You do not really understand something unless you can explain it to your grandmother.

The important thing is not to stop questioning.

A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the person who made it.

Albert Einstein
Nobel Prize Laureate (Physics)
Preface

When the first volume of the *Ultra-Wideband, Short Pulse Electromagnetics* book series was published in 1993, the terms ultra-wideband (UWB) and short-pulse (SP) were acronyms for challenging technologies. In 1992, the DARPA Ultra-wideband Radar Review Panel defined UWB by the need for special techniques to overcome challenging problems facing conventional systems and technologies when attempting to operate over a broad range of frequencies.

Since then notable progress in UWB and SP technologies has been achieved. As a result, wideband systems are now being used for an increasingly wide variety of applications. UWB radar systems are used for collision avoidance, concealed object detection, mine detection, and oil pipeline inspections. In the communication area, the need for increasing bandwidth boosted the development of UWB communication systems such as the impulse radio. Many high-power electromagnetic (HPEM) environments are generated employing short-pulse technology. With the advent of HPEM sources capable of interrupting and/or damaging sensitive electronics, there has been an increasing interest in protecting critical infrastructure and systems. Recently, the literature has reported the usage of SP techniques in microwave tomography systems for biomedical applications.

Through the whole development of UWB and SP technologies, *Ultra-Wideband, Short Pulse Electromagnetics* books provided new and state-of-the-art information on the tendencies and current achievements in UWB- and SP-related technologies, analyzing methodologies, theoretical models, and time domain data processing. The objectives of the *Ultra-Wideband, Short Pulse Electromagnetics* book series are as follows:

- To focus on advanced technologies for the generation, radiation, and detection of UWB and SP signals
- To report on developments in supporting mathematical and numerical methods, which are capable of analyzing the propagation of UWB and SP signals, as well as their scattering from and coupling to targets and media of interest
- To describe current and potential future applications of the UWB and SP technology

"*Ultra-Wideband, Short Pulse Electromagnetics 9*" (UWB SP 9) presents recent developments in the areas of UWB and SP technology, components, application, numerical analysis, modeling, and electromagnetic theory. The editorial board selected the initial set of contributions from presentations at the UWB-SP 9 conference that was held in conjunction with EUROEM 2008 in Lausanne, Switzerland. The editorial board’s goal was to cover the complete range of aforementioned topics with articles of deep technical content and high scientific quality. Wherever we felt that something was missing, we invited selected authors to contribute additional articles to complete the overall picture. Therefore we hope that this book contains something of interest for every scientist and engineer working in the area of UWB and SP electromagnetics.
Following the tradition in the odd-numbered volumes of *Ultra-Wideband, Short Pulse Electromagnetics* (UWB SP) books, which are related to EUROEM conferences, the cover displays the picture of a renowned scientist. This ninth volume honors Albert Einstein, who is well known for his various achievements in theoretical physics. From the view point of the editorial board, Einstein is eminently well qualified for the cover picture from multiple aspects. First, Einstein started his professional life at the Swiss Patent Office in Bern and later in life was professor at the ETH Zurich. He introduced the theory of special relativity in 1905 in a paper entitled “The electrodynamics of moving bodies.” The editorial board liked the idea of honoring this contribution to physics, as well as showing the link to electromagnetics. Second, there is a special relation among Maxwell, Hertz, and Einstein. A cover picture showing Einstein completes the series started with the *UWB SP 5* book. The cover of the *UWP SP 5* book shows a picture of James Clerk Maxwell, the Scottish theoretical physicist and mathematician, who developed the classical electromagnetic theory. The well known set of Maxwell’s equations is the physical foundation of the research presented in the *UWB SP* books. The next odd-numbered volume, *UWB SP 7*, showed a picture of Heinrich Rudolf Herz, a German physicist, who was the first scientist to demonstrate electromagnetic waves by building an apparatus that produced radio waves. Therefore the cover of the *UWB SP 7* book continued the series by featuring the scientist who clarified Maxwell’s theory. The next, and for the moment final, improvement of Maxwell’s theory was Einstein’s development into the special theory of relativity. Einstein noted that the special theory of relativity owes its origins to Maxwell’s equations of electromagnetic fields.

Finally, I would like to express my gratitude to all persons who contributed to this book. In particular, I thank the authors for writing articles of deep technical content and high scientific quality, and the members of the editorial board, Farhad Rachidi, D.V. Giri, and Armin Kaelin, for reviewing all articles and numerous discussions, which helped improve the quality of this book.

Last but not least, I thank my family, particularly my wife Martina, for her great patience and for granting me the time to work on this book.

Bonn, Germany

Frank Sabath
Contents

Part I Electromagnetic Theory and Modeling

Modeling of Electromagnetic Wave Propagation in Flows of Turbulent Plasma
Inhomogeneities ... 3
V. Spitsyn and I. Fedotov

Ultra-wideband Propagation Loss Around a Human Body in Various
Surrounding Environments .. 11
H. Yamamoto and T. Kobayashi

Optimizing the Positioning of MIMO and SISO Systems in Indoor Environments 19
P. Bechet, I. Bouleanu, A. Neagu, R. Helbet, and A. Hangan

Analysis of Ultra-wideband Impulse Radio Over Multimode Fiber Ranging System . . . 27
J. George, D. Thelen, A. Chamarti, A. Ng’oma, and M. Sauer

Time Domain Transition Zone Diffraction on Convex Obstacles 37
P. Górniaik and W. Bandurski

Benchmark Problems for Coupling and Scattering
with Cavities of General Form ... 47
P.D. Smith, E.D. Vinogradova, S.B. Panin, Y.A. Tuchkin, and S.V. Vinogradov

Accurate Modelling of Ultra-short Electromagnetic Pulse Scattering Using
a Locally Conformal Finite-Difference Time-Domain Scheme 55
D. Caratelli, R. Cicchetti, M. Simeoni, and A. Yarovoy

Rigorous Modeling of Electromagnetic Wave Interactions with Large Dense
Systems of Discrete Scatterers ... 65
E.H. Bleszynski, M.K. Bleszynski, and T. Jaroszewicz

A Hybrid Method for Solving 2-D Inverse Scattering Problems 79
A. Semnani and M. Kamyab

Part II Time-Domain Computational Techniques

Time-Reversal-Based Signal Processing Techniques for Ultra-wideband
Electromagnetic Imaging .. 89
M.E. Yavuz and F.L. Teixeira
Imaging of Distributed Objects in UWB Sensor Networks
R. Zetik and R.S. Thomä

Advanced Imaging by Space–Time Deconvolution in Array GPR
T.G. Savelyev, N.T. van Tol, A.G. Yarovoy, and L.P. Ligthart

Time-Domain Characterization of Asymptotic Conical Monopole
Dhiraj Kumar Singh and Devendra Chandra Pande

A TDFEM-Employed Temporal Second-Order Lagrange Interpolation for Three-Dimensional EM Radiation Problems
X. Wu and L. Zhou

TLM Simulation of Wave Envelopes Using Dynamic Phasors
D.W.P. Thomas, J.D. Paul, and C. Christopoulos

Part III Modeling

Analysis of Anisotropic Microwave Circuits with Several Metallized Interfaces
C. Boularak, M.L. Tounsi, A. Khodja, R. Touhami, and M.C.E. Yagoub

A Novel High-Miniaturized Semi-fractal Branch-Line Coupler Using Loaded Coupled Transmission Lines
M. Nosrati and M.S. Fealy

New Coplanar Low-Pass Defected Ground Structure (DGS) Filter
A. Batmanov, A. Boutejdar, A. Balalem, A. Omar, and E. Burte

Bandwidth Enhancement and Further Size Reduction of a Class of Miniaturized Elliptic-Function Low-Pass Filter
M. Nosrati, S. Abbaspour, and A. Najafi

A Miniature 3.1 GHz Microstrip Bandpass Filter with Suppression of Spurious Harmonics Using Multilayer Technique and Defected Ground Structure
Open-Loop Ring
A. Boutejdar, A. Batmanov, A. Omar, and E. Burte

Modeling Broadband Antennas for Hot Electron Bolometers at Terahertz Frequencies
I. Türer, X. Gaztelu, N. Ribière-Tharaud, A.F. Dégardin, and A.J. Kreisler

Part IV Antennas

Investigation on the Phase Center of Ultra-wideband Monopole Antennas with Band-Stop Functions
A. Mohamed and L. Shafai

Improvements to the Time-Domain Response of the Double-Ridged Horn
J.S. McLean and R. Sutton

The Folded Horn Antenna
E.G. Farr, L.H. Bowen, C.E. Baum, and W.D. Prather

Numerical Analysis of Small Slotted Ultra-wideband Antenna Based on Current Distribution for Bandwidth Enhancement
Y.R. Naumar, T.A. Rahman, R. Ngah, and P.S. Hall
Design and Experiment of an Ultra-wideband Dual-Pulse Radiating Antenna
Z. Sitao, L. Guozhi, Y. Chaolong, S. Xiaoxin, F. Yajun, S. Lei, X. Wenfeng, and Z. Yufeng

A Novel UWB Planar Antenna with Notch Cut for Wireless Communications
A. Alshehri and A.R. Sebak

Ultra-wideband 4 × 4 Phased Array Containing Exponentially Tapered Slot Antennas and a True-Time Delay Phase Shifter at UHF
J. Schmitz, M. Jung, J. Bonney, Caspary, J. Schüür, and J. Schöbel

Planar Elliptical Differential Antenna for UWB Applications
G. Quintero, J.F. Zürcher, and A.K. Skrivervik

Array Antenna for Directed Radiation of High-Power Ultra-wideband Pulses
V.I. Koshelev, V.V. Plisko, and K.N. Sukhushin

Ultra-wideband Active Receiving Array Antenna with Dual Polarization
V.I. Koshelev, E.V. Balzovsky, and Yu. I. Buyanov

Modeling of Broadband Antennas for Room Temperature Terahertz Detectors
Alexander Scheuring, Ibrahim Türer, Nicolas Ribière-Tharaud, Annick F. Dégardin, and Alain J. Kreisler

100 THz Broadband High-Power Antennas – Results of Modeling and Antennas Future Applications
A. Podgorski, W. Prather, S. Yakura, and J. MacGillivray

Part V Pulsed Power
Traveling-Wave Switches and Marx Generators
C.E. Baum

High-Voltage and High-PRF FID Pulse Generators
V.M. Efano, M.V. Efano, A.V. Komashko, A.V. Kriklenko, P.M. Yarin, and S.V. Zazoulin

Experimental and Theoretical Investigation of Directional Wideband Electromagnetic Pulse Photoemission Generator

The GIMLI: A Compact High-Power UWB Radiation Source
P. Delmote and B. Martin

Part VI UWB Interaction
Classification of Electromagnetic Effects at System Level
F. Sabath

Measurement of EM Field Inside a Cruising Aircraft: Potential Problems for the Use of Mobile Phones on Board
A. Kohmura, J. Picard, N. Yonemoto, and K. Yamamoto
A New Method of Interference Evaluation Between UWB System and Wireless LAN Using a GTEM Cell
Shinobu Ishigami, Masashi Yamada, Kaoru Gotoh, Yasushi Matsumoto, and Masamitsu Tokuda

Simulation of the Effects of Radiation on a Satellite Memory and Improving Its Fault-Tolerant Ability, Using SIHFT
S.M. Nematollahzadeh and A.A. Jamshidifar

Investigations of Electromagnetic Behavior and Interaction of Motion Control Electronic Devices
J.-M. Dienot

Wunsch–Bell Criterial Dependence for Si and GaAs Schottky-Barrier Field-Effect Transistors
G.I. Churyumov, M.P. Gribskii, V.V. Starostenko, V. Yr. Tereshenko, D.A. Unzhakov, and S.A. Zuev

RF Breakdown Prediction for Microwave Passive Components in Multi-carrier Operation
S. Anza, M. Mattes, J. Armendariz, J. Gil, C. Vicente, B. Gimeno, V.E. Boria, and D. Raboso

Part VII Radar Systems

UWB Radar: Mechanical Scanning and Signal Processing for Through-the-Wall Imaging
C. Liebe, A. Gaugue, J. Khamlichi, M. Menard, and J.-M. Ogier

Radar Observation of Objects, Which Fulfill Back-and-Forth Motion
I. Immoreev

Human Being Imaging with cm-Wave UWB Radar
A. Yarovoy, X. Zhuge, T. Savelyev, J. Matuzas, and B. Levitas

A Metallic Wire Electromagnetic Crystal Structure for Radar Applications
F. Ghanem, G.Y. Delisle, T.A. Denidni, and K. Ghanem

Part VIII UWB Communication

Small Printed Ultra-Wideband Antennas Combining Electric- and Magnetic-Type Radiators
D.-H. Kwon, E.V. Balzovsky, Y.I. Buyanov, Y. Kim, and V.I. Koshelev

A Bandwidth Reconfigurable Antenna for Cognitive Radios
F. Ghanem and P.S. Hall

A Long-Range UWB Channel Sounding System Exploiting UWB over Fibre Technology
A. Kavatjikidis, D.J. Edwards, and C.J. Stevens

UWB Antennas Integration Effects for Wireless Communication Applications
M.-A. Mellah, C. Roblin, and A. Sibille
Contents

Bit Error Rate of a Non-ideal Impulse Radio System 457
J. Timmermann, E. Pancera, P. Walk, W. Wiesbeck, and T. Zwick

Part IX Broadband Systems and Components

Integrated cm- and mm-Wave UWB Transceiver for M-Sequence-Based Sensors 467
M. Kmec, J. Müller, P. Rauschenbach, S. Rentsch, J. Sachs, and B. Yang

Experimental Focal Waveforms of a Prolate-Spheroidal Impulse-Radiating Antenna 475
S. Altunc, C.E. Baum, C.G. Christodoulou, and E. Schamiloglu

Development of a Resonant Chamber Microwave Tomography System 481
C. Kaye, C. Gilmore, P. Mojabi, D. Firsov, and J. LoVetri

Index ... 489
Contributors

S. Abbaspour Department of Electrical and Computer Engineering, Ilam Azad University, Ilam, Iran
V.I. Afonin Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia
A. Alshehri EXPEC Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia
S. Altunc Department of Electrical and Computer Engineering, University of New Mexico Albuquerque, NM 87131, USA
A. Balalem Chair of Microwave and Communication Engineering, University of Magdeburg, Magdeburg, Germany
E.V. Balzovsky Institute of High Current Electronics, SB RAS, 2/3 Akademichesky Ave., Tomsk 634055, Russia
W. Bandurski Poznań University of Technology, Poznań, Poland
A. Batmanov Chair of Semiconductor Technology, University of Magdeburg, Magdeburg, Germany
C.E. Baum Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA
P. Bechet Land Forces Academy, Sibiu, Romania
V.S. Belolipetskiy Institute of Optical-Physical Measurements, Moscow, Russia
E.H. Bleszynski Monopole Research, Thousand Oaks, CA 91360, USA
M.K. Bleszynski Monopole Research, Thousand Oaks, CA 91360, USA
J. Bonney Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Schleinitzstraße 22, D-38106 Braunschweig, Germany
V.E. Boria Departamento de Comunicaciones, Universidad Politecnica de Valencia, 46022 Valencia, Spain
C. Boularack Instrumentation Laboratory, Faculty of Electronics and Informatics, USTHB University, El-Alia, Bab Ezzouar, 16111 Algiers, Algeria
I. Bouleanu Training Center for Communications and Information Systems, Sibiu, Romania

A. Boutejdar Chair of Microwave and Communication Engineering, University of Magdeburg, Magdeburg, Germany

L.H. Bowen Farr Research, Inc., Albuquerque, NM 87123, USA

G.I. Brukhnevich Institute of Optical-Physical Measurements, Moscow, Russia

E. Burte Chair of Semiconductor Technology, University of Magdeburg, Magdeburg, Germany

Y.I. Buyanov Institute of High Current Electronics, Siberian Branch of Russian Academy of Sciences, 2/3 Akademichesky Ave., Tomsk 634055, Russia

D. Caratelli IRCTR, Delft University of Technology, Delft, The Netherlands

R. Caspary Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Schleinitzstraße 22, D-38106 Braunschweig, Germany

A. Chamarti Corning Incorporated, Corning, NY 14831, USA

Y. Chaolong Northwest Institute of Nuclear Technology, Xian 710024, China

C.G. Christodouloú Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA

C. Christopoulos George Green Institute for Electromagnetics Research, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

G.I. Churyumov Microwave & Optoelectronics Lab., Kharkov National University of Radio Electronics, 14, Lenin Ave., Kharkov, 61166, Ukraine

R. Cicchetti Sapienza Department of Electronic Engineering, University of Rome, Rome, Italy

Annick F. Dégardin SUPELEC/Laboratoire de Génie Électrique de Paris (LGEP), CNRS UMR 8507, UPMC Univ Paris 06, Univ Paris Sud 11, Gif-sur-Yvette, France

G.Y. Delisle Technopôle Défence & Security, Quebec City, QC, Canada

P. Delmote French-German Research Institute of Saint-Louis, High Power Microwave Group, Saint-Louis, France

T.A. Denidni Institut National de la Recherche Scientifique (INRS), Montreal, QC, Canada

J.-M. Dienot Tarbes University Institute of Technology, Tarbes, France

D.J. Edwards Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

M.V. EfanoF FID GmbH, Burbach, Germany

V.M. EfanoF FID GmbH, Burbach, Germany

E.G. Farr Farr Research, Inc., Albuquerque, NM 87123, USA

M.S. Fealy Azad University, Kermanshah Branch, 69311-33145 Kermanshah, Iran

I. Fedotov Computer Engineering Department, Tomsk Polytechnic University, Russia

D. Firsov Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
A. Gaugue Laboratoire Informatique Image Interaction (L3i), Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

X. Gaztelu SUPELEC/Laboratoire de Génie Électrique de Paris (LGEP), CNRS UMR 8507, UPMC Univ Paris 06, Univ Paris Sud 11, Gif-sur-Yvette, France

J. George Corning Incorporated, Corning, NY 14831, USA

F. Ghanem Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia

K. Ghanem Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia

C. Gilmore Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada

B. Gimeno Departamento de Fisica Aplicada y Electromagnestimo, Universitat de Valencia, 46100 Valencia, Spain

P. Górniak Poznań University of Technology, Poznań, Poland

Kaoru Gotoh National Institute of Information and Communications Technology, Tokyo, Japan

M.P. Gribskii Radiophysics Department, Taurida National Vernadsky University, 4, Vernadsky Ave., Simferopol’, 95007, Ukraine

L. Guozhi Northwest Institute of Nuclear Technology, Xian 710024, China

A. Hangan Land Forces Academy, Sibiu, Romania

R. Helbet Training Center for Communications and Information Systems, Sibiu, Romania

I. Immoreev Moscow Aviation Institute, Gospitalny val, Moscow 105094, Russia

Shinobu Ishigami National Institute of Information and Communications Technology, Tokyo, Japan

A.A. Jamshidifar Iran Research Organization for Science and Technology, Tehran, Iran

T. Jaroszewicz Monopole Research, Thousand Oaks, CA 91360, USA

M. Jung Rheinmetall Waffe Munition GmbH, Heinrich-Erhardt-Straße 2, D-29345 Unterlüß, Germany

M. Kamyab Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

A. Kavatjikidis Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

C. Kaye Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada

J. Khamlichi Laboratoire Informatique Image Interaction (L3i), Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

A. Khodja Instrumentation Laboratory, Faculty of Electronics and Informatics, USTHB University, El-Alia, Bab Ezzouar, 16111 Algiers, Algeria
Y. Kim Department of Electrical Information, Inha Technical College, Incheon 402 752, Korea
M. Kmec Technische Universität Ilmenau, Ilmenau, Germany
T. Kobayashi Tokyo Denki University, Tokyo, Japan
A. Kohmura Electronic Navigation Research Institute, Tokyo, Japan
A.V. Komashko FID GmbH, Burbach, Germany
V.I. Koshelev Institute of High Current Electronics, SB RAS, 2/3 Akademichesky Ave., Tomsk 634055, Russia
Alain J. Kreisler SUPELEC/Laboratoire de Génie Électrique de Paris (LGEP), CNRS UMR 8507, UPMC Univ Paris 06, Univ Paris Sud 11, Gif-sur-Yvette, France
A.V. Kriklenko FID GmbH, Burbach, Germany
N.V. Kupyrin Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia
D.-H. Kwon Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, USA
Y.N. Lazarev Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia
S. Lei Northwest Institute of Nuclear Technology, Xian 710024, China
B. Levitas GeoZondas Ltd., Vilnius, Lithuania
C. Liebe Laboratoire Informatique Image Interaction (L3i), Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France
L.P. Ligthart International Research Centre for Telecommunication and Radar, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands
J. LoVetri Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
J. MacGillivray Air Force Research Laboratory, Kirtland AFB, Albuquerque, NM 87117, USA
B. Martin French-German Research Institute of Saint-Louis, High Power Microwave Group, Saint-Louis, France
Yasushi Matsumoto National Institute of Information and Communications Technology, Tokyo, Japan
M. Mattes Laboratoire d’Electromagnétisme et d’Acoustique, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
J. Matuzas GeoZondas Ltd., Vilnius, Lithuania
J.S. McLean TDK R&D Corp., Cedar Park, TX, USA
M.-A. Mellah ENSTA (Ecole Nationale Supérieure de Techniques Avancées), ParisTech. 32, Boulevard Victor, 75738 Paris, France
M. Menard Laboratoire Informatique Image Interaction (L3i), Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France
A. Mohamed Department of Electrical and Computer Engineering, The University of Manitoba, Winnipeg, MB, Canada R3T 5V6

P. Mojabi Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada R3T 5V6

J. Müller Technische Universität Ilmenau, Ilmenau, Germany

A. Najafi Department of Electrical and Computer Engineering, Ilam Azad University, Ilam, Iran

Y.R. Naumar Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

A. Neagu Land Forces Academy, Sibiu, Romania

S.M. Nematollahzadeh Iran Telecommunication Research Center, Tehran, Iran

R. Ngah Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

A. Ng’oma Corning Incorporated, Corning, NY 14831, USA

M. Nosrati Department of Electrical and Computer Engineering, Ilam Azad University, Kermanshah Branch, 69311-33145 Kermanshah, Iran

J.-M. Ogier Laboratoire Informatique Image Interaction (L3i), Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

A. Omar Chair of Microwave and Communication Engineering, University of Magdeburg, Magdeburg, Germany

E. Pancera Institut fuer Hochtstfrequenztechnik und Elektronik, Universitaet Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany

Devendra Chandra Pande Electronics & Radar Development Establishment, Bangalore, India

S.B. Panin Department of Mathematics, Macquarie University, Sydney 2109, Australia

J.D. Paul George Green Institute for Electromagnetics Research, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

L.Z. Pekarskaya Institute of Optical-Physical Measurements, Moscow, Russia

P.V. Petrov Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia

J. Picard Ecole Nationale de l’Aviation Civile, Toulouse Cedex 4, France

V.V. Plisko Institute of High Current Electronics, SB RAS, 2/3 Akademichesky Ave., Tomsk 634055, Russia

A. Podgorski Air Force Research Laboratory, Kirtland AFB, Albuquerque, NM 87117, USA

W. Prather Air Force Research Laboratory, Kirtland AFB, Albuquerque, NM 87117, USA

W.D. Prather Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, Albuquerque, NM 87117, USA
G. Quintero Laboratoire d’Electromagnétisme et d’Acoustique (LEMA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

D. Raboso ESA-ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands

T.A. Rahman Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

P. Rauschenbach Meodat GmbH, Ilmenau, Germany

S. Rentsch Technische Universität Ilmenau, Ilmenau, Germany

Nicolas Ribière-Tharaud SUPELEC/DRE, Gif-sur-Yvette, France

C. Roblin ENSTA (Ecole Nationale Supérieure de Techniques Avancées), ParisTech. 32, Boulevard Victor, 75738 Paris, France

Y.O. Romanov Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia

F. Sabath Federal Ministry of Defence, Bonn, Germany; Armaments Directorate IV 6, Fontainengraben 150, 53123 Bonn, Germany

J. Sachs Technische Universität Ilmenau, Ilmenau, Germany

M. Sauer Corning Incorporated, Corning, NY 14831, USA

T. Savelyev International Research Centre for Telecommunications and Radar, Delft University of Technology, Delft, The Netherlands

T.G. Savelyev International Research Centre for Telecommunication and Radar, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands

E. Schamiloglu Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA

Alexander Scheuring SUPELEC/Laboratoire de Génie Électrique de Paris (LGEP), CNRS UMR 8507, UPMC Univ Paris 06, Univ Paris Sud 11, Gif-sur-Yvette, France

J. Schmitz Rheinmetall Waffe Munition GmbH, Heinrich-Erhardt-Straße 2, D-29345 Unterlüß, Germany

J. Schöbel Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Schleinitzstraße 22, D-38106 Braunschweig, Germany

J. Schüür Institut für Elektromagnetische Verträglichkeit, Technische Universität Braunschweig, Schleinitzstraße 23, D-38106 Braunschweig, Germany

A.R. Sebak Electrical and Computer Engineering Department, Concordia University, Montreal, QC, Canada

A. Semnani Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

L. Shafai Department of Electrical and Computer Engineering, The University of Manitoba, Winnipeg, MB, Canada R3T 5V6

A. Sibille ENSTA (Ecole Nationale Supérieure de Techniques Avancées), ParisTech. 32, Boulevard Victor, 75738 Paris, France
M. Simeoni Delft University of Technology, IRCTR, Delft, The Netherlands
Dhiraj Kumar Singh Electronics & Radar Development Establishment, Bangalore, India
Z. Sitao Northwest Institute of Nuclear Technology, Xian 710024, China
A.K. Skrivervik Laboratoire d’Electromagnétisme et d’Acoustique (LEMA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
P.D. Smith Department of Mathematics, Macquarie University, Sydney 2109, Australia
I.A. Sorokin Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia
V. Spitsyn Computer Engineering Department, Tomsk Polytechnic University, Russia
V.V. Starostenko Radiophysics Department, Taurida National Vernadsky University, 4, Vernadsky Ave., Simferopol’, 95007, Ukraine
C.J. Stevens Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
K.N. Sukhushin Institute of High Current Electronics, SB RAS, 2/3 Akademichesky Ave., Tomsk 634055, Russia
R. Sutton TDK R&D Corp., Cedar Park, TX, USA
Y.G. Syrtsova Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia
F.L. Teixeira ElectroScience Laboratory, Department of Electrical and Computer Engineering, The Ohio State University, 1320 Kinnear Road, Columbus, OH 43212, USA
V.Yr. Tereshenko Radiophysics Department, Taurida National Vernadsky University, 4, Vernadsky Ave., Simferopol’, 95007, Ukraine
D. Thelen Corning Incorporated, Corning, NY 14831, USA
R.S. Thomä Electronic Measurement Research Lab, Ilmenau University of Technology, Ilmenau, Germany
D.W.P. Thomas George Green Institute for Electromagnetics Research, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
J. Timmermann Institut fuer Hochstfrequenztechnik und Elektronik, Universitaet Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany
A.S. Tischenko Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia
Masamitsu Tokuda Musashi Institute of Technology, Tokyo, Japan
R. Touhami Instrumentation Laboratory, Faculty of Electronics and Informatics, USTHB University, El-Alia, Bab Ezzouar, 16111 Algiers, Algeria
M.L. Tounsi Instrumentation Laboratory, Faculty of Electronics and Informatics, USTHB University, El-Alia, Bab Ezzouar, 16111 Algiers, Algeria
Y.A. Tuchkin Electronics Department, Gebze Institute of Technology, Gebze-Kocaeli, Turkey
Ibrahim Türer SUPELEC/Laboratoire de Génie Électrique de Paris (LGEP), CNRS UMR 8507, UPMC Univ Paris 06, Univ Paris Sud 11, Gif-sur-Yvette, France
D.A. Unzhakov Radiophysics Department, Taurida National Vernadsky University, 4, Vernadsky Ave., Simferopol’, 95007, Ukraine

N.T. van Tol International Research Centre for Telecommunication and Radar, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands

E.D. Vinogradova Department of Mathematics, Macquarie University, Sydney 2109, Australia

S.V. Vinogradov ICT Centre, CSIRO, Epping, NSW 1710, Australia

N.P. Voronkova Institute of Optical-Physical Measurements, Moscow, Russia

P. Walk Technische Universitaet Berlin, Lehrstuhl fuer Mobilkommunikation, Einsteinufer 25, 10587 Berlin, Germany

X. Wenfeng Northwest Institute of Nuclear Technology, Xian 710024, China

W. Wiesbeck Institut fuer Hochtstfrequenztechnik und Elektronik, Universitaet Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany

X. Wu School of Electronic Engineering and Computer Science, Peking University, Beijing, P.R. China

S. Xiaoxin Northwest Institute of Nuclear Technology, Xian 710024, China

M.C.E. Yagoub SITE, 800 King Edward, University of Ottawa, Ottawa, ON, Canada K1N 6N5

F. Yajun Northwest Institute of Nuclear Technology, Xian 710024, China

S. Yakura Air Force Research Laboratory, Kirtland AFB, Albuquerque, NM 87117, USA

Masashi Yamada Musashi Institute of Technology, Tokyo, Japan

H. Yamamoto National Institute of Information and Communications Technology, Yokosuka, Japan; Tokyo Denki University, 2-2 Kanda-nishiki-cho, Chiyoda-ku, Tokyo 101-8457, Japan

K. Yamamoto Electronic Navigation Research Institute, Tokyo, Japan

B. Yang Delft University of Technology, Delft, The Netherlands

P.M. Yarin FID GmbH, Burbach, Germany

A. Yarovoy Delft University of Technology, IRCTR, Delft, The Netherlands

A.G. Yarovoy International Research Centre for Telecommunication and Radar, Delft University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands

M.E. Yavuz Sensor Physics Group, Halliburton Energy Services, Houston, TX 77032, USA

N. Yonemoto Electronic Navigation Research Institute, Tokyo, Japan

Z. Yufeng Northwest Institute of Nuclear Technology, Xian 710024, China

D.O. Zamuraev Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia

E.V. Zavolokov Russian Federal Nuclear Centre – Institute of Technical Physics, Snezhinsk, Russia
S.V. Zazoulin FID GmbH, Burbach, Germany

R. Zetik Electronic Measurement Research Lab, Ilmenau University of Technology, Ilmenau, Germany

L. Zhou School of Electronic Engineering and Computer Science, Peking University, Beijing, P.R. China

X. Zhuge International Research Centre for Telecommunications and Radar, Delft University of Technology, Delft, The Netherlands

S.A. Zuev Radiophysics Department, Taurida National Vernadsky University, 4, Vernadsky Ave., Simferopol’, 95007, Ukraine

J.F. Zürcher Laboratoire d’Electromagnétisme et d’Acoustique (LEMA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

T. Zwick Institut fuer Hochstfrequenztechnik und Elektronik, Universitaet Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe, Germany
Part I

Electromagnetic Theory and Modeling
Modeling of Electromagnetic Wave Propagation in Flows of Turbulent Plasma Inhomogeneities

V. Spitsyn and I. Fedotov

Abstract The subjects of this chapter are analytical and numerical models of electromagnetic wave propagation in flows of a slightly ionized plasma. The different shapes of a flow (cone, paraboloid, and a surface created by rotation of fourth-order curves) are addressed in this chapter. The indicatrices of turbulence reradiation (isotropic, Lambert, and quasi-mirror types) are considered. Calculations are used to determine the angular and frequency spectra of singly and multiply scattered signals. The calculated frequency spectrum of each scattering signal is compared with well-known experimental data from radio sounding of an exhaust plume of a spacecraft.

Keywords Wave propagation · Radio wave · Scattering · Turbulent plasma · Spacecraft

1 Introduction

Analytical and numerical models of interactions of electromagnetic waves with moving turbulent inhomogeneities in the flows of slightly ionized plasma are considered. The authors assume that turbulent inhomogeneities in a flow of a slightly ionized plasma correspond to statistically independent discrete scatterers [1–3].

Single and multiple scatterings of electromagnetic waves from turbulent plasma inhomogeneities near a body-of-rotation surface are investigated. Radio wave scattering from a cone, a paraboloid, and a surface created by rotating a fourth-order curve is analyzed under the assumption that the size of a body of rotation is on the order of the ratio of the wavelength of the incident field over the average size of the turbulent inhomogeneities.

Section 2 is devoted to radio wave scattering from the outer surface of the expanding turbulent flow of a plasma. The results of investigations of multiple radio wave scattering from the inner surface of a turbulent body of rotation are presented in Section 3. Conclusions are given in Section 4.

V. Spitsyn (✉)
Computer Engineering Department, Tomsk Polytechnic University, Tomsk, Russia
e-mail: spvg@tpu.ru

F. Sabath et al. (eds.), Ultra-Wideband, Short Pulse Electromagnetics 9,
DOI 10.1007/978-0-387-77845-7_1, © Springer Science+Business Media, LLC 2010
2 Radio Wave Scattering from the Outer Surface of Expanding Turbulent Flow of a Plasma

Electromagnetic plane wave scattering from turbulent plasma inhomogeneities near the surface of a body of rotation in the form of a cone and a paraboloid is considered in this section. The geometry of the task is presented in Fig. 1. The radio wave frequency f is governed by the inequality $f \leq [N_i/N_0i]^{1/2}f_p$, where f_p is the plasma frequency and N_0i and N_i are the equilibrium and disturbed ionic concentrations, respectively, at the height of a spacecraft’s motion.

It is supposed that the turbulent inhomogeneities are distributed evenly on the surface of a body of rotation. Further, the inhomogeneities are assumed to have an equally directed velocity oriented along the generatrix of the body and a stochastic isotropic velocity distributed by the normal law. Three types of over-radiation diagrams of the turbulent inhomogeneities are studied: isotropic, Lambert, and quasi-mirror. Radiation transport theory is applied for solving this problem [4].

The solving of the task is implemented in a spherical coordinate system (θ, ϕ, r) that is shown in Fig. 2. The origin of the coordination system is located at the tip of the body of rotation. The polar angle θ is measured from the rotation axis of the body (positive z-axis). The azimuthal angle ϕ is calculated in a plane perpendicular to the rotation axis (z-axis) and with regard to the direction of propagation of the incident field \vec{e}_i. The index i corresponds to the coordinates of the surface of the body of rotation, and the indices i and s correspond to the parameters of the incident and scattered waves, respectively. The angle between the incident and scattered fields is ϕ_s, and \vec{e}_s is the unit vector in the direction of propagation of the scattered wave.

The diagram of reradiation of the turbulent inhomogeneities does not depend on the direction of propagation of the incident wave \vec{e}_i and can be represented by

![Fig. 1 Geometry for radio sounding on the outer surface of a turbulent plasma formation](image1)

![Fig. 2 Coordinate system for calculating radio wave scattering from a turbulent body of rotation](image2)
\[P(\vec{e}_s) = A_j (\vec{e}_s \vec{n})^j, \]

where \(\vec{n} \) is a normal to the surface, \(A_j \) is a coefficient determined from the condition of normalization \(\int P(\vec{e}_s) \, d\Omega = 1 \), and \(d\Omega \) is an element of the spatial angle in which the scattering occurred. The normalization implies that \(A_j = (j + 1)/2\pi \). The cases \(j = 0 \) and \(j = 1 \) correspond to the isotropic diagram of turbulence reradiation and the Lambert diagram, respectively.

The diagram of reradiation of quasi-mirror type, considering the direction of propagation of the incident wave \(\vec{e}_i \), can be given as

\[P(\vec{e}_s) = A \left(\Delta e_m^2 - \Delta e^2 \right), \]

where

\[\Delta \vec{e} = \vec{e}_s - \vec{e}_s0, \quad \vec{e}_s0 = \vec{e}_i - 2\vec{n} (\vec{n} \vec{e}_i). \]

In this case, the diagram of reradiation is asymmetrical, and most of the energy of the scattered signal is concentrated in the vicinity of vector \(e_s0 \), which corresponds to the direction of a mirror reflection of the wave from the surface. The formulas for \(\Delta e^2 \), \(\Delta e_m^2 \), and \(A \) in (1) are

\[\Delta e^2 = 2 (1 - \vec{e}_i \vec{e}_s + 2 (\vec{n} \vec{e}_i) (\vec{n} \vec{e}_s)), \]

\[\Delta e_m^2 = 2 \left(1 + \left(1 - (\vec{n} \vec{e}_i)^2 \right)^{1/2} \right). \]

\[A = 1 \sqrt{4\pi \left(\sqrt{1 - (\vec{n} \vec{e}_i)^2} - \vec{n} \vec{e}_i \right)}. \]

The formula for the spectral density of the energy scattered from a turbulent plasma body of rotation is [1]

\[dI_s/I_0 = -(\vec{e}_i \vec{n}) P(\vec{e}_s) \, dS \, d\Omega/2\pi, \]

where \(dI_s \) is the energy scattered in a fixed direction, \(I_0 \) is the energy of the incident wave, and \(dS \) is an areal element of the scattering surface.

The magnitude of the non-dimensional Doppler shift of frequency is defined by

\[f_s = (\Delta fc) / (f_0 V_u) = (\vec{e}_s - \vec{e}_i) (\vec{e}_u (1 + \delta V/V_u) - \vec{e}_i V_0/V_u), \]

where \(c \) is the propagation speed of an electromagnetic wave in the plasma, \(f_0 \) is the frequency of the incident wave, \(V_0 \) is the speed of the spacecraft, \(V_u \) is the directed speed, and \(\delta V \) is the speed of the stochastic motion of the turbulences along the generatrix.

In spherical coordinates, formula (3) has the form

\[f_s = (\sin \theta_s \cos \varphi_s - \sin \theta_i \sin \theta_s \cos \varphi_u + \sin \theta_s \sin \varphi_s \sin \theta_s \sin \varphi_u + \cos \theta_s \cos \theta_i \sin \theta_s \sin \varphi_u + \cos \theta_s \cos \varphi_i \cos \theta_i - \cos \theta_i V_0/V_u), \]
Solving (4) relative to the azimuthal angle φ_u and substituting the received dependence $\varphi_u(f_\ast)$ into (2) yields an expression for the frequency spectrum of the wave scattered from the plasma formation

$$S_n(f_\ast) = \frac{dI_{\ast} 4\pi}{I_0 z_m^2 \cos \theta u} = \frac{\tan \theta u}{\cos \theta u} P(\bar{e}_s) \frac{\mathrm{d}\varphi_u(f_\ast)}{\mathrm{d}f_\ast},$$

(5)

where $S_n(f_\ast)$ is the normalized magnitude of the spectral density of energy scattered in the unit spatial angle and z_m is the size of a body of rotation along the z-axis.

In the case of backscattering, (4) and (5) lead to the frequency spectrum

$$S(f_\ast) = D \tan \theta u (\bar{e}_i \bar{n}) P(\bar{e}_s) \left(1 - (f_\ast D + B)^2 \right)^{-1/2},$$

(6)

where

$$D = -\frac{1}{2 (1 + \delta V/V_u) \sin \theta_i \sin \theta u},$$

$$B = \frac{V_0}{V_u \sin \theta_i \tan \theta_i (1 + \delta V/V_u)} - \frac{1}{\tan \theta_i \tan \theta u},$$

$$\bar{e}_i \bar{n} = \sin \theta_i \cos \theta u (Df_\ast + B) - \cos \theta_i \sin \theta u.$$

The results of calculating the frequency spectrum of a scattered signal from a cone of turbulent flow are illustrated in Fig. 3 for several angles of incidence. The solid curves in Fig. 3 are calculated according to formula (6) with $V_0/V_u = 2$, $\theta_0 = 26.6^\circ$, and $\delta V/V_u = 0$. The histograms correspond to frequency spectrum averaging over the frequency interval. The results of these calculations show that for inverse scattering the frequency spectrum of a signal is characterized by monotonically increasing energy with an increasing Doppler shift.

3 Multiple Radio Wave Scattering from the Inner Surface of a Turbulent Body of Rotation

In this section, suppose that the plane electromagnetic wave is reduced along the negative z direction (Fig. 4). Turbulent inhomogeneities are chaotically disposed on the surface of a body of rotation (cone, paraboloid, surface created by rotation of the fourth-order curve). These inhomogeneities have velocities that are equally distributed between the directed velocity V_u, oriented along the generatrix of the body of rotation, and the stochastic isotropic velocity δV, distributed according to the normal law. Recall that the size of a body of rotation is assumed to be on the order of the ratio of the wavelength of the incident field over the average size of the turbulent inhomogeneities.

In this case, the field of the scattered wave is the result of multiple wave reflections from the dynamic rough surface. Because of the presence of chaotically disposed moving turbulent inhomogeneities on the surface of a body of rotation, the wave phases after reflections from the surface are stochastic. The energy of the scattered signal is proportional to the number of photons scattered in the defined element of a spatial angle.
The method of Monte Carlo is applied for determining the energy. The incident electromagnetic wave is simulated by non-commuted photons, uniformly distributed in the plane of the wave front [1]. Figure 5 displays the frequency spectrum of a signal that is incoherently scattered from the dynamic rough surface of a body of rotation for different ranges of the polar angle θ, in the form of an isotropic diagram of reradiation of the turbulent inhomogeneities. The magnitude
The frequency spectrum of signal scattered from the inner surface of the turbulent plasma body of rotation for different ranges of θ

$f_*= (c\Delta f_\lambda f_0 V_u)$ is calculated on the horizontal axis. The energy of the signal, normalized by maximum spectral energy, is calculated on the vertical axis of every spectral frame.

The first, second, and third columns of frequency spectra correspond to scattering from the cone, the paraboloid of rotation, and the surface created by rotating a fourth-order curve, respectively. In each column, the frequency spectra differ by the value of the polar angle θ. The bottom frames
represent the integral frequency spectrum for all photons emanating from plasma formation in the angular range of $0 < \theta < \pi / 2$.

As the reader can observe, the spectra typically have two components for small θ and the integrated spectrum: a discrete contribution at $f^* = 0$ that is caused by the mirror reflection of the radio wave from the plasma surface and a continuous component that is the aggregate of multiple scattering from the moving inhomogeneities. On the basis of these calculations, we arrive at the next conclusion: increasing the order of the equation describing the scattering surface leads to increasing the energy of a spectral component with a negative frequency shift and to focusing the signal energy near the axis of a body of rotation.

As Fig. 6 illustrates, the calculated frequency spectra of a scattered signal (dashed and dotted curves) and the experimental data (solid curve) from radio sounding of an exhaust plume of a launched rocket [5] are in good agreement. The dashed curve corresponds to the paraboloidal surface, and the dotted curve corresponds to the surface created by rotating the fourth-order curve. On the basis of this comparison, the authors conclude that indeed multiple scattering of a radio wave from the inner surface of a turbulent plasma body of rotation was realized. The form of a scattering surface was enclosed between the paraboloid and the surface created by rotation of the fourth-order curve.

![Fig. 6](image)

4 Conclusions

The results of this analysis demonstrate that, for backward radio sounding of the outer surface of a turbulent body of rotation, the frequency spectra of such scattered signals are characterized by a monotonic increase of energy with the growth of the Doppler frequency shift. In addition, two other phenomena were observed when the order of the equation governing the surface of the body is increased: (1) the energy of a spectral component with a negative frequency shift is increased and (2) the scattered energy from the inner surface of the turbulent plasma formation is focused along the axis of the body of rotation.

Comparisons of calculations and known experimental data from radio sounding of an exhaust plume of a rocket during the launch phase show good agreement. Thus the authors conclude that in the experiment the scattered field is formed as a result of multiple scattering from the inner surface of a turbulent body of rotation.
Acknowledgments The research is partially supported by a grant from the Russian Foundation for Basic Research (Project no. 09-08-00309).

References

Ultra-wideband Propagation Loss Around a Human Body in Various Surrounding Environments

H. Yamamoto and T. Kobayashi

Abstract Ultra-wideband (UWB) technologies have been anticipated for use in wireless body area networks (WBAN) because of their low power consumption and anti-multipath capabilities. This chapter presents the UWB (3.1–10.6 GHz) propagation loss in WBAN scenarios between on-body antennas in three different surrounding environments. The measurements were performed in a 3-m radio anechoic chamber, a classroom, and a small room. The propagation paths were roughly divided into line-of-sight (LOS) and non-LOS (NLOS) ones. Small rooms, particularly NLOS, yielded higher reception power than larger rooms. This was attributed to the ample multipath from the nearby floor, walls, and ceiling. The UWB maximum propagation losses in three surrounding environments were smaller than ones of CW (6.85 GHz). This is because nulls caused by interference were cancelled out by the ultra-wide bandwidth. The propagation losses of low-band (3.4–4.8 GHz) and high-band (7.25–10.25 GHz) UWB were also evaluated. In WBAN scenarios, the low-band yielded lower propagation loss than the high-band and approximately the same loss as the full-band UWB (3.1–10.6 GHz).

Keywords Ultra-wideband (UWB) · Wireless body area networks · Radio propagation · Propagation loss · Multipath propagation

1 Introduction

Wireless body area networks (WBAN) have been discussed for medical and non-medical applications [1]. For medical applications, wireless electroencephalography (EEG), electrocardiography (ECG), electromyography (EMG), and other health-care monitoring are proposed applications. Ultra-wideband (UWB) technologies were anticipated for use in WBAN because of their low power consumption and anti-multipath capabilities. In the last few years, researchers investigated UWB indoor and outdoor radio propagation modeling and characterization [2, 3]. A number of measurements were also carried out to characterize on-body UWB propagation in the WBAN scenarios [4]. However, previous WBAN studies treated mainly the cases when propagation was measured in either a radio anechoic chamber or a particular room [5–7]. It is necessary to evaluate the variation of propagation losses in various surrounding environments from the viewpoint of WBAN device design.

H. Yamamoto
Tokyo Denki University, Tokyo, Japan
e-mail: h.yamamoto@grace.c.dendai.ac.jp