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PREFACE

Multiple criteria decision making (MCDM) is a modeling and 
methodological tool for dealing with complex engineering problems. 
Decision makers face many problems with incomplete and vague 
information in MCDM problems since the characteristics of these 
problems often require this kind of information. Fuzzy set approaches are 
suitable to use when the modeling of human knowledge is necessary and 
when human evaluations are needed. Fuzzy set theory is recognized as an 
important problem modeling and solution technique.  Fuzzy set theory has 
been studied extensively over the past 40 years. Most of the early interest 
in fuzzy set theory pertained to representing uncertainty in human 
cognitive processes. Fuzzy set theory is now applied to problems in 
engineering, business, medical and related health sciences, and the natural 
sciences. Over the years there have been successful applications and 
implementations of fuzzy set theory in MCDM. MCDM is one of the 
branches in which fuzzy set theory found a wide application area. Many 
curriculums of undergraduate and graduate programs include many 
courses teaching how to use fuzzy sets when you face incomplete and 
vague information. One of these courses is fuzzy MCDM and its 
applications.

This book presents examples of applications of fuzzy sets in MCDM. It 
contains 22 original research and application chapters from different 
perspectives; and covers different areas of fuzzy MCDM. The book 
contains chapters on the two major areas of MCDM to which fuzzy set 

(MODM). MADM approaches can be viewed as alternative methods for 
combining the information in a problem’s decision matrix together with 
additional information from the decision maker to determine a final 
ranking, screening, or selection from among the alternatives. MODM is a 
powerful tool to assist in the process of searching for decisions that best 
satisfy a multitude of conflicting objectives. 

theory contributes. These areas are fuzzy multiple-attribute decision
making (MADM) and fuzzy multiple-objective decision making 



The classification, review and analysis of fuzzy multi-criteria decision-
making methods are summarized in the first two chapters. While the first 
chapter classifies the multi-criteria methods in a general sense, the second 
chapter focuses on intelligent fuzzy multi-criteria decision making.

The rest of the book is divided into two main parts. The first part 
includes chapters on frequently used MADM techniques under fuzziness, 
e.g., fuzzy Analytic Hierarchy Process (AHP), fuzzy TOPSIS, fuzzy 
outranking methods, fuzzy weighting methods, and a few application 
chapters of these techniques. The third chapter includes the most 
frequently used fuzzy AHP methods and their numerical and didactic 
examples. The fourth chapter shows how a fuzzy AHP method can be 
jointly used with another technique. The fifth chapter summarizes fuzzy 
outranking methods, which dichotomize preferred alternatives and 
nonpreferred ones by establishing outranking relationships. The sixth 
chapter presents another commonly used multi-attribute method, fuzzy 
TOPSIS and its application to selection among industrial robotic systems. 
The seventh chapter includes many fuzzy scoring methods and their 
applications. The rest of this part includes the other most frequently used 
fuzzy MADM techniques in the literature: fuzzy information axiom 

neuro-fuzzy approximation. 
The second part of the book includes chapters on MODM techniques 

under fuzziness, e.g., fuzzy multi-objective linear programming, quasi-
concave and non-concave fuzzy multi-objective programming, interactive 
fuzzy stochastic linear programming, fuzzy multi-objective integer goal 
programming, gray fuzzy multi-objective optimization, fuzzy multi-
objective geometric programming and some applications of these tech-
niques. These methods are the most frequently used MODM techniques in 
the fuzzy literature.

The presented methods in this book have been prepared by the authors 
who are the developers of these techniques. I hope that this book will 
provide a useful resource of ideas, techniques, and methods for additional 
research on the applications of fuzzy sets in MCDM.  I am grateful to the 
referees whose valuable and highly appreciated works contributed to select 
the high quality of chapters published in this book. I am also grateful to my 
research assistant, Dr. Ihsan Kaya, for his invaluable effort to edit this 
book.

Cengiz Kahraman 
Istanbul Technical University 
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MULTI-CRITERIA DECISION MAKING 
METHODS AND FUZZY SETS 

Cengiz Kahraman 
Department of Industrial Engineering, Istanbul Technical University, 34367 Maçka 
stanbul Turkey 

Abstract:  Multi-criteria decision making (MCDM) is one of the well-known topics of 
decision making. Fuzzy logic provides a useful way to approach a MCDM 
problem. Very often in MCDM problems, data are imprecise and fuzzy. In a 
real-world decision situation, the application of the classic MCDM method 
may face serious practical constraints, because of the criteria containing 
imprecision or vagueness inherent in the information. For these cases, fuzzy 
multi-attribute decision making (MADM) and fuzzy multi-objective 
decision making (MODM) methods have been developed. In this chapter, 
crisp MADM and MODM methods are first summarized briefly and then 
the diffusion of the fuzzy set theory into these methods is explained. Some 
examples of recently published papers on fuzzy MADM and MODM are 
given.

Key words: Multi-criteria, multi-attribute, multi-objective, decision making, fuzzy sets 

1. INTRODUCTION

In the literature, there are two basic approaches to multiple criteria 

(MADM) and multiple objective decision making (MODM). MADM 
problems are distinguished from MODM problems, which involve the 
design of a “best” alternative by considering the tradeoffs within a set of 
interacting design constraints. MADM refers to making selections among 
some courses of action in the presence of multiple, usually conflicting, 
attributes. In MODM problems, the number of alternatives is effectively 

decision making (MCDM) problems: multiple attribute decision making 
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infinite, and the tradeoffs among design criteria are typically described by 
continuous functions. 

MADM is the most well-known branch of decision making. It is a 
branch of a general class of operations research models that deal with 
decision problems under the presence of a number of decision criteria. The 
MADM approach requires that the choice (selection) be made among 
decision alternatives described by their attributes. MADM problems are 
assumed to have a predetermined, limited number of decision alternatives. 
Solving a MADM problem involves sorting and ranking. 

MADM approaches can be viewed as alternative methods for 
combining the information in a problem’s decision matrix together with 
additional information from the decision maker to determine a final 
ranking, screening, or selection from among the alternatives. Besides the 
information contained in the decision matrix, all but the simplest MADM 
techniques require additional information from the decision maker to 
arrive at a final ranking, screening, or selection. 

In the MODM approach, contrary to the MADM approach, the decision 
alternatives are not given. Instead, MODM provides a mathematical 
framework for designing a set of decision alternatives. Each alternative, 
once identified, is judged by how close it satisfies an objective or multiple 
objectives. In the MODM approach, the number of potential decision 
alternatives may be large. Solving a MODM problem involves selection.

It has been widely recognized that most decisions made in the real 
world take place in an environment in which the goals and constraints, 
because of their complexity, are not known precisely, and thus, the 
problem cannot be exactly defined or precisely represented in a crisp value 
(Bellman and Zadeh, 1970). To deal with the kind of qualitative, imprecise 
information or even ill-structured decision problems, Zadeh (1965) 
suggested employing the fuzzy set theory as a modeling tool for complex 
systems that can be controlled by humans but are hard to define exactly.

Fuzzy logic is a branch of mathematics that allows a computer to model 
the real world the same way that people do. It provides a simple way to 
reason with vague, ambiguous, and imprecise input or knowledge. In 
Boolean logic, every statement is true or false; i.e., it has a truth value 1 or 0. 
Boolean sets impose rigid membership requirements. In contrast, fuzzy 
sets have more flexible membership requirements that allow for partial 
membership in a set. Everything is a matter of degree, and exact reasoning 
is viewed as a limiting case of approximate reasoning. Hence, Boolean 
logic is a subset of Fuzzy logic. Human beings are involved in the decision 
analysis since decision making should take into account human subjectivity, 
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rather than employing only objective probability measures. This makes 
fuzzy decision making necessary. 

This chapter aims at classifying MADM and MODM methods and at 
explaining how the fuzzy sets have diffused into the MCDM methods. 

2. MULTI-ATTRIBUTE DECISION MAKING:  
A CLASSIFICATION OF METHODS 

MADM methods can be classified as to whether if they are non-
compensatory or compensatory. The decision maker may be of the view 
that high performance relative to one attribute can at least partially 
compensate for low performance relative to another attribute, particularly 
if an initial screening analysis has eliminated alternatives that fail to meet 
any minimum performance requirements. Methods that incorporate 
tradeoffs between high and low performance into the analysis are termed 
“compensatory.” Those methods that do not are termed “noncompensatory.”

In their book, Hwang and Yoon (1981) give 14 MADM methods. 
These methods are explained briefly below. Additionally five more 
methods are listed below. 

2.1 Dominance

An alternative is “dominated” if another alternative outperforms it with 
respect to at least one attribute and performs equally with respect to the 
remainder of attributes. With the dominance method, alternatives are 
screened such that all dominated alternatives are discarded. The screening 
power of this method tends to decrease as the number of independent 
attributes becomes larger. 

2.2 Maximin

The principle underlying the maximin method is that “a chain is only as 
strong as its weakest link.” Effectively, the method gives each alternative a 
score equal to the strength of its weakest link, where the “links” are the 
attributes. Thus, it requires that performance with respect to all attributes 
be measured in commensurate units (very rare for MADM problems) or 
else be normalized prior to performing the method. 
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2.3 Maximax

The viewpoint underlying the maximax method is one that assigns total 
importance to the attribute with respect to which each alternative performs 
best. Extending the “chain” analogy used in describing the maximin 
method, maximax performs as if one was comparing alternative chains in 
search of the best link. The score of each chain (alternative) is equal to the 
performance of its strongest link (attribute). Like the maximin method, 
maximax requires that all attributes be commensurate or else pre-
normalized.

2.4 Conjunctive (Satisficing) 

The conjunctive method is purely a screening method. The requirement 
embodied by the conjunctive screening approach is that to be acceptable, 
an alternative must exceed given performance thresholds for all attributes. 
The attributes (and thus the thresholds) need not be measured in 
commensurate units. 

2.5 Disjunctive

The disjunctive method is also purely a screening method. It is the 
complement of the conjunctive method, substituting “or” in place of “and.” 
That is, to pass the disjunctive screening test, an alternative must exceed 
the given performance threshold for at least one attribute. Like the 
conjunctive method, the disjunctive method does not require attributes to 
be measured in commensurate units. 

2.6 Lexicographic

The best-known application of the lexicographic method is, as its name 
implies, alphabetical ordering such as is found in dictionaries. Using this 
method, attributes are rank-ordered in terms of importance. The alternative 
with the best performance on the most important attribute is chosen. If 
there are ties with respect to this attribute, the next most important attribute 
is considered, and so on. Note two important ways in which MADM 
problems typically differ from alphabetizing dictionary words. First, there 
are many fewer alternatives in a MADM problem than words in the 
dictionary. Second, when the decision matrix contains quantitative attribute 
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values, there are effectively an infinite number [rather than 26 (i.e., A-Z)] of 
possible scores with a correspondingly lower probability of ties. 

2.7 Lexicographic Semi-Order 

This is a slight variation on the lexicographic method, where “near-ties” 
are allowed to count as ties without any penalty to the alternative, which 
scores slightly lower within the tolerance (“tie”) window. Counting near-
ties as ties makes the lexicographic method less of a “knife-edged” ranking 
method and more appropriate for MADM problems with quantitative data 
in the decision matrix. However, the method can lead to intransitive 
results, wherein A is preferred to B, B is preferred to C, but C is preferred 
to A. 

2.8 Elimination by Aspects 

This method is a formalization of the well-known heuristic, “process of 
elimination.” Like the lexicographic method, this evaluation proceeds one 
attribute at a time, starting with attributes determined to be most important. 
Then, like the conjunctive method, alternatives not exceeding minimum 
performance requirements—with respect to the single attribute of interest, 
in this case—are eliminated. The process generally proceeds until one 
alternative remains, although adjustment of the performance threshold may 
be required in some cases to achieve a unique solution. 

2.9 Linear Assignment Method 

This method requires, in addition to the decision matrix data, cardinal 
importance weights for each attribute and rankings of the alternatives with 
respect to each attribute. These information requirements are intermediate 
between those of the eight methods described previously, and the five 
methods that follow, in that they require ordinal (but not cardinal) 
preference rankings of the alternatives with respect to each attribute. The 
primary use of the additional information is to enable compensatory rather 
than noncompensatory analysis, that is, allowing good performance on one 
attribute to compensate for low performance on another. 

Note at this point that quantitative attribute values (data in the decision 
matrix) do not constitute cardinal preference rankings. Attribute values are 
generally noncommensurate across attributes, preference is not necessarily 
linearly increasing with attribute values, and preference for attribute values 
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of zero is not generally zero. However, as long as the decision maker can 
specify an ordinal correspondence between attribute values and preference, 
such as “more is better” or “less is better” for each attribute, then the 
ordinal alternative rankings with respect to each attribute that are needed 
by the linear assignment method are specified uniquely. Thus, the 
evaluation/performance rankings required by the linear assignment method 
are easier to derive than the evaluation/performance ratings required by the 
five methods that follow. The cost of using ordinal rankings rather than 
cardinal ratings is that the method is only “semi-compensatory,” in that 
incremental changes in the performance of an alternative will not enter into 
the analysis unless the changes are large enough to alter the rank order of 
the alternatives. 

2.10 Additive Weighting 

The score of an alternative is equal to the weighted sum of its cardinal 
evaluation/preference ratings, where the weights are the importance 
weights associated with each attribute. The resulting cardinal scores for 
each alternative can be used to rank, screen, or choose an alternative. The 
analytical hierarchy process (AHP) is a particular approach to the additive 
weighting method.

2.11 Weighted Product 

The weighted product is similar to the additive weighting method. 
However, instead of calculating “sub-scores” by multiplying performance 
scores times attribute importances, performance scores are raised to the 
power of the attribute importance weight. Then, rather than summing  
the resulting subscores across attributes to yield the total score for the 
alternative, the product of the scores yields the final alternative scores. The 
weighted product method tends to penalize poor performance on one 
attribute more heavily than does the additive weighting method. 

2.12 Nontraditional Capital Investment Criteria 

This method entails pairwise comparisons of the performance gains (over a 
baseline alternative) among attributes, for a given alternative. One attribute 
must be measured in monetary units. These comparisons are combined to 
estimate the (monetary) value attributed to each performance gain, and 
these values are summed to yield the overall implied value of each 
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alternative. These implied values can be used to select an alternative, to 
rank alternatives, or presumably to screen alternatives as well.

2.13 TOPSIS (Technique for Order Preference
by Similarity to Ideal Solution) 

The principle behind TOPSIS is simple: The chosen alternative should be 
as close to the ideal solution as possible and as far from the negative-ideal 
solution as possible. The ideal solution is formed as a composite of the 
best performance values exhibited (in the decision matrix) by any 
alternative for each attribute. The negative-ideal solution is the composite 
of the worst performance values. Proximity to each of these performance 
poles is measured in the Euclidean sense (e.g., square root of the sum of 
the squared distances along each axis in the “attribute space”), with 
optional weighting of each attribute.

2.14 Distance from Target 

This method and its results are also straightforward to describe graphically. 
First, target values for each attribute are chosen, which need not be 
exhibited by any available alternative. Then, the alternative with the 
shortest distance (again in the Euclidean sense) to this target point in 
“attribute space” is selected. Again, weighting of attributes is possible. 
Distance scores can be used to screen, rank, or select a preferred 
alternative.

2.15 Analytic Hierarchy Process (AHP)

The analytical hierarchy process was developed primarily by Saaty (1980). 
AHP is a type of additive weighting method. It has been widely reviewed 
and applied in the literature, and its use is supported by several 
commercially available, user-friendly software packages. Decision makers 
often find it difficult to accurately determine cardinal importance weights 
for a set of attributes simultaneously. As the number of attributes 
increases, better results are obtained when the problem is converted to one 
of making a series of pairwise comparisons. AHP formalizes the 
conversion of the attribute weighting problem into the more tractable 
problem of making a series of pairwise comparisons among competing 
attributes. AHP summarizes the results of pairwise comparisons in a 
“matrix of pairwise comparisons.” For each pair of attributes, the decision 
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maker specifies a judgment about “how much more important one attribute 
is than the other.” 

Each pairwise comparison requires the decision maker to provide an 
answer to the question: “Attribute A is how much more important than 
Attribute B, relative to the overall objective?” 

2.16 Outranking Methods (ELECTRE, PROMETHEE, 
ORESTE)

The basic concept of the ELECTRE (ELimination Et Choix Traduisant la 
Réalité or Elimination and Choice Translating Reality) method is how to 
deal with outranking relation by using pairwise comparisons among 
alternatives under each criteria separately. The outranking relationship of 
two alternatives, denoted as Ai  Aj, describes that even though two 
alternatives i and j do not dominate each other mathematically, the 
decision maker accepts the risk of regarding Ai as almost surely better than 
Aj. An alternative is dominated if another alternative outranks it at least in 
one criterion and equals it in the remaining criteria. The ELECTRE 
method consists of a pairwise comparison of alternatives based on the 
degree to which evaluation of the alternatives and preference weight 
confirms or contradicts the pairwise dominance relationship between the 
alternatives. The decision maker may declare that she/he has a strong, 
weak, or indifferent preference or may even be unable to express his or her 
preference between two compared alternatives. The other two members of 
outranking methods are PROMETHEE and ORESTE.

2.17 Multiple Attribute Utility Models 

Utility theory describes the selection of a satisfactory solution as the 
maximization of satisfaction derived from its selection. The best 
alternative is the one that maximizes utility for the decision maker’s stated 
preference structure. Utility models are of two types additive and 
multiplicative utility models. The main steps in using a multi-attribute 
utility model can be counted as 1) determination of utility functions for 
individual attributes, 2) determination of weighting or scaling factors,  
3) determination of the type of utility model, 4) the measurement of the 
utility values for each alternative with respect to the considered attributes, 
and 5) the selection of the best alternative. 
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2.18 Analytic Network Process 

In some practical decision problems, it seems to be the case where the 
local weights of criteria are different for each alternative. AHP has a 
difficulty in treating in such a case since AHP uses the same local weights 
of criteria for each alternative. To overcome this difficulty, Saaty (1996) 
proposed the analytic network process (ANP). ANP permits the use of 
different weights of criteria for alternatives.  

2.19 Data Envelopment Analysis 

Data envelopment analysis (DEA) is a nonparametric method of measuring 
the efficiency of a decision making unit such as a firm or a public-sector 
agency, which was first introduced into the operations research literature 
by Charnes et al. (1978). DEA is a relative, technical efficiency 
measurement tool, which uses operations research techniques to 
automatically calculate the weights assigned to the inputs and outputs of 
the production units being assessed. The actual input/output data values are 
then multiplied with the calculated weights to determine the efficiency 
scores. DEA is a nonparametric multiple criteria method; no production, 
cost, or profit function is estimated from the data.

2.20 Multi-Attribute Fuzzy Integrals 

When mutual preferential independence among criteria can be assumed, 
consider that the utility function is additive and takes the form of a 
weighted sum. The assumption of mutual preferential independence among 
criteria is, however, rarely verified in practice. To be able to take 
interaction phenomena among criteria into account, it has been proposed to 
substitute a monotone set function on attributes set N called the fuzzy 
measure to the weight vector involved in the calculation of weighted sums. 
Such an approach can be regarded as taking into account not only the 
importance of each criterion but also the importance of each subset of 
criteria. Choquet integral is a natural extension of the weighted arithmetic 
mean (Grabisch, 1992; Sugeno, 1974). 



10 C. Kahraman

3. MULTI-OBJECTIVE DECISION MAKING:  
A CLASSIFICATION OF METHODS 

In multiple objective decision making, application functions are established 
to measure the degree of fulfillment of the decision maker’s requirements 
(achievement of goals, nearness to an ideal point, satisfaction, etc.) on the 
objective functions and are extensively used in the process of finding “good 
compromise” solutions. MODM methodologies can be categorized in a 
variety of ways, such as the form of the model (e.g., linear, nonlinear, or 
stochastic), characteristic of the decision space (e.g., finite or infinite), or 
solution process (e.g., prior specification of preferences or interactive). 
Among MODM methods, we can count multi-objective linear 
programming (MOLP) and its variants such as multi-objective stochastic 
integer linear programming, interactive MOLP, and mixed 0-1 MOLP; 
multi-objective goal programming (MOGoP); multi-objective geometric 
programming (MOGeP); multi-objective nonlinear fractional programming; 
multi-objective dynamic programming; and multi-objective genetic 
programming. The formulations of these programming techniques under 
fuzziness will not be given here since most of them will be explained in 
detail in the subsequent chapters of this book with numerical examples. The 
intelligent fuzzy multi-criteria decision making methods will be explained 
by Waiel F. Abd El-Wahed in Chapter 2.

When a MODM problem is being formulated, the parameters of 
objective functions and constraints are normally assigned by experts.  
In most real situations, the possible values of these parameters are 
imprecisely or ambiguously known to the experts. Therefore, it would be 
more appropriate for these parameters to be represented as fuzzy numerical 
data that can be represented by fuzzy numbers. 

4. DIFFUSION OF FUZZY SETS INTO MULTI-
CRITERIA DECISION MAKING 

The classic MADM methods generally assume that all criteria and their 
respective weights are expressed in crisp values and, thus, that the rating 
and the ranking of the alternatives can be carried out without any problem. 
In a real-world decision situation, the application of the classic MADM 
method may face serious practical constraints from the criteria perhaps 
containing imprecision or vagueness inherent in the information. In many 



MCDM Methods and Fuzzy Sets 11

cases, performance of the criteria can only be expressed qualitatively or by 
using linguistic terms, which certainly demands a more appropriate method. 

The most preferable situation for a MADM problem is when all ratings 
of the criteria and their degree of importance are known precisely, which 
makes it possible to arrange them in a crisp ranking. However, many of the 
decision making problems in the real world take place in an environment 
in which the goals, the constraints, and the consequences of possible 
actions are not known precisely (Bellman and Zadeh, 1970). These 
situations imply that a real decision problem is very complicated and thus 
often seems to be little suited to mathematical modeling because there is 
no crisp definition (Zimmermann and Zysno, 1985). Consequently, the 
ideal condition for a classic MADM problem may not be satisfied, in 
particular when the decision situation involves both fuzzy and crisp data. 
In general, the term “fuzzy” commonly refers to a situation in which the 
attribute or goal cannot be defined crisply, because of the absence of well-
defined boundaries of the set of observation to which the description 
applies.

A similar situation is when the available information is not enough to 
judge or when the crisp value is inadequate to model real situations. 
Unfortunately, the classic MADM methods cannot handle such problems 
effectively, because they are only suitable for dealing with problems in 
which all performances of the criteria are assumed to be known and, thus, 
can be represented by crisp numbers. The application of the fuzzy set 
theory in the field of MADM is justified when the intended goals or their 
attainment cannot be defined or judged crisply but only as fuzzy sets 
(Zimmermann, 1987). The presence of fuzziness or imprecision in a 
MADM problem will obviously increase the complexity of the decision 
situation in many ways. Fuzzy or qualitative data are operationally more 
difficult to manipulate than crisp data, and they certainly increase the 
computational requirements in particular during the process of ranking 
when searching for the preferred alternatives (Chen and Hwang, 1992). 

Bellman and Zadeh (1970) and Zimmermann (1978) introduced fuzzy 
sets into the MCDM field. They cleared the way for a new family of 
methods to deal with problems that had been inaccessible to and 
unsolvable with standard MCDM techniques. Bellman and Zadeh (1970) 
introduced the first approach regarding decision making in a fuzzy 
environment. They suggested that fuzzy goals and fuzzy constraints could 
be defined symmetrically as fuzzy sets in the space of alternatives, in 
which the decision was defined as the confluence between the constraints 
to be met and the goals to be satisfied. A maximizing decision was then 
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defined as a point in the space of alternatives at which the membership 
function of a fuzzy decision attained its maximum value. 

Baas and Kwakernaak’s (1977) approach was widely regarded as the 
most classic work on the fuzzy MADM method and was often used as a 
benchmark for other similar fuzzy decision models. Their approach 
consisted of both phases of MADM, the rating of criteria and the ranking 
of multiple aspect alternatives using fuzzy sets.

Yager (1978) defined the fuzzy set of a decision as the intersection 
(conjunction) of all fuzzy goals. The best alternative should possess the 
highest membership values with respect to all criteria, but unfortunately, 
such a situation rarely occurs in the case of a multiple attribute decision- 
making problem. To arrive at the best acceptable alternative, he suggested 
a compromise solution by proposing the combination of max and min 
operators. For the determination of the relative importance of each 
attribute, he suggested the use of the Saaty method through pairwise 
comparison based on the reciprocal matrix. 

Kickert (1978) summarized the fuzzy set theory applications in MADM 
problems. Zimmermann’s (1985, 1987) two books include MADM 
applications. There are a number of very good surveys of fuzzy MCDM 
(Chen and Hwang, 1992; Fodor and Roubens, 1994; Luhandjula, 1989; 
Sakawa, 1993).

Dubois and Prade (1980), Zimmermann (1987), Chen and Hwang 
(1992), and Ribeiro (1996) differentiated the family of fuzzy MADM 
methods into two main phases. The first phase is generally known as the 
rating process, dealing with the measurement of performance ratings or the 
degree of satisfaction with respect to all attributes of each alternative. The 
aggregate rating, indicating the global performance of each alternative, can 
be obtained through the accomplishment of suitable aggregation operations 
of all criteria involved in the decision. The second phase, the ranking of 
alternatives, is carried out by ordering the existing alternatives according 
to the resulted aggregated performance ratings obtained from the first 
phase.

Some titles among recently published papers can show us the latest 
interest areas of MADM and MODM. Ravi and Reddy (1999) rank both 
coking and noncoking coals of India using fuzzy multi-attribute decision 
making. They use Saaty’s AHP and Yager’s (1978) fuzzy MADM 
approach to arrive at the coal field having the best quality coal for 
industrial use. Fan et al. (2002) propose a new approach to solve the 
MADM problem, where the decision maker gives his/her preference on 
alternatives in a fuzzy relation. To reflect the decision maker’s preference 
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information, an optimization model is constructed to assess the attribute 
weights and then to select the most desirable alternatives.

Wang and Parkan (2005) investigate a MADM problem with fuzzy 
preference information on alternatives and propose an eigenvector method 
to rank them. Three optimization models are introduced to assess the 
relative importance weights of attributes in a MADM problem, which 
integrate subjective fuzzy preference relations and objective information in 
different ways. Omero et al. (2005) deal with the problem of assessing the 
performance of a set of production units, simultaneously considering 
different kinds of information, yielded by data envelopment analysis, a 
qualitative data analysis, and an expert assessment. Hua et al. (2005) 
develop a fuzzy multiple attribute decision making (FMADM) method 
with a three-level hierarchical decision making model to evaluate the 
aggregate risk for green manufacturing projects.

Gu and Zhu (2006) construct a fuzzy symmetry matrix by referring to 
the covariance definition of random variables as attribute evaluation space 
based on a fuzzy decision making matrix. They propose a fuzzy AHP 
method by using the approximate fuzzy eigenvector of such a fuzzy 
symmetry matrix. This algorithm reflects the dispersed projection of 
decision information in general. Fan et al. (2004) investigate the multiple 
attribute decision making (MADM) problems with preference information 
on alternatives. A new method is proposed to solve the MADM problem, 
where the decision maker gives his/her preference on alternatives in a 
fuzzy relation. To reflect the decision maker’s subjective preference 
information, a linear goal programming model is constructed to determine 
the weight vector of attributes and then to rank the alternatives.

Ling (2006) presents a fuzzy MADM method in which the attribute 
weights and decision matrix elements (attribute values) are fuzzy 
variables. Fuzzy arithmetic operations and the expected value operator of 
fuzzy variables are used to solve the FMADM problem. Xu and Chen 
(2007) develop an interactive method for multiple attribute group decision 
making in a fuzzy environment. The method can be used in situations 
where the information about attribute weights is partly known, the weights 
of decision makers are expressed in exact numerical values or triangular 
fuzzy numbers, and the attribute values are triangular fuzzy numbers. Chen 
and Larbani (2006) obtain the weights of a MADM problem with a fuzzy 
decision matrix by formulating it as a two-person, zero-sum game with an 
uncertain payoff matrix. Moreover, the equilibrium solution and the 
resolution method for the MADM game are developed. These results are 
validated by a product development example of nano-materials.
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Some recently published papers on fuzzy MODM are given as follows: 
El-Wahed and Abo-Sinna (2001) introduce a solution method based on the 
theory of fuzzy sets and goal programming for MODM problems. The 
solution method, called hybrid fuzzy-goal programming (HFGP), 
combines and extends the attractive features of both fuzzy set theory and 
goal programming for MODM problems. The HFGP approach is 
introduced to determine weights to the objectives under the same priorities 
as using the concept of fuzzy membership functions along with the notion 
of degree of conflict among objectives. Also, HFGP converts a MODM 
problem into a lexicographic goal programming problem by fixing the 
priorities and aspiration levels appropriately. Rasmy et al. (2002) introduce 
an interactive approach for solving MODM problems based on linguistic 
preferences and architecture of a fuzzy expert system. They consider the 
decision maker’s preferences in determining the priorities and aspiration 
levels, in addition to analysis of conflict among the goals. The main 
concept is to convert the MODM problem into its equivalent goal 
programming problem by appropriately setting the priority and aspiration 
level for each objective. The conversion approach is based on the fuzzy 
linguistic preferences of the decision maker. Borges and Antunes (2002) 
study the effects of uncertainty on multiple-objective linear programming 
models by using the concepts of fuzzy set theory. The proposed interactive 
decision support system is based on the interactive exploration of the 
weight space. The comparative analysis of indifference regions on the 
various weight spaces (which vary according to intervals of values of  
the satisfaction degree of objective functions and constraints) enables the 
study of the stability and evolution of the basis that corresponds to the 
calculated efficient solutions with changes of some model parameters. 
Luhandjula (1984) used a linguistic variable approach to present a 
procedure for solving the multiple objective linear fractional programming 
problem (MOLFPP). Dutta et al. (1992) modified the linguistic approach 
of Luhandjula such as to obtain an efficient solution to MOLFPP. Stancu-
Minasian and Pop (2003) points out certain shortcomings in the work of 
Dutta et al. and gives the correct proof of theorem, which validates the 
obtaining of the efficient solutions. We notice that the method presented 
there as a general one does only work efficiently if certain hypotheses 
(restrictive enough and hardly verified) are satisfied. 

Li et al. (2006) improve the fuzzy compromise approach of Guu and 
Wu (1999) by automatically computing proper membership thresholds 
instead of choosing them. Indeed, in practice, choosing membership 
thresholds arbitrarily may result in an infeasible optimization problem. 
Although a minimum satisfaction degree is adjusted to get a fuzzy efficient 
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solution, it sometimes makes the process of interaction more complicated. 
To overcome this drawback, a theoretically and practically more efficient 
two-phase max–min fuzzy compromise approach is proposed. Wu et al. 
(2006) develop a new approximate algorithm for solving fuzzy multiple 
objective linear programming (FMOLP) problems involving fuzzy 
parameters in any form of membership functions in both objective 
functions and constraints. A detailed description and analysis of the 
algorithm are supplied. Abo-Sinna and Abou-El-Enien (2006) extend the 
TOPSIS for solving large scale multiple objective programming problems 
involving fuzzy parameters. These fuzzy parameters are characterized as 
fuzzy numbers. For such problems, the –Pareto optimality is introduced 
by extending the ordinary Pareto optimality on the basis of the –level sets 
of fuzzy numbers. An interactive fuzzy decision-making algorithm for 
generating an –Pareto optimal solution through the TOPSIS approach is 
provided where the decision maker is asked to specify the degree  and 
the relative importance of objectives.

5. CONCLUSIONS

The main difference between the MADM and MODM approaches is that 
MODM concentrates on continuous decision space aimed at the realization 
of the best solution, in which several objective functions are to be achieved 
simultaneously. The decision processes involve searching for the best 
solution, given a set a conflicting objectives, and thus, a MODM problem 
is associated with the problem of design for optimal solutions through 
mathematical programming. In finding the best feasible solution, various 
interactions within the design constraints that best satisfy the goals must be 
considered by way of attaining some acceptable levels of sets of some 
quantifiable objectives. Conversely, MADM refers to making decisions in 
the discrete decision spaces and focuses on how to select or to rank 
different predetermined alternatives. Accordingly, a MADM problem can be 
associated with a problem of choice or ranking of the existing alternatives 
(Zimmermann, 1985).

Having to use crisp values is one of the problematic points in the crisp 
evaluation process. As some criteria are difficult to measure by crisp 
values, they are usually neglected during the evaluation. Another reason is 
about mathematical models that are based on crisp values. These methods 
cannot deal with decision makers’ ambiguities, uncertainties, and 
vagueness that cannot be handled by crisp values. The use of fuzzy set 
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theory allows us to incorporate unquantifiable information, incomplete 
information, non obtainable information, and partially ignorant facts into 
the decision model. When decision data are precisely known, they should 
not be placed into a fuzzy format in the decision analysis. Applications of 
fuzzy sets within the field of decision making have, for the most part, 
consisted of extensions or “fuzzifications” of the classic theories of 
decision making. Decisions to be made in complex contexts, characterized 
by the presence of multiple evaluation aspects, are normally affected by 
uncertainty, which is essentially from the insufficient and/or imprecise 
nature of input data as well as the subjective and evaluative preferences of 
the decision maker. Fuzzy sets have powerful features to be incorporated 
into many optimization techniques. Multiple criteria decision making is 
one of these, and it is certain that more frequently you will see more fuzzy 
MCDM modeling and applications in the literature over the next few 
years.
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