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Preface

There has been increasing interest in recent years to develop a critical point
theory by which one can obtain additional information on the critical points
of a differentiable functional. What I mean by additional information is the
locations of the critical points related to closed convex subsets in Banach
spaces. This is the theme of the current book.

This book mainly reflects a significant part of my research activity during
recent years. Except for the last chapter, it is constructed based on the results
obtained myself or through direct cooperation with other mathematicians. On
the whole, the readers will observe that the main abstract existence theorems
of critical points in classical minimax theory are generalized to the cases of
sign-changing critical points. Hence, a new theory is built. To the best of
my knowledge, no book on sign-changing critical point theory has ever been
published.

The material covered in this book is for advanced graduate and PhD
students or anyone who wishes to seek an introduction into sign-changing
critical point theory. The chapters are designed to be as self-contained as
possible.

I have had the good fortune to teach at the University of California at
Irvine and to work with Martin Schechter for the years 2001 to 2004. During
that period, some results of the current book were obtained. M. Schechter
has had a profound influence on me not only by his research, but also by his
writing and his generosity. I am grateful to T. Bartsch and Z. Q. Wang for
sending me their interesting papers and enlightening discussions with Wang
when I visited Utah. Thanks also go to A. Szulkin and M. Willem for inviting
me to visit their prestigious departments years ago. Special thanks are also
given to S. Li who first introduced me into the variational and topological
methods ten years ago. I wish to thank the University of California at Irvine
for providing me a favorable environment during the period 2001 to 2004.
This book is supported by the NSFC (No. 10001019 & 10571096), the SRF-
ROCS-SEM, the Program of the Education Ministry in P. R. China for New
Century Excellent Talents in Universities of China.
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I thank the anonymous referees for carefully checking the manuscript and
for their suggestions which make the book much more readable. In particular,
suggesting adding the topics of Chapter 7.

Tsinghua University, Beijing Wenming Zou



Introduction

A theory is the more impressive,
the simpler are its premises,
the more distinct are the things it connects,
and the broader is its range of applicability.

Albert Einstein

Many nonlinear problems in physics, engineering, biology, and social sciences
can be reduced to finding critical points (minima, maxima, and minimax
points) of real-valued functions on various spaces. The first class of critical
points to be studied were minima and maxima and much of the activity in
the calculus of variations has been devoted to finding such points. A more dif-
ficult problem is to find critical points that are neither maxima nor minima.
So far we may say, to some extent, that there is an organized procedure
for producing such critical points and these methods are called global vari-
ational and topological methods. Roughly speaking, the modern variational
and topological methods consist of the following two parts.

Minimax Methods. Ljusternik and Schnirelman [214] in 1929 mark the
beginning of global analysis, by which some earlier mathematicians no
longer consider only the minima or maxima of variational integrals. In 1934,
Ljusternik and Schnirelman [215] developed a method that seeks to get infor-
mation concerning the number of critical points of a functional from topolog-
ical data. These ideas are referred to as the Ljusternik–Schnirelman theory.
One celebrated and important result in the last 30 years has been the moun-
tain pass theorem due to Ambrosetti and Rabinowitz [15] in 1973. Since then,
a series of new theorems in the form of minimax have appeared via various
linking, category, and index theories. Now these results in fact become a
wonderful tool in studying the existence of solutions to differential equations
with variational structures. We refer readers to the books (or surveys) due
to Brézis and Nirenberg [71], Nirenberg [232, 233, 235], Rabinowitz [255],

xi



xii Introduction

Schechter [275], Struwe [313], Willem [335], Mawhin and Willem [225], and
Zou and Schechter [351], among others.

Morse Theory. This approach towards a global theory of critical points
was pursued by Morse [229] in 1934. It reveals a deep relation between the
topology of spaces and the number and types of critical points of any function
defined on it. This theory was highly successful in topology in the 1950s
due to the efforts of Milnor [226] and Smale [303]. In the works of Palais
[239], Smale [304], and Rothe [264, 263], Morse theory was generalized to
infinite-dimensional spaces. By then it was recognized as a useful approach in
dealing with differential equations and in particular, in finding the existence
of multiple solutions (see Chang [92, 94]). The critical group and Morse index
also can be derived in some cases. Although there are some profound works
on Morse theory and related topics, the applications are somewhat limited by
the smoothness and nondegeneracy assumptions on the functionals. Readers
may consult Mawhin and Willem [225], Conley [106], and Benci [51], among
others.

However, both minimax theory and Morse theory essentially give answers
on the existence of (multiple) critical points of a functional. They usually
cannot provide many more additional properties of the critical points except
some special profiles such as the Morse index, critical groups, and so on.
I make no attempt here to give an exhaustive account of the field or a complete
survey of the literature.

There has been increasing interest in recent years to develop a theory by
which one can obtain much more information on critical points. The central
theme of the current volume is the theory of finding sign-changing critical
points. The book is organized as follows.

In Chapter 1, we provide some prerequisites for this book such as degree
theory, Sobolev space, and so on. Basically, these theories are relatively
mature and readily available in many existing books. However, we still spend
some pages on the flows of the ODEs in Banach spaces which play important
roles in this book. Well-trained readers may skip over this chapter to the next
parts.

In Chapter 2, we establish the relation between linking and the sign-
changing critical point. The linking introduced by Schechter is more general
and realistic. We say that a set A links another set B if they do not intersect
and A cannot be continuously shrunk to a point without intersecting B. This
kind of linking includes the original ones. But more examples can be found.
We show how the new linking produces sign-changing critical points.

We devote Chapter 3 to the sign-changing saddle point theory. The saddle
point theory can be traced back to Rabinowitz’s theory 30 years ago, which
gives the sufficient conditions on the existence of a saddle point. But it never
excludes the triviality of that point, nor the sign-changingness of it. We solve
this question.
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Essentially, in Chapter 4, we generalize the Brezis–Nirenberg critical point
theorem obtained in 1991 by judging the location and nodal structure of the
(PS) sequences and critical points.

Chapter 5 is about the even functionals. We obtain the relationship
between the classical symmetric mountain pass theorem and the sign-changing
critical points.

Chapter 6 discusses the parameter dependence of sign-changing critical
points. This theory is independent of the (PS) compactness condition.

In Chapter 7 we provide sign-changing critical point theories due Bartsch,
Chang and Wang, and Bartsch and Weth. The Morse index and the number
of nodal domains are included.

In each chapter, based on the new abstract sign-changing critical point
theory, applications are considered mainly on Schrödinger equations or
Dirichlet boundary value problems.

This book mainly consists of the results of my recent research. It is not
intended and nor is it possible to be complete. In fact, many other results
on sign-changing solutions of elliptic equations in recently years are not in
this book. I just cite them in the bibliography or quote some lemmas from
them. We refer the readers to the references in the bibliography written by
T. Bartsch, A. Castro, G. Cerami, K. C. Chang, M. Clapp, V. Coti-Zelati,
E. N. Dancer, Y. Du, N. Ghoussoub, F. A. van Heerden, N. Hirano, S. Li,
J. Q. Liu, Z. Liu, P. H. Rabinowitz, S. Solimini, M. Struwe, Z. Q. Wang,
T. Weth, C. Yuan, et al. for other interesting results on concrete elliptic
equations. Finally, although Chapter 7 involves some theories due to Bartsch
and others, I would like to mention the following additional topics due to
them: symmetry results for sign-changing solutions, in particular for the least
energy nodal solution; upper estimates on the number of nodal domains;
and some discussions of singularly perturbed equations and multiple nodal
solutions without oddness of the nonlinearity.



Chapter 1

Preliminaries

For readers’ convenience, we collect in this chapter some classical results on
nonlinear functional analysis and the elementary theory of partial differential
equations. Some of them are well known and their proofs are omitted. For
others, although their proofs may be found in many existing books, we make
no apology for repeating them.

1.1 Partition of Unity

Let E be a metric space with a distance function dist(·, ·) on it. Let A ⊂ E
and O be a family of open subsets of E. If each point of A belongs to at least
one member of O, then O is called an open covering of A.

Definition 1.1. Let O be an open covering of a subset A of E. O is called
locally finite if for any u ∈ A, there is an open neighborhood U such that
u ∈ U and that U intersects only finitely many elements of O.

A well-known result on this line is the underlying proposition due to Stone
[308].

Proposition 1.2. Any metric space E is paracompact; that is, every open
covering O of E has an open, locally finite refinement Θ. That is, Θ is a
locally finite covering of E and for any Vi in Θ, we can find a Ui in O such
that Vi ⊂ Ui.

Proposition 1.3. Assume that E is a metric space with the distance function
dist(·, ·). Let O be an open covering of E. Then O admits a locally finite
partition of unity {λi}i∈J subordinate to it satisfying

(1) λi : E → [0, 1] is Lipschitz continuous.
(2) {u ∈ E : λi(u) �= 0}i∈J is a locally finite covering of E.

W. Zou, Sign-Changing Critical Point Theory, doi: 10.1007/978-0-387-76658-4, 1
c© Springer Science+Business Media, LLC 2008



2 1 Preliminaries

(3) For each Vi, there is a Ui ∈ O such that Vi ⊂ Ui.
(4)

∑
i∈J λi(u) = 1,∀u ∈ E,

where J is the index set.

Proof. Because (E,dist) is a metric space with an open covering O, by Propo-
sition 1.2, there is an open, locally finite refinement Θ; that is, Θ is locally
finite and for any Vi of Θ, we can find a Ui of O such that Vi ⊂ Ui. Define

ρi(u) = dist(u,E\Vi), i ∈ J.

Then ρi is locally Lipschitz. Let

λi(u) =
ρi(u)

∑
j∈J ρj(u)

, i ∈ J.

Then {λi}i∈J is what we want. �

1.2 Ekeland’s Variational Principle

We recall Ekeland’s variational principle (see Ekeland [137]).

Lemma 1.4. Let E be a complete metric space with a metric dist and I :
E → R be a lower semicontinuous functional that is bounded below. For any
T > 0, ε > 0, let u1 ∈ E be such that I(u1) ≤ infE I + ε. Then there exists a
v1 ∈ E such that

I(v1) ≤ I(u1),(1.1)

dist(u1, v1) ≤ 1/T,(1.2)

I(v1) < I(w) + εTdist(v1, w), for all w �= v1.(1.3)

Proof. Define a partial order � in E as the following.

u � v ⇔ I(u) ≤ I(v)− εTdist(v, u).

Then obviously,

u � u, for all u ∈ E,

u � v, v � u⇒ u = v, for all u, v ∈ E,

u � v, v � w ⇒ u � w, for all u, v, w ∈ E.

Let C1 := {u ∈ E : u � u1} and let u2 ∈ C1 be such that

I(u2) ≤ inf
C1

I +
ε

22
.



1.2 Ekeland’s Variational Principle 3

Then, let C2 := {u ∈ E : u � u2}. Inductively,

un+1 ∈ Cn := {u ∈ E : u � un}, I(un+1) ≤ inf
Cn

I +
ε

2n+1
.

By the lower semicontinuity of I and the continuity of dist(·, ·), we see that
Cn is closed. Moreover,

C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ · · · ,

· · · � un � · · · � u2 � u1.

For any v ∈ Cn, then

(1.4) I(v) ≤ I(un)− εTdist(v, un).

Note that v ∈ Cn−1; we have

(1.5) I(un) ≤ inf
Cn−1

I +
ε

2n
≤ I(v) +

ε

2n
.

Combine Equations (1.4) and (1.5); we have that dist(v, un) ≤ (1/T2n).
Because v ∈ Cn is arbitrary, we know that the diameter of Cn is less than or
equal to (1/T2n−1), hence, approaches zero. Therefore,

∞⋂

n=1

Cn = {v1}.

We claim that v1 is what we want. Indeed, v1 ∈ C1 implies that

I(v1) ≤ I(u1)− εTdist(u1, v1) ≤ I(u1).

For any w �= v1, we observe that we cannot have w � v1, otherwise w ∈⋂∞
n=1 Cn hence w = v1. That is, we must have

I(w) > I(v1)− εTdist(w, v1).

Finally, noting that

dist(u1, un) ≤
n−1∑

i=1

dist(ui, ui+1) ≤
n−1∑

i=1

1
T2i

≤ 1
T

and that limn→∞ un = v1, then we get that dist(u1, v1) ≤ 1/T. Thus, v1

satisfies Equations (1.1) to (1.3). This completes the proof. �

Notes and Comments. Readers may consult Ekeland [138], de Figueiredo
[147], Ghoussoub [156], Grossinho and Tersian [162], Mawhin and Willem
[225], Struwe [313], and Willem [335] for the variants of Ekeland’s variational
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principle and their applications. Ghoussoub [156] contains the Borwein and
Preiss principle and also the mountain pass principle which is presented as a
“multidimensional extension” of the Ekeland variational principle. A simple
and elegant generalization of Ekeland’s variational principle to a general form
on ordered sets was obtained in Brézis and Browder [66]. It was applied to
nonlinear semigroups and to derive diverse results from nonlinear analysis
including the variational principle and one of its equivalent forms, the Bishop–
Phelps theorem. Some other generalizations of Ekeland’s variational principle
can also be found in Li and Shi [203] and Zhong [339, 340].

1.3 Sobolev Spaces and Embedding Theorems

Let Ω be an open subset of RN , N ∈ N. Denote

Lp(Ω) := {u : Ω → R is Lebesgue measurable, ‖u‖Lp(Ω) <∞},

where

‖u‖Lp(Ω) =
(∫

Ω

|u|pdx
)1/p

, 1 ≤ p < +∞.

If p = +∞,

‖u‖L∞(Ω) = ess sup
Ω
|u| := inf

A⊂Ω,meas(A)=0
sup
Ω\A

|u|,

where meas denotes the Lebesgue measure. If ‖u‖L∞(Ω) <∞, we say that u
is essentially bounded on Ω. Let

Lp
loc(Ω) := {u : Ω → R, u ∈ Lp(V ) for each V ⊂⊂ Ω},

where V ⊂⊂ Ω ⇔ V ⊂ V̄ ⊂ Ω and V̄ is compact. Sometimes in this book
we denote ‖u‖Lp(Ω) by ‖u‖p or |u|p .

We denote by supp(u) := {x ∈ Ω : u(x) �= 0} the support of u : Ω → R.
Let C∞

c (Ω) denote the space of infinitely differentiable functions φ : Ω → R
with compact support in Ω. For each φ ∈ C∞

c (Ω) and a multi-index α =
(α1, . . . , αN ) with order |α| := α1 + · · ·+ αN , we denote

Dαφ =
∂α1

∂xα1
1

· · · ∂αN

∂xαN

N

φ.

Definition 1.5. Suppose u, v ∈ L1
loc(Ω). We say that v is the αth-weak

partial derivative of u, written Dαu = v provided
∫

Ω

uDαφdx = (−1)|α|
∫

Ω

vφdx

for all φ ∈ C∞
c (Ω).
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It is easy to check that the αth-weak partial derivative of u, if it exists, is
uniquely defined up to a set of measure zero.

Let Cm(Ω) be the set of functions having derivatives of order ≤ m being
continuous in Ω (m = integer ≥ 0 or m = ∞). Let Cm(Ω̄) be the set of
functions in Cm(Ω) all of whose derivatives of order ≤ m have continuous
extension to Ω̄.

Definition 1.6. Fix p ∈ [1,+∞] and k ∈ N ∪ {0}. The Sobolev space

W k,p(Ω)

consists of all u : Ω → R which has αth-weak partial derivative Dαu for each
multi-index α with |α| ≤ k and Dαu ∈ Lp(Ω).

If p = 2, we usually write

Hk(Ω) = W k,2(Ω), k = 0, 1, 2, . . . .

Note that H0(Ω) = L2(Ω). We henceforth identify functions in W k,p(Ω)
which agree a.e

Definition 1.7. If u ∈W k,p(Ω), we define its norm to be

‖u‖W k,p(Ω) :=

⎧
⎪⎨

⎪⎩

(∑
|α|≤k

∫
Ω
|Dαu|pdx

)1/p

, p ∈ [1,+∞),

∑
|α|≤k ess supΩ |Dαu|, p = +∞.

Definition 1.8. We denote W k,p
0 (Ω) the closure of C∞

c (Ω) in W k,p(Ω) with
respect to its norm defined in Definition 1.7. It is customary to write

Hk
0 (Ω) = W k,2

0 (Ω)

and denote by H−1(Ω) the dual space to H1
0 (Ω).

The following results can be found in Evans [141] and Adams and
Fournier [2].

Proposition 1.9. For each k = 1, 2, . . . and 1 ≤ p ≤ +∞, the Sobolev space

(W k,p(Ω), ‖ · ‖W k,p(Ω))

is a Banach space and so is W k,p
0 (Ω). In particular, Hk(Ω),Hk

0 (Ω) are
Hilbert spaces; W k,p

0 (RN ) = W k,p(RN ).

Definition 1.10. Let (E, ‖·‖E) and (Y, ‖·‖Y ) be two Banach spaces, E ⊂ Y .
We say that E is continuously embedded in Y (denoted by E ↪→ Y ) if the
identity id : E → Y is a linear bounded operator; that is, there is a constant
C > 0 such that ‖u‖Y ≤ C‖u‖E for all u ∈ E. In this case, the constant C > 0
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is called the embedding constant. If moreover, each bounded sequence in E
is precompact in Y , we say the embedding is compact, written E ↪→↪→ Y .

Definition 1.11. A function u : Ω ⊂ RN → R is Hölder continuous with
exponent γ > 0 if

[u](γ) := sup
x�=y∈Ω

|u(x)− u(y)|
|x− y|γ <∞.

Definition 1.12. The Hölder space Ck,γ(Ω̄) consists of all functions u ∈
Ck(Ω̄) for which the norm

‖u‖Ck,γ (Ω̄) :=
∑

|α|≤k

‖Dαu‖C(Ω̄) +
∑

‖α|=k

[Dαu](γ)

is finite. It is a Banach space. We set Ck,0(Ω̄) = Ck(Ω̄).

We have the following embedding results; see Adams [1], Adams and
Fournier [2], Evans [141], and Gilbarg and Trudinger [160].

Proposition 1.13. If Ω is a bounded domain in RN , then

W k,p
0 (Ω) ↪→

⎧
⎪⎪⎨

⎪⎪⎩

Lq(Ω), kp < N, 1 ≤ q ≤ Np/(N − kp);

Cm,α(Ω̄), 0 ≤ α ≤ k −m−N/p ,

0 ≤ m < k −N/p < m + 1.

Proposition 1.14. If Ω is a bounded domain in RN , then

W k,p
0 (Ω) ↪→↪→

⎧
⎪⎪⎨

⎪⎪⎩

Lq(Ω), kp < N, 1 ≤ q < Np/(N − kp);

Cm,α(Ω̄), 0 ≤ α < k −m−N/p ,

0 ≤ m < k −N/p < m + 1.

In general, W k,p
0 (Ω) cannot be replaced by W k,p(Ω) in Proposition 1.13.

However, this replacement can be made for a large class of domains, which
includes, for example, domains with a smooth boundary.

Definition 1.15. A bounded domain Ω ⊂ RN with boundary ∂Ω. Let k be
a nonnegative integer and α ∈ [0, 1]. Ω is called Ck,α if at each point x0 ∈ ∂Ω
there is a ball B = B(x0) and one-to-one mapping ϕ from B onto D ⊂ RN

such that

(1) ϕ(B ∩Ω) ⊂ RN
+ := {x = (x1, x2, . . . , xN ) ∈ RN : xN > 0}.

(2) ϕ(B ∩ ∂Ω) ⊂ ∂RN
+ := {x = (x1, x2, . . . , xN ) ∈ RN : xN = 0}.

(3) ϕ ∈ Ck,α(B), ϕ−1 ∈ Ck,α(D).

The following proposition is due to Gilbarg and Trudinger [160, Theo-
rem 7.26].
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Proposition 1.16. Let Ω be a C0,1 domain in RN . Then

(1) If kp < N, then W k,p(Ω) ↪→ Lp∗
(Ω), where p∗ = Np/(N − kp); and

W k,p(Ω) ↪→↪→ Lq(Ω) for all q < p∗.
(2) If 0 ≤ m < k − N/p < m + 1, then W k,p(Ω) ↪→ Cm,α(Ω̄), α = k −

N/p−m; and W k,p(Ω) ↪→↪→ Cm,β(Ω̄) for any β < α.

The following proposition can be found in Brezis [64] and Willem [335].

Proposition 1.17. The following embeddings are continuous.

H1(RN ) ↪→ Lp(RN ), 2 ≤ p <∞, N = 1, 2,

H1(RN ) ↪→ Lp(RN ), 2 ≤ p ≤ 2∗, N ≥ 3,

where 2∗ := 2N/(N − 2) if N ≥ 3; 2∗ = +∞ if N = 1, 2, is called a critical
exponent.

For N ≥ 3, let

S := inf
u∈H1(RN )\{0}

‖∇u‖22
‖u‖22∗

be the best Sobolev constant. Then, by Talenti’s [321] result,

S =
‖∇U‖22
‖U‖22∗

,

where

U∗(x) =
(N(N − 2))(N−2)/4

(1 + |x|2)(N−2)/2
.

Note that if RN is replaced by a bounded domain, S is never achieved. We
frequently use the following Gagliardo–Nirenberg inequality, see Chabrowski
[88], Evans [141], and Nirenberg [231].

Proposition 1.18. For every v ∈ H1(RN ),

‖v‖p ≤ c‖∇v‖γ
2‖v‖1−γ

q

with
N

p
= γ

N − 2
2

+ (1− γ)
N

q
, q ≥ 1, γ ∈ [0, 1],

where c is a constant depending on p, γ, q,N.

Note. In this book, from time to time the letter c is indiscriminately used to
denote various constants when the exact values are irrelevant.

The following concentration-compactness lemma due to Lions [196] is also
a powerful tool in dealing with Schrödinger equations.
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Lemma 1.19. Let r > 0 and q ∈ [2, 2∗). For any bounded sequence {wn} of
E := H1(RN ), if

sup
y∈RN

∫

B(y,r)

|wn|qdx→ 0, n→∞,

where B(y, r) := {u ∈ E : ‖u − y‖ ≤ r}; then wn → 0 in Lp(RN ) for
q < p < 2∗.

Proof. We only consider N ≥ 3. Choose p1, p2, t > 1, t′ > 1 such that

p1t = q, p2t
′ = 2∗, 1/t + 1/t′ = 1, p1 + p2 = p.

By the Hölder inequality and Proposition 1.14, we have
∫

B(y,r)

|wn|pdx

≤
(∫

B(y,r)

|wn|p1tdx

)1/t(∫

B(y,r)

|wn|p2t′dx

)1/t′

≤ c

(∫

B(y,r)

|wn|p1tdx

)1/t

‖wn‖p2
2∗

≤ c

(∫

B(y,r)

|wn|p1tdx

)1/t(∫

B(y,r)

(w2
n + |∇wn|2)dx

)p2/2

≤ c

(∫

B(y,r)

|wn|p1tdx

)1/t(∫

B(y,r)

(w2
n + |∇wn|2)dx

)p2/2

.

Covering RN by balls of radius r in such a way that each point of RN is
contained in at most N + 1 balls, we have

∫

RN

|wn|pdx ≤ (N + 1)c sup
y∈RN

(∫

B(y,r)

|wn|qdx
)1/t

,

which implies the conclusion. �

1.4 Differentiable Functionals

Let E be a Banach space with the norm ‖ ·‖. Let U ⊂ E be an open set of E.
The conjugate (or dual) space of E is denoted by E′; that is, E′ denotes the
set of all bounded linear operators on E. Consider a functional G : U → R.
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Definition 1.20. The functional G has a Fréchet derivative F ∈ E′ at u ∈ U
if

lim
h∈E,h→0

G(u + h)−G(u)− F (h)
‖h‖ = 0.

We denote G′(u) = F or ∇G(u) = F and sometimes say the gradient of G
at u. Usually, G′(·) is a nonlinear operator. We use C1(U,R) to denote the set
of all functionals G that have a continuous Fréchet derivative on U . A point
u ∈ U is called a critical point of a functional G ∈ C1(U,R) if G′(u) = 0.

Definition 1.21. The functional G has a Gateaux derivative I ∈ E′ at u ∈ U
if, for every h ∈ E,

lim
t→0

G(u + th)−G(u)
t

= I(h).

The Gateaux derivative at u ∈ U is denoted by DG(u). Obviously, if G has
a Fréchet derivative F ∈ E′ at u ∈ U , then G has a Gateaux derivative
I ∈ E′ at u ∈ U and G′(u) = DG(u). Unfortunately, the converse is not true.
However, if G has Gateaux derivatives at every point of some neighborhood
of u ∈ U such that DG(u) is continuous at u, then G has a Fréchet derivative
and G′(u) = DG(u). This is a straightforward consequence of the mean value
theorem.

Sometimes, we use the concepts of the second-order Fréchet and Gateaux
derivatives.

Definition 1.22. The functional G ∈ C1(U,R) has a second-order Fréchet
derivative at u ∈ U if there is an L, which is a linear bounded operator from
E to E′, such that

lim
h∈E,h→0

G′(u + h)−G′(u)− Lh

‖h‖ = 0;

we denote G′′(u) = L.

We say that G ∈ C2(U,R) if the second-order Fréchet derivative of G
exists and is continuous on U .

Definition 1.23. The functional G ∈ C1(U,R) has a second-order Gateaux
derivative at u ∈ U if there is an L, which is a linear bounded operator from
E to E′, such that

lim
t→0

(G′(u + th)−G′(u)− Lth)v
t

= 0, ∀h, v ∈ E.

We denote D2G(u) = L.

Evidently, any second-order Fréchet derivative of G is a second-order
Gateaux derivative. Using the mean value theorem, if G has a continuous
second-order Gateaux derivative on U , then G ∈ C2(U,R).
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Definition 1.24. Let f(x, t) be a function on Ω × R, where Ω is either
bounded or unbounded. We say that f is a Carathéodory function if f(x, t)
is continuous in t for a.e. x ∈ Ω and measurable in x for every t ∈ R.

Lemma 1.25. Assume p ≥ 1, q ≥ 1. Let f(x, t) be a Carathéodory function
on Ω ×R and satisfy

|f(x, t)| ≤ a + b|t|p/q, ∀(x, t) ∈ Ω ×R,

where a, b > 0 and Ω is either bounded or unbounded. Define a Carathéodory
operator by

Ou := f(x, u(x)), u ∈ Lp(Ω).

Let {wk}∞k=0 ⊂ Lp(Ω). If ‖wk − w0‖p → 0 as k → +∞, then

‖Owk −Ow0‖q → 0

as k →∞. In particular, if Ω is bounded, then O is a continuous and bounded
mapping from Lp(Ω) to Lq(Ω) and the same conclusion is true if Ω is un-
bounded and a = 0.

Proof. Note that

(1.6) wk(x) → w0(x), a.e. x ∈ Ω.

Because f is a Carathéodory function,

(1.7) Owk(x) → Ow0(x), a.e. x ∈ Ω.

Let

(1.8) vk(x) := a + b|wk(x)|p/q, k = 0, 1, 2, . . . .

Then by (1.6)–(1.8),

(1.9) |Owk(x)| ≤ vk(x) for all x ∈ Ω; vk(x) → v0(x) a.e. x ∈ Ω.

Because
|wk|p + |w0|p − ||wk|p − |w0|p| ≥ 0,

by Fatou’s theorem, we have

(1.10)

∫

Ω

lim inf
k→+∞

(|wk|p + |w0|p − ||wk|p − |w0|p|)dx

≤ lim inf
k→+∞

∫

Ω

(|wk|p + |w0|p − ||wk|p − |w0|p|)dx.
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Combining (1.6)–(1.10), thus we see that

(1.11) lim
k→+∞

∫

Ω

||wk|p − |w0|p|dx = 0.

It follows that

(1.12)
∫

Ω

|vk − v0|qdx ≤ bq

∫

Ω

||wk|p − |w0|p|dx→ 0

as k →∞. Because there is a constant C > 0, C1 > 0 such that

|Owk −Ow0|q

≤ C(|Owk|q + |Ow0|q)

≤ C(|vk|q + |v0|q)

≤ C1(|vk − v0|q + |v0|q)

a.e. x ∈ Ω, then by Fatou’s theorem,

(1.13)

∫

Ω

lim inf
k→+∞

(C1(|vk − v0|q + |v0|q)− |Owk −Ow0|q|)dx

≤ lim inf
k→+∞

∫

Ω

(C1(|vk − v0|q + |v0|q)− |Owk −Ow0|q)dx.

By (1.7), (1.8), (1.12), and (1.13), we have

‖Owk −Ou0‖q → 0.

Finally, if Ω is bounded, then for any u ∈ Lp(Ω), evidently we have

(1.14) ‖Ou‖q ≤ c + c‖u‖p/q
p ,

where c > 0 is a constant. Equation (1.14) remains true if Ω is unbounded
and a = 0. Therefore, O is a continuous and bounded mapping from Lp(Ω)
to Lq(Ω) and the same conclusion is true if Ω is unbounded and a = 0. �

The following lemma comes from Willem [335].

Lemma 1.26. Assume p1, p2, q1, q2 ≥ 1. Let f(x, t) be a Carathéodory func-
tion on Ω ×R and satisfy

|f(x, t)| ≤ a|t|p1/q1 + b|t|p2/q2 , ∀(x, t) ∈ Ω ×R,

where a, b ≥ 0 and Ω is either bounded or unbounded. Define a Carathéodory
operator by

Ou := f(x, u(x)), u ∈ H := Lp1(Ω) ∩ Lp2(Ω).
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Define the space
E0 := Lq1(Ω) + Lq2(Ω)

with a norm

‖u‖E0

= inf{‖v‖Lq1 (Ω) + ‖w‖Lq2 (Ω) : u = v + w ∈ E0, v ∈ Lq1(Ω), w ∈ Lq2(Ω)}.

Then O = O1 + O2, where Oi is bounded continuous from Lpi(Ω) to
Lqi(Ω), i = 1, 2. In particular, O is a bounded continuous mapping from H
to E0.

Proof. Let ξ : R → [0, 1] be a smooth function such that ξ(t) = 1 for t ∈
(−1, 1); ξ(t) = 0 for t �∈ (−2, 2). Let

φ(x, t) = ξ(t)f(x, t), ψ(x, t) = (1− ξ(t))f(x, t).

We may assume that p1/q1 ≤ p2/q2. Then there are two constants d > 0,
m > 0 such that

|φ(x, t)| ≤ d|t|p1/q1 , |ψ(x, t)| ≤ m|t|p2/q2 .

Define

O1u = φ(x, u), u ∈ Lp1(Ω);

O2u = ψ(x, u), u ∈ Lp2(Ω).

Then by Lemma 1.25, Oi is bounded continuous from Lpi(Ω) to Lqi(Ω), i =
1, 2. It is readily seen that O = O1 + O2 is a bounded continuous mapping
from H to E0. �

The following theorem and its idea of proof are enough for us to see those
functionals encountered in this book are of C1.

Theorem 1.27. Assume κ ≥ 0, p ≥ 0. Let f(x, t) be a Carathéodory function
on Ω ×R and satisfy

(1.15) |f(x, t)| ≤ a|t|κ + b|t|p, ∀(x, t) ∈ Ω ×R,

where a, b > 0 and Ω is either bounded or unbounded. Define a functional

J(u) :=
∫

Ω

F (x, u)dx, where F (x, u) =
∫ u

0

f(x, s)ds.

Assume (E, ‖ · ‖) is a Sobolev Banach space such that E ↪→ Lp+1(Ω) and
E ↪→ Lκ+1(Ω); then J ∈ C1(E,R) and

J ′(u)h :=
∫

Ω

f(x, u)hdx, ∀ h ∈ E.
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Moreover, if E ↪→↪→ Lκ+1, E ↪→↪→ Lp+1, then J ′ : E → E′ is
compact.

Proof. Because E ↪→ Lκ+1(Ω) and E ↪→ Lp+1(Ω), we may find a constant
C0 > 0 such that

(1.16) ‖w‖κ+1 ≤ C0‖w‖, ‖w‖p+1 ≤ C0‖w‖, ∀w ∈ E.

Recall the Young inequality and

(|s|+ |t|)τ ≤ 2τ−1(|s|τ + |t|τ ), τ ≥ 1, s, t ∈ R.

Combining the assumptions on f , for any γ ∈ [0, 1], it is easy to check that

|f(x, u + γh)h| ≤ C1(|u|(p+1) + |h|(p+1) + |u|κ+1 + |h|κ+1),

where C1 is a constant independent of γ. Therefore, for any u, h ∈ E, by the
mean value theorem and Lebesgue theorem,

(1.17)

lim
t→0

J(u + th)− J(u)
t

= lim
t→0

∫

Ω

f(x, u + θth)hdx

=
∫

Ω

f(x, u)hdx

=: T0(u, h),

where θ ∈ [0, 1] depending on u, h, t. Obviously, T0(u, h) is linear in h.
Furthermore, by (1.16),

|T0(u, h)|

≤
∫

Ω

|f(x, u)h|dx

≤ c(‖u‖κ
κ+1‖h‖κ+1 + ‖u‖p

p+1‖h‖p+1)

≤ c(‖u‖κ + ‖u‖p)‖h‖.

It follows that T0(u, h) is linear bounded in h. Therefore, DJ(u) = T0(u, ·) ∈
E′ is the Gateaux derivative of J at u. Next, we show that DJ(u) is contin-
uous in u. Let Ou := f(x, u), u ∈ E. By Lemma 1.26, O = O1 + O2, where
O1 is bounded continuous from Lκ+1(Ω) to L(κ+1)/κ(Ω) and O2 is bounded
continuous from Lp+1(Ω) to L(p+1)/κ(Ω). For any v, h ∈ E,

|(DJ(u)−DJ(v))h|

=
∣
∣
∣
∣

∫

Ω

(f(x, u)− f(x, v))hdx

∣
∣
∣
∣
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=
∣
∣
∣
∣

∫

Ω

(Ou−Ov)hdx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Ω

(O1u + O2u−O1v −O2v)hdx

∣
∣
∣
∣

≤
∫

Ω

|O1u−O1v||h|dx +
∫

Ω

|O2u−O2v||h|dx

≤ C0‖O1u−O1v‖(κ+1)/κ‖h‖+ C0‖O2u−O2v‖(p+1)/p‖h‖.

It implies that

‖DJ(u)−DJ(v)‖E′(1.18)

≤ C0(‖O1u−O1v‖(κ+1)/κ + ‖O2u−O2v‖(p+1)/p),

where ‖ · ‖E′ is the norm in E′. If vk → u in E ⊂ Lκ+1(Ω) ∩ Lp+1(Ω), then

‖O1vk −O1u‖(κ+1)/κ → 0,

‖O2vk −O2u‖(p+1)/p → 0.

Therefore, DJ(vk) → DJ(u). This means DJ(u) is continuous in u. Hence,
J ′(u) = DJ(u); that is, J ∈ C1(E,R). Furthermore, if E ↪→↪→ Lp+1, E ↪→↪→
Lκ+1, then any bounded sequence {uk} in E has a subsequence denoted by
{uk} that converges to u0 in Lp+1(Ω) and in Lκ+1(Ω). Hence, O1(uk) →
O1(u0) in L(κ+1)/κ(Ω); O2(uk) → O2(u0) in L(p+1)/p(Ω). Finally, DJ(uk)→
DJ(u0) in E′; that is, J ′ is compact in E. �

1.5 The Topological Degree

Since the invention of Brouwer’s degree in 1912, topological degree has
become an eternal topic of every book on nonlinear functional analysis. There-
fore, we just outline the main ideas and results and omit the proofs. Readers
may consult the books of Berger [57], Chang [91], Deimling [134], Mawhin
[224], Nirenberg [234], and Zeidler [337] (also Brézis and Nirenberg [72] for
applications).

Definition 1.28. Let W ⊂ X := RN (N ≥ 1) be an open subset and a
mapping J ∈ C1(W,X). A point u ∈W is called a regular point and J(u) is
a regular value if J ′(u) : X → X is surjective. Otherwise, u is called a critical
point and J(u) is the critical value.

To construct the degree theory, we need a simplified Sard’s theorem. Refer
to Sard [266].
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Theorem 1.29. Let W ⊂ X := RN (N ≥ 1) be an open subset and J ∈
C1(W,X). Then the set of all critical values of J has zero Lebesgue measure
in X.

Definition 1.30 (Brouwer’s degree). Let W ⊂ X := RN (N ≥ 1) be a
bounded open subset, J ∈ C2(W̄ ,X), p ∈ X\J(∂W ).

(1) If p is a regular value of J , define the Brouwer degree by

deg(J,W, p) :=
∑

v∈J−1(p)

sign detJ ′(v),

where det denotes the determinant.
(2) If p is a critical value of J , choose p1 to be a regular value (by Sard’s

theorem) such that ‖p− p1‖ < dist(p, J(∂W )) and define the Brouwer
degree by

deg(J,W, p) := deg(J,W, p1).

In item (1), J−1(p) is a finite set when p is a regular value. In item (2), the
degree is independent of the choice of p1.

If J ∈ C(W̄ ,X), we may find by Weierstrass’s theorem an approximation
of J via a smooth function.

Definition 1.31 (Brouwer’s degree). Let W ⊂ X := RN (N ≥ 1) be a
bounded open subset, J ∈ C(W̄ ,X), p ∈ X\J(∂W ). Choose J̃ ∈ C2(W̄ ,X)
such that

sup
u∈W

‖J(u)− J̃(u)‖ < dist(p, J(∂W ))

and define Brouwer’s degree by

deg(J,W, p) := deg(J̃ ,W, p),

which is independent of the choice of J̃ .

Proposition 1.32. Let W ⊂ X := RN (N ≥ 1) be a bounded open subset,
J ∈ C(W̄ ,X), p ∈ X\J(∂W ).

(1)

deg(id,W, p) =
{

1, p ∈W,
0, p �∈ Ω̄,

where id is the identity.
(2) Let W1,W2 be two disjoint open subsets of W , p �∈ J(W̄\(W1 ∪W2));

then
deg(J,W, p) = deg(J,W1, p) + deg(J,W2, p).

(3) Let H ∈ C([0, 1] × W̄ ,RN ), p ∈ C([0, 1],RN ) and p(t) �∈ H(t, ∂W ).
Then deg(H(t, ·),W, p(t)) is independent of t ∈ [0, 1].
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(4) (Kronecker’s theorem) If deg(J,W, p) �= 0, then there exists a u ∈ W
such that J(u) = p.

Theorem 1.33 (Borsuk–Ulam theorem). Let W be an open bounded
symmetric neighborhood of 0 in RN . Every continuous odd map f : ∂W →
RN−1 has a zero.

Brouwer’s degree can be extended to infinite-dimensional spaces. This is
the Leray–Schauder degree for a compact perturbation of the identity.

Definition 1.34. Let E be a Banach space; M ⊂ E. A mapping J : M →
E is called compact if J(S) is compact for any bounded subset S of E.
Furthermore, if J is continuous, we say that J is completely continuous. In
this case, id− J is called a completely continuous field.

Theorem 1.35. Let E be a Banach space and M ⊂ E be a bounded closed
subset. Let J : M → E be a continuous mapping. Then J is completely
continuous if and only if, for any ε > 0, there exists a finite-dimensional
subspace En of E and a bounded continuous mapping Jn : M → En such that

sup
u∈D

‖J(u)− Jn(u)‖ < ε.

Let E be a Banach space and W ⊂ E be a bounded open subset. Let
J : W̄ → E be completely continuous and f = id− J . If p ∈ E\f(∂W ), then
by Theorem 1.35, there exists a finite-dimensional subspace En of E and a
bounded continuous mapping Jn : W̄ → En such that

sup
u∈W

‖J(u)− Jn(u)‖ < dist(p, f(∂W )).

Denote Wn = En ∩ W ; fn(u) = u − Jn(u); then fn ∈ C(W̄n, En), p ∈
En\fn(∂Wn). Hence, deg(fn,Wn, pn) is well defined.

Definition 1.36 (Leray–Schauder degree). Let f be the completely con-
tinuous field defined as above. Define the Leray–Schauder degree of f at
p ∈ E\f(∂W ) by

deg(f,W, p) = deg(fn,Wn, p),

which is independent of the choice of En, p, Jn.

Proposition 1.37. Let W ⊂ E be a bounded open subset of the Banach space
E; f = id− J is a completely continuous field, p ∈ E\f(∂W ).

(1)

deg(id,W, p) =

{
1, p ∈W,

0, p �∈ W̄ .

(2) Let W1,W2 be two disjoint open subsets of W , p �∈ f(W̄\(W1 ∪W2));
then

deg(f,W, p) = deg(f,W1, p) + deg(f,W2, p).
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(3) Let H ∈ C([0, 1]×W̄ ,E) be completely continuous, ht(u) = u−H(t, u),
p ∈ C([0, 1], E), and p(t) �∈ ht(∂W ) for each t ∈ [0, 1]. Then

deg(ht(·),W, p(t))

is independent of t ∈ [0, 1].
(4) (Kronecker’s theorem) If deg(f,W, p) �= 0, then there exists a u ∈ W

such that f(u) = p.

Theorem 1.38 (Borsuk–Ulam theorem). Let W be an open bounded
symmetric neighborhood of 0 in a Banach space E. A completely continu-
ous field f = id − J : W̄ → E, where J is odd on ∂W ; p ∈ E\f(∂W ); then
deg(f,W, p) is an odd number.

1.6 The Global Flow

Let (E, ‖ · ‖) be a Banach space. Consider the following Cauchy initial value
problem of the ordinary differential equation.

(1.19)

⎧
⎪⎨

⎪⎩

dσ

dt
= W (σ(t, u0)),

σ(0, u0) = u0 ∈ E,

where W is a potential function. We are interested in the existence of a
solution to (1.19), which plays an important role in the following chapters.
First, we prepare two auxiliary results.

Lemma 1.39 (Gronwall’s inequality). If κ ≥ 0, γ > 0 and f ∈
C([0, T ],R+) satisfies

(1.20) f(t) ≤ κ + γ

∫ t

0

f(s)ds, ∀t ∈ [0, T ],

then f(t) ≤ κeγt for all t ∈ [0, T ].

Proof. By (1.20), we observe that (d/dt)
(
e−γt

∫ t

0
f(s)ds

)
≤ κe−γt. Integra-

ting both sides on [0, t], we get the conclusion. �

Lemma 1.40 (Banach’s fixed point theorem). Let D ⊂ E be closed. Let
H : D → D satisfy

(1.21) ‖Hu−Hv‖ ≤ k‖u− v‖ for some k ∈ (0, 1) and all u, v ∈ D.

Then there exists a unique u∗ such that Hu∗ = u∗.
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Proof. Let un+1 = Hun (n = 0, 1, 2, . . .) with u0 ∈ D. Using (1.21)
repeatedly, we have ‖un+m+1−un‖ ≤ (1−k)−1kn‖u1−u0‖ → 0 as n→ +∞.
Therefore, {un} is a Cauchy sequence. The conclusion follows from the con-
tinuity of H. �

We assume

(O) W : E → E is a locally Lipschitz continuous mapping; that is, for any
u ∈ E, there exists a ball B(u, r) := {w ∈ E : ‖w−u‖ < r} with radius
r and a constant ρ > 0 depending on r and u such that

‖W (w)−W (v)‖ ≤ ρ‖w − v‖, ∀w, v ∈ B(u, r).

Moreover, ‖W (u)‖ ≤ a + b‖u‖ for all u ∈ E, where a, b > 0 are con-
stants.

Theorem 1.41. Assume (O). Then for any u ∈ E, Cauchy problem (1.19)
has a unique solution σ(t, u) (called the flow or trajectory) defined in a maxi-
mal interval [0,+∞) of t.

Proof. For any fixed u0 ∈ E, by condition (O), we find a ball B(u0, r) :=
{w ∈ E : ‖w − u0‖ < r} with radius r and a constant ρ > 0 depending on r
and u0 such that

‖W (w)−W (u0)‖ ≤ ρ‖w − u0‖, ∀w ∈ B(u0, r).

Let Λ := supB(u0,r) ‖W‖. Then Λ < +∞. Choose ε > 0 such that ερ < 1,
εΛ ≤ r. Consider the Banach space

Ê := C([0, ε], E) := {u : [0, ε] → E is a continuous function}

with the norm ‖u‖Ê := maxt∈[0,ε] ‖u(t)‖ for each u ∈ Ê. Let D := {u ∈ Ê :
‖u− u0‖Ê ≤ r}. Define a mapping H : Ê → Ê by

Hu := u0 +
∫ t

0

W (u(s))ds, u ∈ Ê.

For any u,w ∈ D we have

‖Hu− u0‖Ê ≤
∫ t

0

‖W (u(s))‖Êds ≤ Λε ≤ r

and

‖Hu−Hw‖Ê ≤ max
t∈[0,ε]

∫ t

0

‖W (u)−W (w)‖Êds ≤ ρε‖u− w‖Ê .

Therefore, H : D → D satisfies all conditions of Lemma 1.40. Hence, H has
a unique fixed point u∗ ∈ D, which is a solution of Cauchy problem (1.19).


