting	355
	Nancy	y J. Dudney	
	13.1	Introduction	355
	13.2	Structure, Materials, and Fabrication of TFB	356
	13.3	Performance of TFBs	
		13.3.1 Energy and Power	358
		13.3.2 Charging	360
		13.3.3 Cycle-Life and Shelf-Life	360
		13.3.4 High and Low Temperature Performance	
	13.4	Outlook and Summary	
	Refere	ences	
14	Mate Arum	rials for High-energy Density Batteries	365
	14.1	Introduction	
	14.2	Principles of Lithium–Ion Batteries	
	14.3	Cathode Materials	
		14.3.1 Layered Oxide Cathodes	
		14.3.2 Spinel Oxide Cathodes	
		14.3.3 Olivine Oxide Cathodes	
	14.4	Anode Materials	
	14.5	Conclusions	
	Refere	ences	

Part V Selected Applications of Energy Harvesting Systems

15	Feasil Piezoo	oility of an Implantable, Stimulated Muscle-Powered electric Generator as a Power Source for Implanted
	Medic	cal Devices
	B.E. L	ewandowski, K. L. Kilgore, and K.J. Gustafson
	15.1	Introduction
	15.2	Generator Driven by Muscle Power
	15.3	Selection of Mechanical-to-Electrical Conversion Method 393
	15.4	Properties of Piezoelectric Material Relevant
		to the Generator System
	15.5	Predicted Output Power of Generator
	15.6	Steps Towards Reduction to Practice
	15.7	Conclusion
	Refere	ences

16	Piezo	electric Energy Harvesting for Bio-MEMS Applications 405
	Willia	m W. Clark and Changki Mo
	16.1	Introduction
	16.2	General Expression for Harvesting Energy with Piezoelectric
		Device
	16.3	Unimorph Diaphragm in Bending
		16.3.1 Simply Supported Unimorph Diaphragm that Is
		Partially Covered with Piezoelectric Material 416
		16.3.2 Clamped Unimorph Diaphragm that is Partially
		Covered with Piezoelectric Material
	16.4	Simulation Results and Analysis
	16.5	Conclusions
	Refere	ences
17	Harve	esting Energy from the Straps of a Backpack Using

Piezo	electric Materials	
Henry	A. Sodano	
17.1	Introduction	
17.2	Model of Power-Harvesting	System
	17.2.1 Experimental Testin	g of Piezoelectric Strap 439
	17.2.2 Results and Model	Validation
	17.2.3 Backpack Power Pro	ediction
17.3	Energy Harvesting Using a	Mechanically Amplified
	Piezoelectric Stack	
	17.3.1 Model and Experim	ental Validation
	of Energy Harvestin	g System 450
	17.3.2 Results and Model	Validation
	17.3.3 Backpack Power Pro	ediction
17.4	Conclusions	
Refere	ences	458

18	Energy Harvesting for Active RF Sensors and ID Tags					
	18.1	Introduction				
	18.2	RFID Tags				
		18.2.1 Passive RFID				
		18.2.2 Battery-Assisted Passive (BAP) RFID				
		18.2.3 Active RFID				
	18.3	RFID Operation and Power Transfer				
	18.4	Battery Life				
	18.5	Operational Characteristics of RF Sensors and ID Tags				
	18.6	Why EH Is Important?				
	18.7	EH Technologies and Related Work				

	18.8	EH Design Considerations. 473
		18.8.1 Energy Storage Technologies 473
		18.8.2 Energy Requirements and Power Management Issues 474
		18.8.3 Vibrational Energy Harvesting 475
		18.8.4 Solar Energy Harvesting 479
	18.9	Relevant Circuits and Systems 483
	10.7	18.9.1 AC_DC Rectifier 483
		18.9.2 DC-DC Switch-Mode Converters 484
	18 10	Future Directions and Scope 487
	18 11	Conclusions 488
	Refere	nces 488
	iterere	100
19	Power	ing Wireless SHM Sensor Nodes through Energy
	Harve	sting
	Gyuha	e Park, Kevin M. Farinholt, Charles R. Farrar, Tajana Rosing,
	and M	ichael D. Todd
	19.1	Introduction
	19.2	Sensing System Design for SHM
	19.3	Current SHM Sensor Modalities
	19.4	Energy Optimization Strategies Associated with Sensing
		Systems
		19.4.1 Dynamic Voltage Scaling
		19.4.2 Dynamic Power Management
	19.5	Applications of Energy Harvesting to SHM
	19.6	Future Research Needs and Challenges
	19.7	Conclusion
	Refere	nces
Α	Append	lix A First Draft of Standard on Vibration Energy
	Harve	sting
	A.I	Potential Vibration Sources for Energy Harvesting
	A.2	Parameters Required to Describe the Source
	A.3	Theoretical Models Used to Describe the Vibration
		Energy Harvesting
		A.3.1 Williams-Yates Model
		A.3.2 Erturk–Inman Model
	A.4	Characterization of Vibration Energy Harvester
	A.5	Characterization of the Conditioning Circuit
	Refere	nces
Ind	ex	

Contributors

S.W. Arms

MicroStrain, Inc., 459 Hurricane Lane, Williston, Vermont 05495, USA, swarms@microstrain.com

M. Augustin

MicroStrain, Inc., 310 Hurricane Lane, Williston, Vermont 05495, USA, MAugustin@bellhelicopter.textron.com

Adrien Badel

Ferroelectricity and Electrical Engineering Laboratory (LGEF), National Institute of Applied Science Lyon (INSA de Lyon), 69621 Villeurbanne, France, adrien.badel@insa-lyon.fr

Stephen P Beeby

University of Southampton, Highfield, Southampton, SO17 1BJ, UK, spb@ecs.soton.ac.uk

Dinesh Bhatia

Electrical Engineering Department, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA, dinesh@utdallas.edu

James L. Bierschenk

Marlow Industries, Inc., 10451 Vista Park Road, Dallas TX 75238, USA, JBIERSCHENK@marlow.com

Raj Bridgelall

Axcess International Inc, 3208 Commander Drive, Carrollton, TX 75006, USA, r.bridgelall@axcessinc.com

D.L. Churchill

MicroStrain, Inc., 310 Hurricane Lane, Williston, Vermont 05495, USA, tlbarrows@microstrain.com

William W. Clark

University of Pittsburgh, Pittsburgh, PA 15261, 412-624-9794, USA, wclark@pitt.edu, bluetick@pitt.edu

Mohammed F. Daqaq

Department of Mechanical Engineering, Clemson University, daqaq@clemson.edu

Nancy J. Dudney

Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA, dudneynj@ornl.gov

Alper Erturk

Center for Intelligent Material Systems and Structures, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, erturk@vt.edu

Kevin M. Farinholt

The Engineering Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, farinholt@lanl.gov

Charles R. Farrar

The Engineering Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, farrar@lanl.gov

K. J. Gustafson

Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA

Daniel Guyomar

Laboratoire de Génie Electrique et de Ferroélectricité, INSA Lyon, France, daniel.guyomar@insa-lyon.fr

M.J. Hamel

MicroStrain, Inc., 310 Hurricane Lane, Williston, Vermont 05495, USA

Abhiman Hande

Electrical Engineering Department, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA; Texas MicroPower Inc., 18803 Fortson Ave, Dallas Texas, 75252, USA, ahande@texasmicropower.com

Daniel J. Inman

Center for Intelligent Material Systems and Structures, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA, dinman@vt.edu

K. L. Kilgore

Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA; Metro Health Medical Center, Cleveland, OH 44109, USA; Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA

Hyunuk Kim

Center for Intelligent Material Systems and Structures, Center for Energy Harvesting Materials and Systems, Virginia Tech, Blacksburg, VA 24061, USA.

Mickaël Lallart

Laboratoire de Génie Electrique et de Ferroélectricité, INSA Lyon, France, mickael.lallart@insa-lyon.fr

Elie Lefeuvre

Laboratoire de Génie Electrique et de Ferroélectricité, INSA Lyon, France

B. E. Lewandowski

NASA Glenn Research Center, Bioscience and Technology Branch, Cleveland, OH 44135, USA; Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH 44106, USA, beth.e.lewandowski@nasa.gov

Arumugam Manthiram

Electrochemical Energy Laboratory, Materials Science and Engineering Program, The University of Texas at Austin, Austin, TX 78712, USA, rmanth@mail.utexas.edu

Changki Mo

University of Pittsburgh, Pittsburgh, PA 15261, 412-624-9794, USA

Dr Terence O'Donnell

Tyndall National Institute, Lee Maltings, Prospect Row, Cork, Ireland

Gyuhae Park

The Engineering Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, gpark@lanl.gov

N. Phan

MicroStrain, Inc., 310 Hurricane Lane, Williston, Vermont 05495, USA

Shashank Priya

Center for Intelligent Material Systems and Structures, Center for Energy Harvesting Materials and Systems, Virginia Tech, Blacksburg, VA 24061, USA, spriya@mse.vt.edu

Jamil M. Renno

Center for Intelligent Material Systems and Structures, Virginia Polytechnic Institute and State University, VA, USA, renno@vt.edu

Claude Richard

INSA Lyon, France

Björn Richter

Heinz Nixdorf Institute, University of Paderborn, 33102 Paderborn, Germany

Gabriel A. Rincón-Mora

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, USA, rincon-mora@ece.gatech.edu

Tajana Rosing

Jacobs of School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA

Yi-Chung Shu

Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan, ROC, yichung@spring.iam.ntu.edu.tw

G. Jeffrey Snyder

Materials Science, California Institute of Technology, 1200 East California, Boulevard, Pasadena, California 91125, USA, jsnyder@caltech.edu

Henry A. Sodano

Department of Mechanical Engineering – Engineering Mechanics, Michigan Technological University, Houghton, MI 49931-1295, USA, Henry.Sodano@asu.edu

Dan Steingart

Department of Chemical Engineering, City College of New York, 140th Street at Convent Avenue, New York, NY 10031, USA, dan.steingart@gmail.com

Yonas Tadesse

Center for Intelligent Material Systems and Structures, Center for Energy Harvesting Materials and Systems, Virginia Tech, Blacksburg, VA 24061, USA, yonas@vt.edu

Michael D. Todd

Jacobs of School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA, mdt@ucsd.edu

C.P. Townsend

MicroStrain, Inc., 310 Hurricane Lane, Williston, Vermont 05495, USA

Jens Twiefel

Institute of Dynamics and Vibration Research, Leibniz University Hannover, 30167 Hannover, Germany, twiefel@ids.uni-hannover.de

Jörg Wallaschek

Institute of Dynamics and Vibration Research, Leibniz University Hannover, 30167 Hannover, Germany, wallaschek@ids.uni-hannover.de

D. Yeary

MicroStrain, Inc., 310 Hurricane Lane, Williston, Vermont 05495, USA, Ryeary@bellhelicopter.textron.com

Part I Piezoelectric and Electromagnetic Energy Harvesting

Chapter 1 Piezoelectric Energy Harvesting

Hyunuk Kim, Yonas Tadesse, and Shashank Priya

Abstract This chapter provides the introductory information on piezoelectric energy harvesting covering various aspects such as modeling, selection of materials, vibration harvesting device design using bulk and MEMS approach, and energy harvesting circuits. All these characteristics are illustrated through selective examples. A simple step-by-step procedure is presented to design the cantilever beam based energy harvester by incorporating piezoelectric material at maximum stress points in first and second resonance modes. Suitable piezoelectric material for vibration energy harvesting is characterized by the large magnitude of product of the piezoelectric voltage constant (g) and the piezoelectric strain constant (d) given as $(d \cdot g)$. The condition for obtaining large magnitude of $d \cdot g$ has been shown to be as $|d| = \varepsilon^n$, where ε is the permittivity of the material and n is a material parameter having lower limit of 0.5. The material can be in the form of polycrystalline ceramics, textured ceramics, thin films, and polymers. A brief coverage of various material systems is provided in all these categories. Using these materials different transducer structures can be fabricated depending upon the desired frequency and vibration amplitude such as multilayer, MFC, bimorph, amplified piezoelectric actuator, QuickPack, rainbow, cymbal, and moonie. The concept of multimodal energy harvesting is introduced at the end of the chapter. This concept provides the opportunity for further enhancement of power density by combining two different energy-harvesting schemes in one system such that one assists the other.

In last decade, the field of energy harvesting has increasingly become important as evident from the rising number of publications and product prototypes. Several excellent review articles have been published on this topic covering wide variety of mechanisms and techniques (Priya 2007, Anton and Sodano 2007, Beeby et al. 2006, Roundy and Wright 2004, Sodano et al. 2004). At the same time, several applications have been projected for the energy harvesters covering wide range of civilian and defense components. Out of these different applications, the prominent

H. Kim (⊠)

Center for Intelligent Material Systems and Structures, Center for Energy Harvesting Materials and Systems, Virginia Tech, Blacksburg, VA 24061.

use of harvester is to power the wireless sensor node. A major challenge in the implementation of multi-hop sensor networks is supplying power to the nodes (Gonzalez et al. 2002). Powering of the densely populated nodes in a network is a critical problem due to the high cost of wiring or replacing batteries. In many cases, these operations may be prohibited by the infrastructure (Raghunathan et al. 2005, Paradiso and Starner 2005).

Outdoor solar energy has the capability of providing power density of 15, 000 μ W/cm³ which is about two orders of magnitudes higher than other sources. However, solar energy is not an attractive source of energy for indoor environments as the power density drops down to as low as 10-20 μ W/cm³. Mechanical vibrations (300 μ W/cm³) and air flow (360 μ W/cm³) are the other most attractive alternatives (Roundy et al. 2005, Roundy et al. 2003, Starner and Paradiso 2004). In addition to mechanical vibrations, stray magnetic fields that are generated by AC devices and propagate through earth, concrete, and most metals, including lead, can be the source of electric energy. The actual AC magnetic field strengths encountered within a given commercial building typically range from under 0.2 mG in open areas to several hundred near electrical equipment such as cardiac pace makers, CRT displays, oscilloscopes, motor vehicles (approximately up to 5 G max); computers, magnetic storage media, credit card readers, watches (approximately up to 10G max); magnetic power supply, liquid helium monitor (approximately up to 50 G max); magnetic wrenches, magnetic hardware, and other machinery (approximately up to 500 G max). AC magnetic fields decrease naturally in intensity as a function of distance (d) from the source. The rate of decrease, however, can vary dramatically depending on the source. For example, magnetic fields from motors, transformers, and so on, decrease very quickly $(1/d^3)$, while circuits in a typical multi-conductor circuit decay more slowly $(1/d^2)$. Magnetic fields from "stray" current on water pipes, building steel, and so on, tend to decay much more slowly (1/d). The other important sources of energy around us are radio frequency waves and acoustic waves.

This chapter provides the introductory information on piezoelectric energy harvesting covering various aspects such as modeling, materials, device design, circuits, and example applications. All of these aspects have been discussed in much detail in the subsequent chapters.

1.1 Energy Harvesting Basics

Vibration of a rigid body can be caused by several factors such as unbalanced mass in a system, tear and wear of materials and can occur in almost all dynamical systems. The characteristic behavior is unique to each system and can be simply described by two parameters: damping constant and natural frequency. Most commonly, a single degree of freedom lumped spring mass system is utilized to study the dynamic characteristics of a vibrating body associated with energy harvesting (Laura et al. 1974). The single degree of freedom helps to study unidirectional

1 Piezoelectric Energy Harvesting

Fig. 1.1 (a) Cantilever beam with tip mass, (b) multilayer PZT subjected to transverse vibration excited at the base, and (c) equivalent lumped spring mass system of a vibrating rigid body

response of the system. Figure 1.1 shows a diagram of a cantilever beam with piezoelectric plates bonded on a substrate and a proof mass at the end; multilayer piezoelectric plates and equivalent lumped spring mass with external excitation. Cantilever structure with tip mass is the most widely used configuration for piezoelectric energy harvesting device. The source of vibration is shown with an arrow at the base of the contact point. The stiffness of the structure depends on the loading condition, material, and cross-sectional area perpendicular to the direction of vibration. The governing equation of motion for the system shown in Fig. 1.1(c) can be obtained from energy balance equation or D'Alembert's principle. This configuration applies to both the energy harvesting mechanisms shown in Fig. 1.1(a) and (b).

The governing equation of motion of a lumped spring mass system can be written as:

$$M\ddot{z} + C\dot{z} + Kz = -M\ddot{y} \tag{1.1}$$

where z = x - y is the net displacement of mass. Equation (1.1) can also be written in terms of damping constant and natural frequency. A damping factor, ζ , is a dimensionless number defined as the ratio of system damping to critical damping as:

$$\zeta = \frac{c}{c_c} = \frac{c}{2\sqrt{mK}} \tag{1.2a}$$

The natural frequency of a spring mass system is defined by Eq. (1.2b) as:

$$\omega_n = \sqrt{\frac{K}{M}} \tag{1.2b}$$

where the stiffness *K* for each loading condition should be initially calculated. For example, in case of a cantilever beam, the stiffness *K* is given by $K = 3EI/L^3$, where *E* is the modulus of elasticity, *I* is the moment of inertia, and *L* is the length of beam. The moment of inertia for a rectangular cross-sectional can be obtained from expression, $I = (1/12)bh^3$, where *b* and *h* are the width and thickness of

the beam in transverse direction, respectively. For the other cross-sectional area and stiffness, formulas are available in standard mechanical engineering handbook (Blevins, 1979). The power output of piezoelectric system will be higher if system is operating at natural frequency which dictates the selection of material and dimensions. The terms "natural frequency" and "resonant frequency" are used alternatively in literature, where natural frequency of piezoelectric system should not be confused with natural frequency of mechanical system.

The ratio of output z(t) and input y(t) can be obtained by applying Laplace transform with zero initial condition on Eq. (1.1) as:

$$\left|\frac{Z(s)}{Y(s)}\right| = \frac{s^2}{s^2 + 2\zeta\omega_n S + \omega_n^2} \tag{1.3}$$

The time domain of the response can be obtained by applying inverse Laplace transform on Eq. (1.3) and assuming that the external base excitation is sinusoidal given as: $y = Y sin(\omega t)$:

$$z(t) = \frac{\left(\frac{\omega}{\omega_n}\right)^2}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\zeta\frac{\omega}{\omega_n}\right)^2}}Y\sin(\omega t - \phi)$$
(1.4)

The phase angle between output and input can be expressed as $\Phi = \arctan\left(\frac{C\omega}{K-\omega^2 M}\right)$. The approximate mechanical power of a piezoelectric transducer vibrating under the above-mentioned condition can be obtained from the product of velocity and force on the mass as:

$$P(t) = \frac{m\zeta Y^2 \left(\frac{\omega}{\omega_n}\right)^3 \omega^3}{\left(1 - \left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\zeta \frac{\omega}{\omega_n}\right)^2}$$
(1.5)

The maximum power can be obtained by setting the operating frequency as natural frequency in Eq. (1.5):

$$P_{max} = \frac{mY^2\omega_n^3}{4\zeta} \tag{1.6}$$

Using Eq. (1.6), it can be seen that power can be maximized by lowering damping, increasing natural frequency, mass and amplitude of excitation.

There are two common modes utilized for piezoelectric energy harvesting: 33mode (stack actuators) and 31-mode (bimorphs). In 33-mode, the direction of applied stress (force) and generated voltage is the same, while in 31-mode the stress is applied in axial direction but the voltage is obtained from perpendicular direction

Fig. 1.2 Operating modes of piezoelectric transducer

as shown in Fig. 1.2. For a cantilever beam with long length, the lumped parameter model may not provide reasonable estimate of the output. Contrary to the single degree-of-freedom model (lumped spring mass system), the continuous system has infinite number of natural frequencies and is a logical extension of discrete mass systems where infinite numbers of masses are connected to each other, each having their own degree of freedom.

1.2 Case Study: Piezoelectric Plates Bonded to Long Cantilever Beam with tip mass

Sometimes, small size piezoelectric plates are bonded to a long cantilever beam and need arises to find the stress distribution along the length as a function of excitation frequency. We outline here a simple step-by-step procedure as a starting guideline to find the stress distribution along the continuous beam that can be used to locate the position of piezoelectric plates.

1. Using the governing equation of motion, find the relative displacement which is a function of position and time. The curvature and transverse displacement of a beam can be obtained from the fundamental Euler–Bernoulli beam equation for the given boundary condition expressed as:

$$EI\frac{\partial^4 w(x,t)}{\partial x^4} = -\lambda_m \frac{\partial^2 w(x,t)}{\partial t^2}$$
(1.7)

where $\lambda_m = \rho A$ is the linear mass density of the beam.

2. Apply the boundary condition and solve the differential equation. For the cantilever beam of mass M_{ν} and loaded with tip mass M, the boundary conditions are given as:

$$w(0, t) = \frac{\partial w}{\partial x}(0, t) = 0,$$

$$\frac{\partial^2 w}{\partial x^2}(L, t) = 0,$$

$$El \frac{\partial^3 w}{\partial x^3}(L, t) = M \frac{\partial^2 w}{\partial x^2}(L, t)$$
(1.8)

3. Obtain the solution for governing equation using separation of variables method. The general solution for Eq. (1.7) is given as:

$$w_i(x,t) = \phi(x)q(t)$$

$$\phi(x) = C_1 \cos \lambda \frac{x}{L} + C_2 \sin \lambda \frac{x}{L} + C_3 \cos \lambda \frac{x}{L} + C_4 \sin \lambda \frac{x}{L}$$
(1.9)

4. Apply the boundary condition and solve for unknown C's. The natural frequency of transversal vibration of a continuous cantilever beam can be obtained analytically from the decoupled equation of Euler–Bernoulli beam and is given by Eq. (1.10) as:

$$f_i = \frac{1}{2\pi} \left(\frac{\lambda}{L}\right)^2 \sqrt{\frac{EI}{\rho A}} \tag{1.10}$$

where *i* is the mode index, ρ is the mass density, *A* is the cross-sectional area of beam, and *L* is the length of the beam.

5. Obtain the solution for forcing term q(t) from equation of motion. The solution of Eq. (1.7) for a cantilever beam of mass $M_{\nu} = \rho A$, with a tip mass (*M*) and boundary condition (Eq. (1.8)), was derived by Erturk and Inman (2007) as follows:

$$w_i(x,t) = \phi(x)q(t) = \omega^2 \sum_{r=1}^{\infty} \frac{\phi(x)(\psi)}{\omega_r^2 - \omega^2 + i2\zeta\omega_r\omega}$$

where

$$\Phi(x) = C_r \left\{ \cos\left(\frac{\lambda x}{L}\right) - \cosh\frac{\lambda x}{L} - \beta \left[\sin\frac{\lambda x}{L} - \sinh\frac{y_i x}{L}\right] \right\}$$

$$\beta = \frac{mL(\sin\lambda - \sinh\lambda) + \lambda M(\cos\lambda - \cosh\lambda)}{mL(\sin\lambda + \cosh\lambda) - \lambda M(\sin\lambda - \sinh\lambda)}$$

$$q(t) = \frac{\psi\omega^2}{\omega_{r^2} - \omega^2 + i2\zeta \omega\omega_{\tau}} y_o e^{j\omega t}$$

$$\psi = -m \int_0^L \Phi(x) dx + M_z \Phi(L)$$
(1.11)

1 Piezoelectric Energy Harvesting

6. The strain ε on surface of beam at a distance y from the neutral axis can be obtained by taking second partial derivative of transverse displacement $w_i(x, t)$:

$$\varepsilon(x) = -y \frac{\partial^2 w}{\partial x^2} \tag{1.12}$$

7. The approximate stress as a function of ratio of distance from the fixed end to the specific location on beam can be obtained from Hooke's law as follows:

$$\sigma(x) = E\varepsilon(x) \tag{1.13}$$

where *E* is the modulus of elasticity of beam material. If piezoelectric plates are bonded at certain section of a beam, the output voltage from PZT can be estimated by just multiplying the stress at that location with the piezoelectric voltage constant, *g*. Assuming that the material is linear, elastic, and isotropic with an average stress applied along the 1-1 direction, the output voltage can be determined as follows:

$$V\left(\frac{x}{L}\right) = g_{31} E\varepsilon\left(\frac{x}{L}\right) L_b \tag{1.14}$$

The output power of a PZT at location *x* from the clamped end and connected to a resistive load can be expressed as:

$$P = \frac{v^2}{R_L} = \frac{1}{R_L} \left\{ g_{31} E \varepsilon \left(\frac{x}{L} \right) L_b \right\}^2$$
(1.15)

where $R_{\rm L}$ is the load resistance and $L_{\rm b}$ is the length of piezoelectric crystal bonded to substrate beam.

1.3 Piezoelectric Materials

There are two extreme cases of the high-energy density material, PVDF piezoelectric polymer ($d_{33} = 33 \text{ pC/N}$, $\varepsilon_{33}/\varepsilon_0 = 13$, $g_{33} = 286.7 \times 10^{-3} \text{ m}^2/\text{C}$), and relaxor piezoelectric single crystals such as PZN – 7%PT ($d_{33} = 2500 \text{ pC/N}$, $\varepsilon_{33}/\varepsilon_0 =$ 6700, $g_{33} = 42.1 \times 10^{-3} \text{ m}^2/\text{C}$). It can be seen from this data that piezoelectric polymer has the highest piezoelectric voltage constant, g_{33} , of 286.7 × 10⁻³ m²/C and relaxor-based single crystals have the highest product ($d_{33}.g_{33}$) of the order of 105, 250 × 10⁻¹⁵ m²/N. However, the synthesis of both single crystal materials and polymers in large volume is challenging and expensive. Thus, for mass applications, current focus is on improving the properties of polycrystalline ceramics. In this section, we will review some of the developments in the synthesis of high-energy density materials covering ceramics, single crystals, polymers, and thin films.

1.3.1 Piezoelectric Polycrystalline Ceramics

A high-energy density material is characterized by the large magnitude of product of the piezoelectric voltage constant (g) and the piezoelectric strain constant (d) given as (d.g). The condition for obtaining large magnitude of d.g has been shown to be as $|d| = \varepsilon^n$, where ε is the permittivity of the material and n is a material parameter having lower limit of 0.5. Table 1.1 shows the relationship between magnitude of n and g_{33} for various commercial compositions. It can be clearly seen from this data that as the magnitude of n decreases the magnitude of g₃₃ increases. Islam and Priya (2006a, 2006b) have shown that high-energy density piezoelectric polycrystalline ceramic composition can be realized in the system $Pb(Zr_{1-x}Ti_x)O_3 - Pb[(Zn_{1-y}Ni_y)_{1/3}Nb_{2/3}]O_3$ (PZT - PZNN). The compositions investigated in their study can be represented as: $0.9 Pb(Zr_{0.52}Ti_{0.48})O_3 0.1 \text{ Pb}(\text{Zn}_{1/3}\text{Nb}_{2/3})\text{O}_3 [0.9\text{PZT}(52:48) - 0.1\text{PZN}] + y \text{ wt\% MnCO}_3$, where y varies from 0 wt% to 0.9 wt% and 0.9 Pb($Zr_{0.56}Ti_{0.44}$)O₃ - 0.1 Pb[($Zn_{0.8}Ni_{0.2}$)_{1/3}Nb_{2/3}]O₃ $[0.9PZT (56:44) - 0.1PZNN] + y mol\% MnO_2$, where y varies from 1 mol% to 3 mol%. The $d_{33}.g_{33}$ values of the samples having composition 0.9PZT (56:44) – 0.1PZNN + 2 mol% MnO₂ (sintered in two steps at 1100–1000 °C) was found to be as 18, 456.2 \times 10⁻¹⁵ m²/N. This composition was also found to exhibit a high magnitude of g_{33} as 83.1 V m/N, corresponding to the magnitude of *n* as 1.126.

Composition	$\varepsilon_{33}/\varepsilon_{o}$	d ₃₃ (pC/N)	g ₃₃ (V m/N)	$d_{33}.g_{33} ({\rm m}^2/{\rm N})$	п
Morgan electroceramics					
PZT 701	425	153	41×10^{-3}	6273×10^{-15}	1.165
PZT 703	1100	340	30×10^{-3}	10200×10^{-15}	1.181
PZT 502	1950	450	25×10^{-3}	11250×10^{-15}	1.204
PZT 507	3900	700	20×10^{-3}	14000×10^{-15}	1.227
American Piezoelectric					
Ceramics International					
APC 880	1000	215	25×10^{-3}	5375×10^{-15}	1.20
APC 840	1250	290	26.5×10^{-3}	7685×10^{-15}	1.198
APC 841	1350	300	25.5×10^{-3}	7650×10^{-15}	1.202
APC 850	1750	400	26×10^{-3}	10400×10^{-15}	1.203
APC 855	3400	620	21×10^{-3}	12600×10^{-15}	1.224
Ferroperm Piezoceramics					
Pz 24	400	190	54×10^{-3}	10260×10^{-15}	1.150
Pz 26	1300	300	28×10^{-3}	8400×10^{-15}	1.199
Pz 39	1780	480	30×10^{-3}	14400×10^{-15}	1.194
Pz 52	1900	420	25×10^{-3}	10500×10^{-15}	1.206
Pz 29	2900	575	23×10^{-3}	13225×10^{-15}	1.217
Edo Corporation					
EC-63	1300	295	24.1×10^{-3}	7109.5×10^{-15}	1.20
EC-65	1725	380	25×10^{-3}	9500×10^{-15}	1.205
EC-70	2750	490	20.9×10^{-3}	10241×10^{-15}	1.222
EC-76	3450	583	19.1×10^{-3}	11135.3×10^{-15}	1.228

 Table 1.1 Piezoelectric properties and energy harvesting parameter of various commercially available piezoelectric ceramic materials (Copyright: Blackwell Publishing)

The selection of piezoelectric ceramic composition for a particular application is dependent on parameters such as operating temperature range ($-20 \le T \le 80$ °C), operating frequency range (10–200 Hz), external force amplitude (0.1–3N), and lifetime (>10⁶ cycles). The operating temperature range is determined by the Curie temperature of material which for most of the Pb(Zr, Ti)O₃ ceramics is greater than 200 °C.

Recently, there has been emphasis on utilizing lead-free materials in domestic and medical applications. Out of all the possible choices for lead-free ceramics, (Na, K)NbO₃ (KNN)-based ceramics such as KNN-LiNbO₃, KNN-LiTaO₃, KNN-LiSbO₃, KNN-Li(Nb, Ta, Sb)O₃, KNN-BaTiO₃ (BT), KNN-SrTiO₃, and KNN-CaTiO₃ have gained prominence mainly for two reasons: (i) piezoelectric properties exist over a wide range of temperature and (ii) there are several possibilities for substitution and additions. Table 1.2 lists some of the prominent lead-free compositions based on KNN and $(Na_{1/2}Bi_{1/2})TiO_3$ (NBT) – $(K_{1/2}Bi_{1/2})TiO_3$ (KBT) (Shrout and Zhang 2007, Guo et al. 2004, Yuan et al. 2006, Takenaka and Nagata 2005, Zhao et al. 2007, Zang et al. 2006, Ming et al. 2007, Park et al. 2006, Ahn et al. 2007, Cho et al. 2007). NBT-KBT-based ceramics suffer from drawback that there is anti-ferroelectric phase transition at low temperatures that limits the operating range of transducers. Alkali niobate-based ceramics are currently being commercialized by several companies in Europe and Japan and are expected to be available in large quantities in near future.

1.3.2 Piezoelectric Single Crystal Materials

Oriented single crystals of $(1-x)Pb(Zn_{1/3}Nb_{2/3})O_3 - xPbTiO_3$ (PZN-PT) and $(1-x)Pb(Mg_{1/3}Nb_{2/3})O_3 - xPbTiO_3$ (PMN-PT) have been reported to have exceptional properties, such as longitudinal electromechanical coupling factors of 0.95 (Kuwata et al. 1981, 1982; Park and Shrout 1997a, 1997b, 1997c), longitudinal piezoelectric coefficients between 1500 and 2500 pC/N (Kuwata et al. 1981, 1982; Park and Shrout 1997a, 1997b, 1997c), and electrically induced strains of up to 1.7% (Park and Shrout 1997a, 1997b, 1997c). Single crystals of PZN-PT are grown

System	<i>d</i> ₃₃ (pC/N)	$\boldsymbol{\varepsilon}_3^T/\boldsymbol{\varepsilon}_o$	tan δ	k_p	$T_d/T_c(^{\circ}C)$
NBT-KBT-BT	183	770	0.03	0.37	100/290
NBT-KBT-LBT	216	1550	0.03	0.40	160/350
KNN-LiNbO ₃	235	500	0.04	0.42	-/460
KNN-LiTaO3	268	570	0.01	0.46	-/430
KNN-LiSbO ₃	283	1288	0.02	0.50	-/392
KNN-Li(Nb,Ta,Sb)O ₃	308	1009	0.02	0.51	-/339
KNN–BaTiO ₃	225	1058	0.03	0.36	-/304
KNN-SrTiO ₃	220	1447	0.02	0.40	_
KNN-CaTiO ₃	241	1316	0.09	0.40	-/306

Table 1.2 Summary of the lead-free compositions based on KNN system

 $T_{\rm d}$: depolarization temperature; $T_{\rm c}$: Curie temperature.

Fig. 1.3 A schematic of the PMN-PZT single crystal synthesized through solid-state crystal growth technique (Copyright: Ho-Yong Lee, Ceracomp Co., Ltd.)

widely using self-flux method (Koyabashi et al. 1997; Mulvihill et al. 1996) while that of PMN-PT by Bridgman's technique (Commercial suppliers such as H. C. Materials Corporation, TRS Technologies, and IBULE Photonics).

Recently, Lee et al. have shown the possibility of synthesizing large size crystals through solid state conversion process as shown in Fig. 1.3 (Ceracomp Co. Ltd.). In this method, a seed crystal is bonded to the surface of the ceramic compact or embedded in the powder compact and the composite sample is carefully sintered at high temperatures. Table 1.3 lists the properties of Pb(Mg_{1/3}Nb_{2/3})O₃ – PbTiO₃ (PMN-PT) crystals grown by Bridgman's technique and PMN-PZT by solid-state conversion. Clearly, the system PMN-PZT offers higher rhombohedral–tetragonal transition temperature (T_{R-T}) extending the operating range of the transducer.

The piezoelectric coefficients of single crystal can be enhanced by special cuts and poling as shown in Fig. 1.4 (Zhang et al. 2004). This is quite useful for designing the bimorph-type transducer structures, which mainly utilize d_{31} or d_{32} coefficients. A simple vibration energy harvesting device using d_{32} -mode piezoelectric single crystals can be designed as shown in Fig. 1.5. The structure consists of unimorphor bimorph-type transducers with single crystal plates bonded on one side or both sides of the metal plates (e.g., brass and aluminum). The transducers are rigidly

Table 1.3 Properties of <001> oriented piezoelectric single crystals available through commercial sources

Material	$T_c (^{\circ}C)$	$T_{R-T} \ (^{\circ}C)$	<i>d</i> ₃₃ (pC/N)	$\varepsilon_{33}/\varepsilon_o$	tan TM (%)	k33
PMN-PT-B (HC Material)	_	~75	2000-3500	5500-6500	0.8	0.90-0.94
TRS-X2C (TRS Tech.)	160	75	2200-2700	6500-8500	1	0.92
Type IB (Ibule Ph.)	-	88	1871	6502	< 1	0.91
70PMN-30PT (Ceracomp)	130	90	1500	5000	< 1	0.9
CPSC20-130 (Ceracomp)	195	130	1450	4200	< 1	0.9

Fig. 1.4 Variation in the piezoelectric coefficients with orientation and poling direction (Copyright: TRS Technologies, State College, PA 16801)

Fig. 1.5 Schematic representation of a bimorph transducer-based uniaxial energy harvester. The operating frequency is tuned by the material and dimensions of the beam and tip mass

fixed in a small cubical box with freedom to oscillate in a specific direction. The tip mass, material for beam, and dimensions of beam determine the operating frequency which could be matched with the resonance frequency of the system. The advantage of bimorph-based devices is that they are simple to fabricate and cheap. The disadvantage is that they are uniaxial systems and limited in power density.

1.3.3 Piezoelectric and Electrostrictive Polymers

Polyvinylidene fluoride (PVDF) is a semi-crystalline high-molecular weight polymer with repeat unit (CH2-CF2), whose structure is essentially head-to-tail,