
The IMA Volumes
in Mathematics

and its Applications

Series Editors
Douglas N. Arnold

Volume 148

Arnd Scheel

Institute for Mathematics and
its Applications (IMA)

The Institute for Mathematics and its Applications was established by a
grant from the National Science Foundation to the University of Minnesota
in 1982. The primary mission of the IMA is to foster research of a truly inter-
disciplinary nature, establishing links between mathematics of the highest
caliber and important scientific and technological problems from other dis-
ciplines and industries. To this end, the IMA organizes a wide variety of pro-
grams, ranging from short intense workshops in areas of exceptional interest
and opportunity to extensive thematic programs lasting a year. IMA Volumes
are used to communicate results of these programs that we believe are of
particular value to the broader scientific community.

The full list of IMA books can be found at the Web site of the Institute
for Mathematics and its Applications:

http://www.ima.umn.edu/springer/volumes.html
Presentation materials from the IMA talks are available at

http://www.ima.umn.edu/talks/

Douglas N. Arnold, Director of the IMA

* * * * * * * * * *

IMA ANNUAL PROGRAMS

 1982–1983 Statistical and Continuum Approaches to Phase Transition
 1983–1984 Mathematical Models for the Economics of Decentralized
 Resource Allocation
 1984–1985 Continuum Physics and Partial Differential Equations
 1985–1986 Stochastic Differential Equations and Their Applications
 1986–1987 Scientifi c Computation
 1987–1988 Applied Combinatorics
 1988–1989 Nonlinear Waves
 1989–1990 Dynamical Systems and Their Applications
 1990–1991 Phase Transitions and Free Boundaries
 1991–1992 Applied Linear Algebra
 1992–1993 Control Theory and its Applications
 1993–1994 Emerging Applications of Probability
 1994–1995 Waves and Scattering
 1995–1996 Mathematical Methods in Material Science
 1996–1997 Mathematics of High Performance Computing

(Continued at the back)

Editors

Software for Algebraic
Geometry

Michael Stillman Nobuki Takayama
Jan Verschelde

© 2008 Springer Science + Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science + Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Camera-ready copy provided by the IMA.

9 8 7 6 5 4 3 2 1

springer.com

Series Editors

Arnd Scheel

 Applications

Minneapolis, MN 55455
USA

USA

Douglas N. Arnold

Institute for Mathematics and its

University of Minnesota

ISBN: 978-0-387-78132-7 e-ISBN: 978-0-387-78133-4
DOI: 10.1007/978-0-387-78133-4

Michael Stillman
Department of Mathematics
Cornell University

Nobuki Takayama
Department of Mathematics

Rokko, Kobe 657-8501
Japan

Jan Verschelde
Department of Mathematics
University of Illinois
Chicago, IL 60607-7045
USA

Editors

Kobe University
Ithaca, NY 14853-4201

Mathematics Subject Classification (2000): 11R09, 11Y99, 12D05, 13P10, 14P05, 14Q05, 14Q10
52A39, 52B20, 52B55, 65D18, 65F15, 65F20, 65F22, 65H10, 65H20, 65-04, 91-08

Library of Congress Control Number: 2008923357

FOREWORD

This IMA Volume in Mathematics and its AppUcations

SOFTWARE FOR ALGEBRAIC GEOMETRY

contains papers presented at a highly successful one-week workshop on the
same title. The event was an integral part of the 2006-2007 IMA Thematic
Year on "Applications of Algebraic Geometry." We are grateful to all the
participants for making this workshop a very productive and stimulating
event. Special thanks to Michael E. Stillman (Department of Mathematics,
Cornell University), Nobuki Takayama (Department of Mathematics, Kobe
University), and Jan Verschelde (Department of Mathematics, Statistics
and Computer Science, University of Illinois at Chicago) for their superb
role as workshop organizers and editors of these proceedings.

We take this opportunity to thank the National Science Foundation
for its support of the IMA.

Series Editors

Douglas N. Arnold, Director of the IMA

Arnd Scheel, Deputy Director of the IMA

PREFACE

The workshop on "Software for Algebraic Geometry" was held in the
week from 23 to 27 October 2006, as the second workshop in the thematic
year on Applications of Algebraic Geometry at the IMA.

Algorithms in algebraic geometry go hand in hand with software pack-
ages that implement them. Together they have established the modern field
of computational algebraic geometry which has come to play a major role
in both theoretical advances and applications. Over the past fifteen years,
several excellent general purpose packages for computations in algebraic
geometry have been developed, such as CoCoA, Singular and Macaulay 2.
While these packages evolve continuously, incorporating new mathematical
advances, they both motivate and demand the creation of new mathematics
and smarter algorithms.

Surrounding the general packages, a host of specialized packages for
dedicated and focused computations have created a platform for the in-
teraction of algebraic geometry with numerous other areas of mathemat-
ics including optimization, combinatorics, polyhedral geometry, numerical
analysis and computer science. The workshop brought together a wide
array of theoreticians and practitioners interested in the development of
algorithms and software in algebraic geometry at this workshop. Such in-
teractions are essential for dramatic increases in the power and appUcability
of algorithms in the field.

There were 89 registered participants at the workshop. At four talks
a day, 20 regular 50 minutes talks were scheduled. On Monday evening,
10 posters were presented. On Wednesday and Thursday evening we had
respectively 5 and 6 software demonstrations. The Ust of featured software
packages includes Macaulay 2, SAGE, HomLab, Bertini, APAtools, PH-
Clab, PHCmaple, PHCpack, KNOPPIX/Math, D-modules for Macaulay 2,
Singular, Risa/Asir, CRACK, diffalg, RIFsimp, Gambit, FGb/RS, Co-
CoALib, 4ti2, PHoMpara, SYNAPS, DEMiCs, Magma, Kronecker, SOS-
TOOLS, Gfan, Maple 11.

The IMA systems group had installed many of these programs on the
computers at the IMA. At the poster session, the participants were given
the opportunity to install the featured software systems on their laptop.
A demonstration cluster computer of Rocketcalc was running during the
poster session and accessible to all participants during the workshop.

The evening before the workshop dinner on Tuesday started with a
problem session. Prior to this session we made a list of problem descriptions
available on the web site. The workshop ended on Friday evening with some
additional problems, discussion on the posted problems, and a presentation
of Jiawang Nie about the application to semidefinite programming to solve
systems of algebraic equations which arise from differential equations. We

vui PREFACE

are also happy that several new research projects were stimulated by this
problem session. Some results are going to appear elsewhere.

Instead of the "second chances" (usual for IMA workshops), the partic-
ipants were given the opportunity to test the software systems on Wednes-
day and Thursday evening. The evening session started with a one hour
plenary session, where each software system on demo in the evening was
briefly explained. Following this plenary session, the participants moved
to the 4th iioor of Lind Hall, to experience the software systems on the
computers in the open poster area, or in parallel, in the classroom 409.

The IMA systems group worked hard in the weeks leading up to the
workshop to install the software systems. Their effort benefited not only the
workshop participants, but all all subsequent participants to the thematic
year, as they found their workstations equipped with the latest software
tools in algebraic geometry.

The papers in this volume describe the software packages Bertini, PH-
Clab, Gfan, DEMiCs, SYNAPS, Trim, Gambit, ApaTools, and the appli-
cation of Risa/Asir to a conjecture on multiple zeta values. We thank the
participants to the workshop, the authors and the anonymous referees. We
are grateful to the editorial staff of the IMA, Patricia V. Brick and Dzung
N. Nguyen, for their dedication and care.

Michael E. Stillman
Department of Mathematics
Cornell University
http://www.math.cornell.edu/People/Faculty/stillman.html

Nobuki Takayama
Department of Mathematics
Kobe University
http://www.math.sci.kobe-u.ac.jp/ taka/

Jan Verschelde
Department of Mathematics, Statistics ajid Computer Science
University of Illinois at Chicago
http://www2.math.uic.edu/ jan/

http://www.math.cornell.edu/People/Faculty/stillman.html
http://www.math.sci.kobe-u.ac.jp/
http://www2.math.uic.edu/

CONTENTS

Foreword v

Preface vii

Software for numerical algebraic geometry: A paradigm
and progress towards its implementation 1

Daniel J. Bates, Jonathan D. Hauenstein,
Andrew J. Sommese, and Charles W. Wampler II

PHClab: A MATLAB/Octave interface to PHCpack 15
Yun Guan and Jan Verschelde

Computing Grobner fans and tropical varieties in Gfan 33
Anders Nedergaard Jensen

On a conjecture for the dimension of the space of
the multiple zeta values 47

Masanobu Kaneko, Masayuki Noro,
and Ken'ichi Tsurumaki

DEMiCs: A software package for computing the mixed
volume via d5Tiamic enumeration of all mixed cells 59

Tomohiko Mizutani and Akiko Takeda

SYNAPS, a library for dedicated applications in
symbolic numeric computing 81

Bernard Mourrain, Jean-Pascal Pavone,
Philippe Trebuchet, Elias P. Tsigaridas, and Julien Wintz

Tropical impUcitization and mixed fiber polytopes I l l
Bemd Sturmfels and Josephine Yu

Towards a black-box solver for finite games:
Computing all equilibria with Gambit and PHCpack 133

Theodore L. Turocy

ApaTools: A software toolbox for approximate
polynomial algebra 149

Zhonggang Zeng

List of workshop participants 169

ix

SOFTWARE FOR NUMERICAL ALGEBRAIC GEOMETRY:
A PARADIGM A N D PROGRESS TOWARDS ITS

IMPLEMENTATION

DANIEL J. BATES*, JONATHAN D. HAUENSTEINt,
ANDREW J. SOMMESE*, AND CHARLES W. WAMPLER n§

Abstract. Though numerical methods to find all the isolated solutions of nonllnestr
systems of multivariate polynomials go back 30 years, it is only over the last decade that
numerical methods have been devised for the computation and manipulation of algebraic
sets coming from polynomJEil systems over the complex numbers. Collectively, these
algorithms and the underlying theory have come to be known as numerical algebraic
geometry. Several software packages are capable of carrying out some of the operations
of numerical algebraic geometry, although no one package provides all such capabilities.
This paper contains an enumeration of the operations that an ideal software package
in this field would allow. The current and upcoming capabilities of Bertini, the most
recently released package in this field, are also described.

Key words. Homotopy continuation, numerical algebrjiic geometry, polynomial
systems, software, Bertini.

AMS(MOS) subject classifications. 65H10, 65H20, 65-04, 14Q99.

1. Introduction. Numerical algebraic geometry refers to the appli-
cation of numerical methods to compute the solution sets of polynomial
systems, generally over C. In particular, basic numerical algebraic geome-
try embodies probability one algorithms for computing all isolated solutions
of a polynomial system as well as the numerical irreducible decomposition
of an algebraic set, i.e., one or more points on each irreducible component
in each dimension. More recently, numerical algebraic geometry has grown
to include more advanced techniques which make use of the basic methods
in order to compute data of interest in both real-world applications and
pure algebraic geometry.

'Institute for Mathematics and its Applications, University of Minnesota, Minneapo-
lis, MN 55122 (dbatesl@nd.edu, www.nd.edu/~dbatesl). This author was supported by
the Duncan Chair of the University of Notre Dame, the University of Notre Dame, NSF
grant DMS-0410047, the Arthur J. Schmitt Foundation, and the Institute for Mathe-
matics and its Applications in Minneapolis (IMA).

* Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556
(jhauenst@nd.edu, www.nd.edu/~jhauenst). This author was supported by the Duncan
Chair of the University of Notre Dame, NSF grant DMS-0410047, and the Institute for
Mathematics and its Applications in Minneapolis (IMA).

'•Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556
(sommese@nd.edu, www.nd.edu/~somm«e). This author was supported by the Duncan
Chair of the University of Notre Dame, the University of Notre Dame, NSF grant DMS-
0410047, and the Institute for Mathematics and its Applications in Minneapolis (IMA).

^General Motors Research and Development, Mail Code 480-106-359, 30500 Mound
Road, Warren, MI 48090 (Charles.W.Wampler@gm.com, www.nd.edu/~cwamplel).
This author was supported % NSF grant DMS-0410047 and the Insstitute for Math-
ematics and its Applications in Minneapolis (IMA).

mailto:dbatesl@nd.edu
http://www.nd.edu/'%5edbatesl
mailto:jhauenst@nd.edu
http://www.nd.edu/Hhauenst
mailto:sommese@nd.edu
http://www.nd.%5eu/'%5esomm%5ee
mailto:Charles.W.Wampler@gm.com
http://www.nd.edu/~cwamplel

2 DANIEL J. BATES ET AL.

One of the key tools used in the algorithms of numerical algebraic
geometry is homotopy continuation [1, 16], a method for finding all zero-
dimensional solutions of a polynomial system. Given a polynomial system
/ : C^ —» C" to be solved by homotopy continuation, one first forms a poly-
nomial system g that is related to / in a prescribed way but has known, or
easily computable, solutions. The systems g and / are combined to form
a homotopy, such as the linear homotopy H{x,t) — f • {1 — t) +'y • t • g
where 7 e C is randomly chosen. For a properly formed homotopy, there
are continuous solution paths leading from the solutions of g to those of
/ which may be followed using predictor-corrector methods. Singular
solutions cause numerical diflttculties, so singular endgames [17, 18, 19]
are typically employed. Zero-dimensional solving is discussed further in
Section 2.2.

Numerical algebraic geometry treats both zero-dimensional (isolated)
solutions and jwsitive dimensional solution sets. The building blocks of the
solution set of a set of equations are the irreducible components, i.e., the
algebraic subsets of the solution set that consist of connected sets of points
with neighborhoods biholomorphic to a neighborhood of a EucUdean space.
The solution set breaks up into a union of a finite number of irreducible
components, none of which is contained in the union of the remaining com-
ponents. In numerical algebraic geometry, we associate to each component
a witness set, which is the basic data structure used to numerically describe
and manipulate positive dimensional solution sets. Given a multiplicity one
irreducible component Z of a system of polynomials f{x) = 0, a witness
set consists of a triple (/, L, W), where L is a random linear space of di-
mension complementary to that of Z and where W is a set of points such
that W := Z n L. There is a slightly more involved definition for the case
of components of multiplicity greater than one as described in [24].

Many of the algorithms of numerical algebraic geometry make abun-
dant use of homotopy continuation. For example, the cascade algorithm
[20], one of the basic methods involved in computing the numerical irre-
ducible decomposition of an algebraic set, uses repeated applications of
homotopy continuation at difierent dimensions in order to produce points
on each component in each dimension. Monodromy and trace tests then
lead to the complete numerical irreducible decomposition of the solution
set of / . In the end, the user obtains from the methods of numerical alge-
braic geometry a wealth of information regarding the characteristics of the
solution set of a given polynomial system, some of which may be difficult to
procure by purely symbolic means. For good references on zero-dimensional
solving see [13, 16] and for numerical algebraic geometry see [24].

There are several software packages available to the pubUc which carry
out some of the operations of numerical algebraic geometry. However,
no one package contains all such capabilities. These packages include
HOM4PS [6], PHoM [9], POLSYS [27], PHCpack [28], and HomLab [30].
The most recently released package, Bertini [2], is under ongoing develop-

SOFTWARE FOR NUMERICAL ALGEBRAIC GEOMETRY 3

ment by the authors. Although all software packages were developed at
different times for different reasons, they share the goal of solving polyno-
mial systems by numerical means.

The purpose of the present paper is two-fold. One purpose is to present
a paradigm for software in the field of numerical algebraic geometry. The
following section contains an elaboration on the aforementioned algorithms
and an enumeration of the various operations required for carrying out
those algorithms, broken into four levels. Implementation-specific details,
such as data structures, are omitted. The other purpose is to provide a brief
introduction to Bertini and indicate its partial fulfillment of the paradigm
of Section 2. That is the content of Section 3, which is also broken up
into four levels to mirror Section 2. The final section includes planned
extensions of the Bertini software package.

2. A paradigm for numerical algebraic geometry software. All
good software packages share several characteristics. In particular, good
software should be reliable (i.e., it provides correct output with clear signals
upon failure), as fast as possible with estimates of time remaining for large
jobs, modular for easy modification, and user-friendly. In addition, good
numerical software must be accurate and provide error estimates for all
solutions. ReHability and accuracy generally have an adverse impact on
speed, so while efficiency is important, it should not be emphasized over
finding correct answers.

Numerical accuracy may be approached in two ways. One approach is
to use a fixed level of precision and find as accurate a solution as possible,
possibly using higher levels of precision for subsequent runs to attain more
accuracy, if necessary. The other approach is to select an accuracy before
the run and adjust the precision during the run to attain that accuracy.
Either way, it has recently become generally accepted that it is important
to have available multiple levels of precision when implementing numerical
routines.

The purpose of this section is to provide an enumerated paradigm
for software specifically in the field of numerical algebraic geometry. This
detailed list is broken into four levels, beginning with very basic operations
not specific to polynomial system solving at level 0 in Section 2.1 and
moving through extensions of basic numerical algebraic geometry at level
3 in Section 2.4. The operations of each level build upon the capabilities
of the previous level. Each of the following four sections begins with a
discussion of the necessary operations of the given level and the resulting
capabilities of the software. Each section then concludes with a brief list of
the main operations to be implemented at that level. All operations should
be implemented for various levels of precision, ideally for arbitrarily high
precision.

2.1. Level 0: Basic operations. At the very core of a numerical
polynomial solver, one must of course have access to basic arithmetic both

4 DANIEL J. BATES ET AL.

of complex numbers and complex matrices. It is important to optimize the
efficiency of this arithmetic as much as possible, particularly in high preci-
sion, as most operations in numerical algebraic geometry rely heavily upon
arithmetic. In addition to basic matrix arithmetic, standard techniques
from numerical linear algebra are needed. Among the most important are
Gaussian elimination for linear solving, QR factorization for least squares
and orthogonal complements, and the SVD, or a related technique such
as the efficient method of [14], for finding numerical ranks. See [5, 26] for
general references on numerical linear algebra, while [14] provides a more
efficient method for determining the numerical rank of a matrix.

Random numbers play a key role in numerical algebraic geometry
as many statements hold generically, i.e., for almost all random choices,
thereby making the resulting algorithms hold with probability one. Any
standard random number generator will suffice, although it is best to have
the chosen random complex numbers of approximately unit modulus, for
stability. It is also important to have a consistent mechanism for extending
the precision of a randomly chosen complex number. In particular, upon
extending the precision of a random number a to make a, truncating back
to lower precision, and then again extending the precision, one should once
again obtain St.

It is of course necessary to somehow obtain the polynomials of interest
from the user, although the specific procedure for doing so is implementa-
tion-specific. To build a general solver, it is important to allow the functions
to be defined as expressions built from subexpressions. This is beneficial
not only for ease of use, but also for efficiency and numerical stability. It
is also necessary for generality to allow for homotopies that depend on
parameters, including analytic expressions as discussed in more detail in
the following section. If the user is specifying the entire homotopy, it is
also necessary to have a way for the user to provide solutions to the start
system g. Otherwise, the automatically generated start system should be
solved by the software.

Regardless of how the input data is provided, parsed, and stored, it is
at times necessary for the software to automatically homogenize the poly-
nomials provided by the user. Homogenization is simply the mechanism
for moving from a product of one or more complex spaces to a product
of complex projective spaces. This is a purely sjmnbolic operation which
should be implemented in such a way as to be easily reversed in case the
need arises. Suppose the homogenized system involves the cross product
of V projective spaces. Then v random nonhomogeneous linear equations,
one for each projective space in the product, should be appended to the
system in order to choose a patch on each complex projective space. These
V linear equations are known as the patch polynomials.

Basic path tracking, a level 1 operation, makes heavy use of both func-
tion evaluation and Jacobian evaluation. Function evaluation is straight-
forward, although it could be optimized via specialized techniques such as

SOFTWARE FOR NUMERICAL ALGEBRAIC GEOMETRY 5

Horner's method. The Jacobian (i.e., the matrix of partial derivatives of
the polynomials) should be computed automatically by some form of auto-
matic differentiation so that the user does not need to provide it as input.
It is generally believed that the Jacobian should be computed explicitly
rather than approximated numerically, for stability.

Some of the operations at this level are common to numerical software
in general, regardless of the specific application. It should be noted that
existing libraries, such as LAPACK, provide robust implementations of
some of these operations, albeit in one level of precision.

Summary of level 0 operations:
• Complex scalar and matrix arithmetic
• Matrix operations (e.g., linear solving, numerical ranks, and or-

thogonal complements)
• Random number generation
• Parsing of input data
• Function homogenization
• Function evaluation
• Jacobian evaluation
• All numerical operations should be available in multiprecision.

2.2. Level 1: Basic tracking and zero-dimensional solving. It
is now possible to glue together the capabilities of level 0 to build algorithms
leading up to a full zero-dimensional solver, i.e., a method for computing
aU isolated solutions of / . The concept of "solving" a system could be
interpreted two ways. Given a desired accuracy e 6 R" ,̂ let S := {s £
C^ : | / (s) | < e}. This set may break up into k disconnected pieces, say
5 = 5i U . . . U 5fc. Then one interpretation of solving is to find a. z € Si
for each i. The second way to interpret "solving" / is to find, for each
s £ C^ such that / (s) = 0 and s has multiplicity m as a root of / , a set
{zi,...,Zm} C C^ such that \zi — s\ < e for all i. The solutions in the
former sense of solving depend upon the scaling of the poljmomials while
those of the latter depend upon the scaling of the variable. The latter is
more widely accepted as correct and is thus the definition used throughout
this paper.

As discussed in Section 1, homotopy continuation casts the system /
in a family of polynomial systems, another of which is g. Such parame-
terized families sometimes arise naturally and are of great interest in some
applications. Other families are artificially constructed for the specific pur-
pose of solving / by continuation, in a so-called ab initio homotopy. Often
a naturally parameterized family can be used to define a homotopy that
has fewer paths to follow than an ab initio homotopy. As a result, software
in numerical algebraic geometry should address both ab initio and natu-
ral parameter homotopies. The natural parameter spaces may be complex
analytic and thus the need for evaluating complex analjrtic expressions of
parameters and complex numbers as mentioned in the previous section.

6 DANIEL J. BATES ET AL.

At its core, homotopy continuation is simply a sequence of steps ad-
vancing the path variable and updating the solution vector x to match.
Each step forward consists of a predictor step foUowed by a sequence of
corrector steps. The prediction is commonly carried out by Euler's method,
which steps along the tangent to the path. This is generally regarded as
an acceptable approach, although secant prediction can also be employed,
as can higher order methods such as Runge-Kutta. Once a prediction is
made to a new value of t, it is necessary to refine the point back towards
the solution curve. This may be accomplished by fixing t and running a
Newton-Hke corrector until the norm of the Newton residual has dropped
below a prespecified tolerance.

Naturally, there are times when steps will fail, where failure is declared
when the corrector does not converge sufficiently fast. Such step failures
need not trigger path failure. Rather, adaptive steplength should be uti-
lized. Upon step failure when using adaptive steplength, the steplength is
decreased by a prespecified factor in the hope that convergence will occur
for a smaller step. Only if progress along the path becomes excessively slow
is the path declared a failure. Conversely, if the steps are progressing well,
it is worthwhile to try to increase the steplength. More details regarding
prediction, correction, and adaptive steplength may be found in [1, 16, 24].

Path failure may occur for a number of reasons, but the presence
of a singularity, particularly at t = 0, is a common cause. There are
several sophisticated algorithms known as endgames that help to speed
convergence at t = 0 for both nonsingular and singular endpoints. These
endgames are typically employed for every path, so it is important to have
at least one implemented in any software package for numerical algebraic
geometry. Details regarding endgames may be found in [17, 18, 19].

For zero-dimensional solving, polynomial systems given by the user
could be nonsquare with n > N. Fortunately, Bertini's theorem [24] guar-
antees that a new system consisting of N generic linear combinations of the
original n poljoiomials will have among its solutions all the isolated solu-
tions of the original system, though possibly with increased multiphcity. It
may also have nonsingular isolated extraneous solutions. The extraneous
solutions are easily detected as they do not satisfy the original system.

Unless the user chooses to specify a parameter homotopy, the software
must be able to automatically produce an appropriate start system g, solve
it, and attach it to the homogeneous, square system / in order to create
the homotopy H. There are several methods for producing start systems,
although the general rule is that the computational cost increases in order
to produce start systems with fewer paths to track. Among the common
choices, total degree start systems, consisting of polynomials of the form
x^' — 1, where di is the degree of the i*'' polynomial in / , are trivial to
build and solve but have the largest number of paths to be tracked (that
being the product of the degrees of the functions). At the other end of the
spectrum, the construction and solution of sophisticated polyhedral homo-

SOFTWARE FOR NUMERICAL ALGEBRAIC GEOMETRY 7

topies involve far more computation time but may result in far fewer paths
(the number of which is the mixed volume). It is not clear a priori which
type of start system is best-suited for an arbitrary polynomial system, so
it is important to have multiple types of start systems available.

Once all (or most) of the aforementioned operations have been imple-
mented, it is possible to compute the zero-dimensional solutions of a given
polynomial system. Two other useful tools belong at this level. First, defla-
tion [11] is a means of constructing a new polynomial system / from / such
that / has a nonsingular solution in place of a particular singular solution
of / . This makes it possible to compute singular solutions more accurately
without relying on higher precision. The major drawback of implementing
deflation is that decisions must be made about the rank of the Jacobian
matrix at the solution point before the solution point is known accurately.
The use of endgames can improve the accuracy of the solution estimate
before deflation, helping to ensure that the correct deflation sequence is
performed but adding the cost of endgame computations. Exploration of
the numerical stabihty and efiiciency of deflation and endgames is a topic
of ongoing research. The big advantage of deflation comes when dealing
with positive dimensional components of multiplicity greater than one.

The other useful tool at this level is a post-processor to manipulate
and display the solutions computed by the solver as well as any statistics
gathered during tracking. As the functionality of such a tool is application-
specific, no more details will be discussed here.

Summary of level 1 operations:
• Differential equation solving, e.g., Euler's method
• Newton's method
• Basic path tracking with adaptive steplength control
• Adaptive precision path tracking
• Squaring of systems
• Start system and homotopy generation
• Start system solving
• Pull zero-dimensional solving
• Endgames
• Deflation
• Post-processing of zero-dimensional data.

2.3. Level 2: Positive-dimensional solving. The solution set Z
of a polynomial system / may have several components and these may
not all have the same dimension. Letting D := dixnZ, the irreducible
decomposition may be written as Z = U ^ Q Z J = U ^ Q Ujeii ^i,jj where
each Zij is an irreducible component of dimension i, and accordingly each
Zi is the pure i-dimensional component of Z. (Symbol Ij in the above is
just an index set for the components of dimension.)

One of the key objectives in numerical algebraic geometry is to find
a numerical irreducible decomposition of Z, which consists of sets Wij —

8 DANIEL J. BATES ET AL.

Zij n L^-i, where Ljv-j is a generic linear subspace of dimension N — i.
Wij, together with L^-i, is known as a witness set for Zij, and by abuse of
notation, Wi = Uj£l^WiJ is called a witness set for Zj. We briefly describe
the algorithms for computing the irreducible decomposition below. Full
details may be found in the references cited below or in [24].

The main steps in computing a numerical irreducible decomposi-
tion are:

• find witness supersets Wi D Wi for each dimension i,
• prune out "junk points" from Wi to extract the witness sets Wi,

and
• break Wi into distinct sets Wij, the witness sets for the irreducible

components Zij.

The witness supersets Wi are generated by the application of zero-dimen-
sional solving to find the isolated points in the slice Z n Lj^-i. All of
the Wi, for 0 < J < D, can be obtained using the cascade algorithm
[20], starting at i = D and cascading sequentially down to i = 0. The
junk points in Wi must lie on some Zj with j > i. Thus, the junk may
be removed by testing each point p € Wi for membership in a higher-
dimensional component. This can be done using continuation on slices to
see if any of the witness sets Wj, j > i connect to p as the slicing linear
space LN-I is moved continuously until it contains p. The final break up
of Wi into irreducibles is accomplished by first using monodromy, which
comes down to discovering connections between witness points as the linear
slicing space is moved around a closed loop in the associated Grassmannian
[21]. This is followed by checking if the connected groups so discovered are
complete, by means of the trace test [22]. The trace method may also be
used to complete a partial decomposition. Both monodromy and the trace
method involve specialized continuation of slices and careful bookkeeping.

Squaring is a concern for positive-dimensional solving just as it is for
zero-dimensional solving. Although much carries over, one difference is that
the size to which the system should be squared depends on the dimension
of the component, e.g., for components of dimension k, the defining system
should be randomized to a system oi N — k equations.

Given witness data for an algebraic set Z, there are three operations
of particular interest for users. First, a user might want to find many
points on a specific component. This is known as sampling and is very
closely related to monodromy, as both use the continuation of sHces to
move witness points around on the component. Second, a user might want
to know if a given point lies on an irreducible component of Z. This is
the same component membership test used in the junk removal stage of
computing an irreducible decomposition. Finally, a user might want the
accuracy of some endpoint sharpened. This is just a matter of running
Newton's method appropriately, perhaps after deflating / . Of course, as in

SOFTWARE FOR NUMERICAL ALGEBRAIC GEOMETRY 9

the previous section, a post-processor would be appropriate, although the
exact functionality is again application-specific.

Deflation is particularly valuable as a method for multiple components,
e.g., to track intersections of a multiplicity greater than one component
with a one-parameter family of linear spaces of complementary dimension,
as is done to sample a multiple component. Roughly speaking, if Z is
a fc-dimensional component of the solution set of a system f — 0, then
the computation of the deflation oi Z f) L ioi f restricted to a generic
fe-codimensional Unear space gives rise to a "deflation" of the whole com-
ponent. At the expense of increasing the number of variables, this allows
us to numerically treat all components as multiplicity one components.

Summary of level 2 operations:
• Continuation of slices
• Monodromy
• Traces
• Squaring of systems for positive-dimensional solving
• Cascade algorithm
• Pull numerical irreducible decomposition
• Sampling
• Component membership
• Endpoint sharpening
• Post-processing of witness data
• Deflation for components.

2.4. Level 3: Extensions and applications of the basics. This
highest level consists of operations that make use of the basic numerical
algebraic geometry maneuvers described in the previous three levels. For
example, for two algebraic sets X and Y that are the solution sets of
polynomial systems / and g, respectively, suppose one has witness sets Wx
and WY for X and Y but would Uke a witness set W for X n Y. There is a
now a method [23] for computing the numerical irreducible decomposition
of such an intersection, the inclusion of which, while not essential for basic
software in numerical algebraic geometry, will be important as the field
continues to develop.

There are several other advanced algorithms that should be included
in a complete state-of-the-art implementation. Another such technique is
that of [25], which provides a way of finding exceptional sets, i.e., the sets of
points in the parameter space above which the fiber has dimension higher
than the generic fiber dimension. Fiber products play a key role in this
algorithm and therefore need to be available in the software before the
method for finding exceptional sets may be implemented. Also, in real-
world applications, real solutions are often of more interest than complex
solutions, so the extraction of real solutions from the numerical irreducible
decomposition, for example, by an extension of the method of [15], would
be very useful.

10 DANIEL J. BATES ET AL.

This is not intended to be a complete list, and it is anticipated that
many more operations could be added in the near future. One capabil-
ity, though, that is important now and will only become more essential
over time, is parallelization. Although not every algorithm of numerical
algebraic geometry is fully parallelizable, basic path tracking is easily par-
allelized so great savings can be made throughout levels 1, 2, and 3 by
doing so [10, 12, 27, 29].

Summary of level 3 operations:
• Intersection of components
• Fiber products
• Finding exceptional sets
• Extracting real solution sets from complex components
• Parallelization.

3. Bertini. Bertini [2] is a new software package under ongoing devel-
opment by the authors for computation in the field of numerical algebraic
geometry. Bertini itself has evolved from a program called Polysolve cre-
ated by Bates, C. Monico (Texas Tech University), Sommese and Wampler,
although nothing substantial remains in Bertini from Polysolve.

Bertini is written in the C programming language and makes use of
several specialized Mbraries, particularly lex and yacc for parsing and GMP
and MPFR for multiple precision support. The beta version of Bertini was
released in October 2006 to coincide with the Software for Algebraic Ge-
ometry workshop of the Institute for Mathematics and its Applications. It
is currently anticipated that Bertini 1.0 will be made available to the pub-
He sometime in 2007. Bertini is currently only available as an executable
file for 32- or 64-bit Linux and for Windows, via Cygwin. Specific instruc-
tions for using Bertini are included with the distribution and on the Bertini
website.

Among other things, Bertini is capable of producing all complex iso-
lated solutions of a given polynomial and witness sets for each positive-
dimensional irreducible component. The goal of the Bertini development
team is to eventually include in Bertini all operations described above
in Sections 2.1 through 2.4. The pmrpose of this section is to indicate
briefly which of those operations are already available in the beta version
of Bertini. The specific algorithms implemented are also described, when
appropriate. Details regarding the development plans for Bertini 1.0 and
beyond may be found in Sections 4.1 and 4.2, respectively.

3 .1 . Level 0. By default, Bertini uses IEEE double precision, al-
though it also allows for any fixed level of precision available in MPFR.
In particular, precision is available starting from 64 bits, increasing in 32
bit increments. Furthermore, the beta version of Bertini allows the user
to select adaptive precision for zero-dimensional solving. In adaptive pre-
cision mode, Bertini begins in double precision and increases precision as
necessary, determined by the algorithm described in [3].

