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Preface

Energy harvesting materials and systems have emerged as a prominent research area
and continues to grow at rapid pace. A wide range of applications are targeted for
the harvesters, including distributed wireless sensor nodes for structural health mon-
itoring, embedded and implanted sensor nodes for medical applications, recharging
the batteries of large systems, monitoring tire pressure in automobiles, powering
unmanned vehicles, and running security systems in household conditions. Recent
development includes the components and devices at micro—macro scales covering
materials, electronics, and integration. The growing demand for energy harvesters
has motivated the publication of this book to present the current state of knowledge
in this field.

The book is addressed to students, researchers, application engineers, educators,
developers, and producers of energy harvesting materials and systems. The chapters
mainly consist of technical reviews, discussions, and basic knowledge in the design
and fabrication of energy harvesting systems. It brings the leading researchers in
the world in the field of energy harvesting and associated fields on to one platform
to provide a comprehensive overview of the fundamentals and developments. The
book has good mix of researchers from academics, industry, and national labo-
ratories. All the important energy harvesting technologies including piezoelectric,
inductive, thermoelectric, and microbatteries are addressed by the leading authors.
Furthermore, the book covers the principles and design rules of the energy har-
vesting circuits in depth. The chapters on demonstrated applications of the energy
harvesting-based technologies will allow readers to conceptualize the promise of
the field.

The first section in the book provides discussions on background, theoretical
models, equivalent circuit models, lumped models, distributed models, and basic
principles for design and fabrication of bulk and MEMS-based vibration-based
energy harvesting systems. The second section addresses the theory and design rules
required for the fabrication of the efficient electronics. The third section discusses
the progress in the field of thermoelectric energy harvesting systems. The fourth sec-
tion addresses the important subject of storage systems. The fifth section describes
some of the prototype demonstrations reported so far utilizing energy harvesting.
The sixth section reports some initial standards for vibration energy harvesting being
formalized by a nationwide committee consisting of researchers from academia and
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industry. This standard will lay the basic rules for conducting and reporting the
research on vibration energy harvesting. The publication of this standard follows
the annual energy harvesting workshop. Fourth workshop in this series will be held
at Virginia Tech on January 28-29, 20009. It is worthwhile to mention here that this
workshop in the last 3 years has grown in size and numbers with growing participa-
tion from academia and industry.

The chapters published here are mostly the invited technical submissions from
the authors. The editors did not make any judgment on the quality and organization
of the text in the chapters and it was mostly left to the decision of the authors. In this
regard, the editors do not accept the responsibility for any technical errors present in
the chapters and those should be directly discussed with the authors of the relevant
chapter.

It was an honor editing this book consisting of contributions from knowledgeable
and generous colleagues. Thanks to all the authors for their timely assistance and
cooperation during the course of this book. Without their continual support, this
work would not have been possible. We hope that readers will find the book infor-
mative and instructive and provide suggestions and comments to further improve
the text in eventual second edition.

Blacksburg, VA Shashank Priya and Dan J. Inman
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Part I
Piezoelectric and Electromagnetic
Energy Harvesting



Chapter 1
Piezoelectric Energy Harvesting

Hyunuk Kim, Yonas Tadesse, and Shashank Priya

Abstract This chapter provides the introductory information on piezoelectric energy
harvesting covering various aspects such as modeling, selection of materials, vibra-
tion harvesting device design using bulk and MEMS approach, and energy har-
vesting circuits. All these characteristics are illustrated through selective exam-
ples. A simple step-by-step procedure is presented to design the cantilever beam
based energy harvester by incorporating piezoelectric material at maximum stress
points in first and second resonance modes. Suitable piezoelectric material for vibra-
tion energy harvesting is characterized by the large magnitude of product of the
piezoelectric voltage constant (g) and the piezoelectric strain constant (d) given as
(d - g). The condition for obtaining large magnitude of d-g has been shown to be
as |d| = &, where ¢ is the permittivity of the material and » is a material param-
eter having lower limit of 0.5. The material can be in the form of polycrystalline
ceramics, textured ceramics, thin films, and polymers. A brief coverage of various
material systems is provided in all these categories. Using these materials differ-
ent transducer structures can be fabricated depending upon the desired frequency
and vibration amplitude such as multilayer, MFC, bimorph, amplified piezoelec-
tric actuator, QuickPack, rainbow, cymbal, and moonie. The concept of multimodal
energy harvesting is introduced at the end of the chapter. This concept provides the
opportunity for further enhancement of power density by combining two different
energy-harvesting schemes in one system such that one assists the other.

In last decade, the field of energy harvesting has increasingly become important
as evident from the rising number of publications and product prototypes. Several
excellent review articles have been published on this topic covering wide variety
of mechanisms and techniques (Priya 2007, Anton and Sodano 2007, Beeby et al.
2006, Roundy and Wright 2004, Sodano et al. 2004). At the same time, several
applications have been projected for the energy harvesters covering wide range of
civilian and defense components. Out of these different applications, the prominent
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use of harvester is to power the wireless sensor node. A major challenge in the
implementation of multi-hop sensor networks is supplying power to the nodes (Gon-
zalez et al. 2002). Powering of the densely populated nodes in a network is a critical
problem due to the high cost of wiring or replacing batteries. In many cases, these
operations may be prohibited by the infrastructure (Raghunathan et al. 2005, Par-
adiso and Starner 2005).

Outdoor solar energy has the capability of providing power density of
15, 000 wW /cm?® which is about two orders of magnitudes higher than other sources.
However, solar energy is not an attractive source of energy for indoor environments
as the power density drops down to as low as 10-20 wW/cm?®. Mechanical vibra-
tions (300 wW /cm?) and air flow (360 W /cm?) are the other most attractive alter-
natives (Roundy et al. 2005, Roundy et al. 2003, Starner and Paradiso 2004). In
addition to mechanical vibrations, stray magnetic fields that are generated by AC
devices and propagate through earth, concrete, and most metals, including lead, can
be the source of electric energy. The actual AC magnetic field strengths encountered
within a given commercial building typically range from under 0.2 mG in open
areas to several hundred near electrical equipment such as cardiac pace makers,
CRT displays, oscilloscopes, motor vehicles (approximately up to 5 G max); com-
puters, magnetic storage media, credit card readers, watches (approximately up to
10 G max); magnetic power supply, liquid helium monitor (approximately up to
50 G max); magnetic wrenches, magnetic hardware, and other machinery (approx-
imately up to 500 G max). AC magnetic fields decrease naturally in intensity as a
function of distance (d) from the source. The rate of decrease, however, can vary
dramatically depending on the source. For example, magnetic fields from motors,
transformers, and so on, decrease very quickly (1/d?), while circuits in a typical
multi-conductor circuit decay more slowly (1/d?). Magnetic fields from “stray”
current on water pipes, building steel, and so on, tend to decay much more slowly
(1/d). The other important sources of energy around us are radio frequency waves
and acoustic waves.

This chapter provides the introductory information on piezoelectric energy har-
vesting covering various aspects such as modeling, materials, device design, cir-
cuits, and example applications. All of these aspects have been discussed in much
detail in the subsequent chapters.

1.1 Energy Harvesting Basics

Vibration of a rigid body can be caused by several factors such as unbalanced mass
in a system, tear and wear of materials and can occur in almost all dynamical
systems. The characteristic behavior is unique to each system and can be simply
described by two parameters: damping constant and natural frequency. Most com-
monly, a single degree of freedom lumped spring mass system is utilized to study
the dynamic characteristics of a vibrating body associated with energy harvesting
(Laura et al. 1974). The single degree of freedom helps to study unidirectional
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Fig. 1.1 (a) Cantilever beam with tip mass, (b) multilayer PZT subjected to transverse vibration
excited at the base, and (¢) equivalent lumped spring mass system of a vibrating rigid body

response of the system. Figure 1.1 shows a diagram of a cantilever beam with piezo-
electric plates bonded on a substrate and a proof mass at the end; multilayer piezo-
electric plates and equivalent lumped spring mass with external excitation. Can-
tilever structure with tip mass is the most widely used configuration for piezoelectric
energy harvesting device. The source of vibration is shown with an arrow at the base
of the contact point. The stiffness of the structure depends on the loading condition,
material, and cross-sectional area perpendicular to the direction of vibration. The
governing equation of motion for the system shown in Fig. 1.1(c) can be obtained
from energy balance equation or D’ Alembert’s principle. This configuration applies
to both the energy harvesting mechanisms shown in Fig. 1.1(a) and (b).

The governing equation of motion of a lumped spring mass system can be
written as:

M:+C:z+ Kz =—M§¥ (1.1)

where z = x — y is the net displacement of mass. Equation (1.1) can also be
written in terms of damping constant and natural frequency. A damping factor,
¢, is a dimensionless number defined as the ratio of system damping to critical
damping as:

c c

= 1.2
Ce 2\/mK ( a)

¢ =

The natural frequency of a spring mass system is defined by Eq. (1.2b) as:

—\/K 1.2b
on =1 (1.2b)

where the stiffness K for each loading condition should be initially calculated. For
example, in case of a cantilever beam, the stiffness K is given by K = 3EI/ L3,
where E is the modulus of elasticity, / is the moment of inertia, and L is the length
of beam. The moment of inertia for a rectangular cross-sectional can be obtained
from expression, I = (1/12)bh>, where b and h are the width and thickness of
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the beam in transverse direction, respectively. For the other cross-sectional area
and stiffness, formulas are available in standard mechanical engineering handbook
(Blevins, 1979). The power output of piezoelectric system will be higher if sys-
tem is operating at natural frequency which dictates the selection of material and
dimensions. The terms “natural frequency” and “resonant frequency” are used alter-
natively in literature, where natural frequency of piezoelectric system should not be
confused with natural frequency of mechanical system.

The ratio of output z(¢) and input y(#) can be obtained by applying Laplace trans-
form with zero initial condition on Eq. (1.1) as:

52

= (1.3)

Z(s)
§2 4+ 20w, S + wy?

Y(s)

The time domain of the response can be obtained by applying inverse Laplace
transform on Eq. (1.3) and assuming that the external base excitation is sinusoidal
given as: y = Y sin(wt):

(2)
(1) = o Y sin(wt — ¢) (1.4)
2\ 2 2
(1-(2)) +(22)
The phase angle between output and input can be expressed as @ = arctan
K_Ca‘fz 1 )- The approximate mechanical power of a piezoelectric transducer vibrating

under the above-mentioned condition can be obtained from the product of velocity
and force on the mass as:

meY? (5;)3‘”3
2\ 2 2
(1)) +e2)

The maximum power can be obtained by setting the operating frequency as nat-
ural frequency in Eq. (1.5):

P(t) = (1.5)

2,3
mY-w;,

A (1.6)

Pmax =

Using Eq. (1.6), it can be seen that power can be maximized by lowering damp-
ing, increasing natural frequency, mass and amplitude of excitation.

There are two common modes utilized for piezoelectric energy harvesting: 33-
mode (stack actuators) and 31-mode (bimorphs). In 33-mode, the direction of
applied stress (force) and generated voltage is the same, while in 31-mode the stress
is applied in axial direction but the voltage is obtained from perpendicular direction
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Y

31 Mode

‘?/

Fig. 1.2 Operating modes of piezoelectric transducer

as shown in Fig. 1.2. For a cantilever beam with long length, the lumped parameter
model may not provide reasonable estimate of the output. Contrary to the single
degree-of-freedom model (lumped spring mass system), the continuous system has
infinite number of natural frequencies and is a logical extension of discrete mass
systems where infinite numbers of masses are connected to each other, each having
their own degree of freedom.

1.2 Case Study: Piezoelectric Plates Bonded to Long
Cantilever Beam with tip mass

Sometimes, small size piezoelectric plates are bonded to a long cantilever beam and
need arises to find the stress distribution along the length as a function of excitation
frequency. We outline here a simple step-by-step procedure as a starting guideline
to find the stress distribution along the continuous beam that can be used to locate
the position of piezoelectric plates.

1. Using the governing equation of motion, find the relative displacement which is
a function of position and time. The curvature and transverse displacement of a
beam can be obtained from the fundamental Euler—Bernoulli beam equation for
the given boundary condition expressed as:

F*w(x, 1 *w(x, t
u(;()i )=—Am w(x, 1) a7
X

El
at?

where A,, = pA is the linear mass density of the beam.

2. Apply the boundary condition and solve the differential equation. For the can-
tilever beam of mass M, and loaded with tip mass M, the boundary conditions
are given as:
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0
w(0.0) =" (0.1)=0,
0x

82
(o (LD =0, (1.8)
3 2

9w J9“w
El Lt)y=M L,t
ax3( ) axZ( )

3. Obtain the solution for governing equation using separation of variables method.
The general solution for Eq. (1.7) is given as:

wi(x, 1) = ¢(x)q(t) (1.9)
p(x)=C coskx +C s'nkx +C coskx +C s"nkx
PS4 TR SIA TR C0SA T RaSIA

4. Apply the boundary condition and solve for unknown C’s. The natural frequency
of transversal vibration of a continuous cantilever beam can be obtained analyt-
ically from the decoupled equation of Euler—Bernoulli beam and is given by

Eq. (1.10) as:
1 /(A\? |EI
ﬁ=2n <L> \/pA (1.10)

where i is the mode index, p is the mass density, A is the cross-sectional area of
beam, and L is the length of the beam.

5. Obtain the solution for forcing term ¢(¢) from equation of motion. The solu-
tion of Eq. (1.7) for a cantilever beam of mass M, = pA, with a tip mass (M)
and boundary condition (Eq. (1.8)), was derived by Erturk and Inman (2007) as
follows:

wix 1) = g =0’y _";ff )ff;w .

r=1

where

A A A i
d(x) = C, {cos * — cosh * — B |sin * —sinhyx
L L L L
__ mL(sinA — sinhA) + AM(cos A — cosh 1)
"~ mL(sin A 4+ cosh i) — AM(sin A — sinh 1)
]/ja)z Jjot

1) = 0
q(®) Wy — w? +i2§a)a),y ¢

L
Y= —m/ O(x)dx + M, D(L) (1.11)
0
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6. The strain ¢ on surface of beam at a distance y from the neutral axis can be
obtained by taking second partial derivative of transverse displacement w; (x, ¢):

9w

i (1.12)

e(x) = —y

7. The approximate stress as a function of ratio of distance from the fixed end to
the specific location on beam can be obtained from Hooke’s law as follows:

o(x) = Ee(x) (1.13)

where E is the modulus of elasticity of beam material. If piezoelectric plates
are bonded at certain section of a beam, the output voltage from PZT can be
estimated by just multiplying the stress at that location with the piezoelectric
voltage constant, g. Assuming that the material is linear, elastic, and isotropic
with an average stress applied along the 1-1 direction, the output voltage can be
determined as follows:

V()LC)=g31E8(JLC)Lb (1.14)

The output power of a PZT at location x from the clamped end and connected to
a resistive load can be expressed as:

p= ;i —= RIL [g31Ee(z)Lb}2 (1.15)

where Ry is the load resistance and Ly, is the length of piezoelectric crystal
bonded to substrate beam.

1.3 Piezoelectric Materials

There are two extreme cases of the high-energy density material, PVDF piezoelec-
tric polymer (d33 = 33 pC/N, £33/80 = 13, g33 = 286.7 x 10~* m?/C), and relaxor
piezoelectric single crystals such as PZN — 7%PT (ds3 = 2500 pC/N, ¢e33/8, =
6700, g33 = 42.1 x 107> m?/C). It can be seen from this data that piezoelectric
polymer has the highest piezoelectric voltage constant, g33, of 286.7 x 1073 m?/C
and relaxor-based single crystals have the highest product (d33.g33) of the order of
105, 250 x 10~'5 m?/N. However, the synthesis of both single crystal materials and
polymers in large volume is challenging and expensive. Thus, for mass applications,
current focus is on improving the properties of polycrystalline ceramics. In this
section, we will review some of the developments in the synthesis of high-energy
density materials covering ceramics, single crystals, polymers, and thin films.
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1.3.1 Piezoelectric Polycrystalline Ceramics

A high-energy density material is characterized by the large magnitude of prod-
uct of the piezoelectric voltage constant (g) and the piezoelectric strain constant
(d) given as (d.g). The condition for obtaining large magnitude of d.g has been
shown to be as |d| = &", where ¢ is the permittivity of the material and n is
a material parameter having lower limit of 0.5. Table 1.1 shows the relationship
between magnitude of n and g33 for various commercial compositions. It can be
clearly seen from this data that as the magnitude of n decreases the magnitude
of g33 increases. Islam and Priya (2006a, 2006b) have shown that high-energy
density piezoelectric polycrystalline ceramic composition can be realized in the
system Pb(Zr;_,Ti, )O3 — Pb[(Zn;_yNiy);,3Nby/3]03 (PZT — PZNN). The com-
positions investigated in their study can be represented as: 0.9 Pb(Zr( 5, Tig 43)O3 —
0.1Pb(Zn,3Nb, ;)O3 [0.9PZT(52:48) —0.1PZN] + y wt% MnCOs, where y varies
from 0 wt% to 0.9 wt% and 0.9 Pb(Zr¢ 56Tig 44)O03 — 0.1 Pb[(zno.gNio.z)1/3Nb2/3]03
[0.9PZT (56:44) — 0.1PZNN] + y mol% MnO,, where y varies from 1 mol% to
3 mol%. The d33.g33 values of the samples having composition 0.9PZT (56:44) —
0.1PZNN + 2 mol% MnO, (sintered in two steps at 1100-1000 °C) was found to
be as 18, 456.2 x 10~'> m?/N. This composition was also found to exhibit a high
magnitude of g33 as 83.1 V m/N, corresponding to the magnitude of n as 1.126.

Table 1.1 Piezoelectric properties and energy harvesting parameter of various commercially
available piezoelectric ceramic materials (Copyright: Blackwell Publishing)

Composition e33/80  d3z (pC/N)  g33 (Vm/N)  ds3.833 (m?/N) n
Morgan electroceramics

PZT 701 425 153 41 x 1073 6273 x 10713 1.165
PZT 703 1100 340 30 x 1073 10200 x 1013 1.181
PZT 502 1950 450 25 x 1073 11250 x 10713 1.204
PZT 507 3900 700 20 x 1073 14000 x 10713 1.227

American Piezoelectric
Ceramics International

APC 880 1000 215 25 x 1073 5375 x 10713 1.20
APC 840 1250 290 26.5 x 107 7685 x 10~ 1.198
APC 841 1350 300 255 x 107 7650 x 10~1° 1.202
APC 850 1750 400 26 x 1073 10400 x 10~1 1.203
APC 855 3400 620 21 x 1073 12600 x 10~ 1.224
Ferroperm Piezoceramics

Pz 24 400 190 54 x 1073 10260 x 10~1 1.150
Pz 26 1300 300 28 x 1073 8400 x 1071 1.199
Pz 39 1780 480 30 x 1073 14400 x 10~ 1.194
Pz52 1900 420 25 x 1073 10500 x 10~1 1.206
Pz 29 2900 575 23 x 1073 13225 x 1071 1.217
Edo Corporation

EC-63 1300 295 24.1 x 107 7109.5 x 10~ 1.20
EC-65 1725 380 25 x 1073 9500 x 10713 1.205
EC-70 2750 490 209 x 1073 10241 x 107" 1.222

EC-76 3450 583 19.1 x 1073 111353 x 107 1.228
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The selection of piezoelectric ceramic composition for a particular application is
dependent on parameters such as operating temperature range (—20 < T < 80°C),
operating frequency range (10-200 Hz), external force amplitude (0.1-3N), and life-
time (>10° cycles). The operating temperature range is determined by the Curie
temperature of material which for most of the Pb(Zr, Ti)O5 ceramics is greater than
200 °C.

Recently, there has been emphasis on utilizing lead-free materials in domes-
tic and medical applications. Out of all the possible choices for lead-free ceram-
ics, (Na, K)NbO; (KNN)-based ceramics such as KNN-LiNbO3;, KNN-LiTaOs3,
KNN-LiSbOs, KNN-Li(Nb, Ta, Sb)O;, KNN-BaTiOs; (BT), KNN-SrTiO3, and
KNN-CaTiO3 have gained prominence mainly for two reasons: (i) piezoelectric
properties exist over a wide range of temperature and (ii) there are several possibil-
ities for substitution and additions. Table 1.2 lists some of the prominent lead-free
compositions based on KNN and (Na; »Bi; 2)TiO; (NBT) - (K 2Bij 2)TiO; (KBT)
(Shrout and Zhang 2007, Guo et al. 2004, Yuan et al. 2006, Takenaka and Nagata
2005, Zhao et al. 2007, Zang et al. 2006, Ming et al. 2007, Park et al. 2006, Ahn et al.
2007, Cho et al. 2007). NBT-KBT-based ceramics suffer from drawback that there is
anti-ferroelectric phase transition at low temperatures that limits the operating range
of transducers. Alkali niobate-based ceramics are currently being commercialized
by several companies in Europe and Japan and are expected to be available in large
quantities in near future.

1.3.2 Piezoelectric Single Crystal Materials

Oriented single crystals of (1-x)Pb(Zn;/3Nb,,3)03 — xPbTiO3 (PZN-PT) and
(1-x)Pb(Mg;/3Nby/3)0O, — xPbTiO; (PMN-PT) have been reported to have excep-
tional properties, such as longitudinal electromechanical coupling factors of 0.95
(Kuwata et al. 1981, 1982; Park and Shrout 1997a, 1997b, 1997c), longitudinal
piezoelectric coefficients between 1500 and 2500 pC/N (Kuwata et al. 1981, 1982;
Park and Shrout 1997a, 1997b, 1997¢;), and electrically induced strains of up to
1.7% (Park and Shrout 1997a, 1997b, 1997c). Single crystals of PZN-PT are grown

Table 1.2 Summary of the lead-free compositions based on KNN system

System ds3 (pC/N) &3’ /e, tan § k, T,/T.(°C)
NBT-KBT-BT 183 770 0.03 0.37 100/290
NBT-KBT-LBT 216 1550 0.03 0.40 160/350
KNN—LiNbO; 235 500 0.04 0.42 —/460
KNN-LiTaO3 268 570 0.01 0.46 —/430
KNN-—LiSbO; 283 1288 0.02 0.50 —/392
KNN-—Li(Nb,Ta,Sb)O3 308 1009 0.02 0.51 —/339
KNN—BaTiO; 225 1058 0.03 0.36 —/304
KNN-SrTiO3 220 1447 0.02 0.40 —
KNN—CaTiO; 241 1316 0.09 0.40 —/306

Ty: depolarization temperature; 7.: Curie temperature.
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Single Crystal

Ceramics

Fig. 1.3 A schematic of the PMN-PZT single crystal synthesized through solid-state crystal growth
technique (Copyright: Ho-Yong Lee, Ceracomp Co., Ltd.)

widely using self-flux method (Koyabashi et al. 1997; Mulvihill et al. 1996) while
that of PMN-PT by Bridgman’s technique (Commercial suppliers such as H. C.
Materials Corporation, TRS Technologies, and IBULE Photonics).

Recently, Lee et al. have shown the possibility of synthesizing large size crystals
through solid state conversion process as shown in Fig. 1.3 (Ceracomp Co. Ltd.).
In this method, a seed crystal is bonded to the surface of the ceramic compact or
embedded in the powder compact and the composite sample is carefully sintered
at high temperatures. Table 1.3 lists the properties of Pb(Mg;/3Nb,/3)0; — PbTiO3
(PMN-PT) crystals grown by Bridgman’s technique and PMN-PZT by solid-state
conversion. Clearly, the system PMN-PZT offers higher rhombohedral-tetragonal
transition temperature (7r—r) extending the operating range of the transducer.

The piezoelectric coefficients of single crystal can be enhanced by special cuts
and poling as shown in Fig. 1.4 (Zhang et al. 2004). This is quite useful for designing
the bimorph-type transducer structures, which mainly utilize d3; or d3; coefficients.
A simple vibration energy harvesting device using d3;-mode piezoelectric single
crystals can be designed as shown in Fig. 1.5. The structure consists of unimorph-
or bimorph-type transducers with single crystal plates bonded on one side or both
sides of the metal plates (e.g., brass and aluminum). The transducers are rigidly

Table 1.3 Properties of <(001> oriented piezoelectric single crystals available through
commercial sources

Material T. (°C) Trr CC) ds; (pCIN) £33/, tan' " (%) kss
PMN-PT-B (HC Material) — ~75 2000-3500 5500-6500 0.8 0.90-0.94
TRS-X2C (TRS Tech.) 160 75 2200-2700 6500-8500 1 0.92
Type IB (Ibule Ph.) - 88 1871 6502 <1 0.91
70PMN-30PT (Ceracomp) 130 90 1500 5000 <1 0.9

CPSC20-130 (Ceracomp) 195 130 1450 4200 <1 0.9
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Fig. 1.4 Variation in the piezoelectric coefficients with orientation and poling direction (Copyright:
TRS Technologies, State College, PA 16801)

=

Fig. 1.5 Schematic representation of a bimorph transducer-based uniaxial energy harvester. The
operating frequency is tuned by the material and dimensions of the beam and tip mass

fixed in a small cubical box with freedom to oscillate in a specific direction. The
tip mass, material for beam, and dimensions of beam determine the operating fre-
quency which could be matched with the resonance frequency of the system. The
advantage of bimorph-based devices is that they are simple to fabricate and cheap.
The disadvantage is that they are uniaxial systems and limited in power density.

1.3.3 Piezoelectric and Electrostrictive Polymers

Polyvinylidene fluoride (PVDF) is a semi-crystalline high-molecular weight poly-
mer with repeat unit (CH2-CF2), whose structure is essentially head-to-tail,



