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Rachev/Rüschendorf: Mass Transportation Problems. Volume I: Theory.
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Preface

“Mathematics seems to endow one with something like a new sense.”
Charles Darwin

The goal of population genetics is to understand how genetic variability is
shaped by natural selection, demographic factors, and random genetic drift.
The stochastic evolution of a DNA segment that experiences recombination is
a complex process, so many analyses are based on simulations or use heuristic
methods. However, when formulas are available, they are preferable because,
when simple, they show the dependence of observed quantities on the under-
lying parameters and, even when complicated, can be used to compute exact
answers in a much shorter time than simulations can give good approxima-
tions.

The goal of this book is to give an account of useful analytical results
in population genetics, together with their proofs. The latter are omitted in
many treatments, but are included here because the derivation often gives
insight into the underlying mechanisms and may help others to find new for-
mulas. Throughout the book, the theoretical results are developed in close
connection with examples from the biology literature that illustrate the use of
these results. Along the way, there are many numerical examples and graphs
to illustrate the main conclusions. To help the reader navigate the book, we
have divided the sections into a large number of subsections listed in the index,
and further subdivided the text with bold-faced headings (as in this Preface).

This book is written for mathematicians and for biologists alike. With
mathematicians in mind, we assume no knowledge of concepts from biology.
Section 1.1 gives a rapid introduction to the basic terminology. Other expla-
nations are given as concepts arise. For biologists, we explain mathematical
notation and terminology as it arises, so the only formal prerequisite for biol-
ogists reading this book is a one-semester undergraduate course in probability
and some familiarity with Markov chains and Poisson processes will be very
useful. We have emphasized the word formal here, because to read and under-
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stand all of the proofs will require more than these simple prerequisites. On
the other hand, the book has been structured so that proofs can be omitted.

What is in this book?

Chapter 1 begins with the theory of neutral evolution in a homogeneously
mixing population of constant size. We introduce and study the discrete-
time Wright-Fisher model, the continuous-time Moran model, the coalescent,
which describes the genealogy of a nonrecombining segment of DNA, and two
simplified models of mutation: the infinite alleles and infinite sites models.
Based on these results, Chapter 2 introduces the problem of testing to see
if observed DNA sequences are consistent with the assumptions of the “null
model” underlying the theory developed in Chapter 1.

Chapters 3 through 6 confront the complications that come from relaxing
the assumptions of the models in Chapter 1. This material, which filled two
chapters in the first edition, has doubled in size and contains many results
from the last five years. Chapter 3 introduces the ancestral recombination
graph and studies the effect of recombination on genetic variability and the
problem of estimating the rate at which recombination occurs. Chapter 4
investigates the influence of large family sizes, population size changes, and
population subdivision in the form of island models on the genealogy of a
sample. Chapter 5 concerns the more subtle behavior of the stepping stone
model, which depicts a population spread across a geographical range, not
grouped into distinct subpopulations. Finally, Chapter 6 considers various
forms of natural selection: directional selection and hitchhiking, background
selection and Muller’s ratchet, and balancing selection.

Chapters 7 and 8, which are new in this edition, treat the previous top-
ics from the viewpoint of diffusion processes, continuous stochastic processes
that arise from letting the population size N → ∞ and at the same time run-
ning time at rate O(N). A number of analytical complications are associated
with this approach, but, at least in the case of the one-dimensional processes
considered in Chapter 7, the theory provides powerful tools for computing fix-
ation probabilities, expected fixation time, and the site frequency spectrum.
In contrast, the theory of multidimensional diffusions described in Chapter 8
is more of an art than a science. However, it offers significant insights into
recombination, Hill-Robertson interference, and gene duplication.

Chapter 9 tackles the relatively newer, and less well-developed, study of
the evolution of whole genomes by chromosomal inversions, reciprocal translo-
cations, and genome duplication. This chapter is the least changed from the
previous edition but has new results about when the parsimony method is
effective, Bayesian estimation of genetic distance, and the midpoint problem.

In addition to the three topics just mentioned, there are a number of re-
sults covered here that do not appear in most other treatments of the subject
(given here with the sections in which they appear): Fu’s covariance matrix
for the site frequency spectrum (2.1), the sequentially Markovian coalescent
(3.4), the beta coalescent for large family sizes (4.1), Malécot’s recursion for
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identity by descent and its study by Fourier analysis (5.2), the “continuous”
(or long-range) stepping stone model (5.5–5.6), Muller’s ratchet and Kon-
drashov’s result for truncation selection (6.4), approximations for the effect of
hitchhiking and recurrent selective sweeps (6.5–6.7), the Poisson random field
model (7.11), fluctuating selection (7.12), a new approximate formula for the
effect of Hill-Robertson interference (8.3), and a new result showing that the
subfunctionalization explanation of gene duplication is extremely unlikely in
large populations (8.6).

Having bragged about what I do cover, I must admit that this book has lit-
tle to say about computationally intensive procedures. Some of these methods
are mentioned along the way, and in some cases (e.g., Hudson’s composite like-
lihood method for estimating recombination rates, and the Kim and Stephan
test) we give some of the underlying mathematics. However, not being a user
of these methods, I could not explain to you how to use them any better than
I could tell you how to make a chocolate soufflé. As in the case of cooking, if
you want to learn, you can find recipes on the Internet. A good place to start
is www.molpopgen.org.

Mens rea

In response to criticisms of the first edition and the opinions of a half-dozen
experts hired to read parts of the first draft of the second edition, I have
worked hard to track down errors and clarify the discussion. Undoubtedly,
there are bugs that remain to be fixed, five years from now in the third edition.
Comments and complaints can be emailed to rtd1@cornell.edu. My web page
www.math.cornell.edu/~durrett can be consulted for corrections.

Interdisciplinary work, of the type described in the book, is not easy and
is often frustrating. Mathematicians think that it is trivial because, in many
cases, the analysis does not involve developing new mathematics. Biologists
find the “trivial” calculations confusing, that the simple models omit impor-
tant details, and are disappointed by the insights they provide. Nonetheless,
I think that important insights can be obtained when problems are solved
analytically, rather than being conquered by complicated programs running
for days on computer clusters.

I would like to thank the postdocs and graduate students who in recent
years have joined me on the journey to the purgatory at the interface be-
tween probability and biology (in my case, genetics and ecology): Janet Best,
Ben Chan, Arkendra De, Emilia Huerta-Sanchez, Yannet Interian, Nicholas
Lanchier, Vlada Limic, Lea Popovic, Daniel Remenik, Deena Schmidt, and
Jason Schweinsberg. I appreciate the patience of my current co-authors on
this list as I ignored our joint projects, so that I could devote all of my energy
to finishing this book.

As I write this, a January (2008) thaw is melting the snow in upstate New
York, just in time so that my wife (and BFF) Susan can drive my younger son,
Greg, back to MIT to start his fourth semester as a computer scientist/applied
mathematician. My older son David, a journalism student in the Park School

www.molpopgen.org
www.math.cornell.edu/~durrett
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at Ithaca College, and I still have two weeks before classes start. Lying back
on the sofa proofreading and revising the text while the cats sleep by the fire,
it seems to me that academic life, despite its many frustrations, sure beats
working for a living.

Rick Durrett

Several figures included here come from other sources and are reprinted with
permission of the publisher in parentheses. Figures 3.6, 3.7, and 3.8, from
Hudson (2001), Figures 6.3 and 6.4 from Hudson and Kaplan (1988), and
Figure 6.6 from Hudson and Kaplan (1995) (Genetics Society of America).
Figure 8.7 from Lynch and Conrey (2000) (AAAS). Figure 4.3 from Cann,
Stoneking and Wilson (1987) (Nature Publishing Company).
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1

Basic Models

“All models are wrong, but some are useful.” George Box

1.1 ATGCs of life

Before we can discuss modeling the evolution of DNA sequences, the reader
needs a basic knowledge of the object being modeled. Biologists should skip
this very rapid introduction, the purpose of which is to introduce some of
the terminology used in later discussions. Mathematicians should concentrate
here on the description of the genetic code and the notion of recombination.
An important subliminal message is that DNA sequences are not long words
randomly chosen from a four-letter alphabet; chemistry plays an important
role as well.

5′ P dR P dR P dR P dR OH 3′

A C C T

T G G A

3′ HO dR P dR P dR P dR P 5′

. . ... ... . .

Fig. 1.1. Structure of DNA.

The hereditary information of most living organisms is carried by deoxyri-
bonucleic acid (DNA) molecules. DNA usually consists of two complementary
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chains twisted around each other to form a double helix. As drawn in the fig-
ure, each chain is a linear sequence of four nucleotides: adenine (A), guanine
(G), cytosine (C), and thymine (T). Adenine pairs with thymine by means
of two hydrogen bonds, while cytosine pairs with guanine by means of three
hydrogen bonds. The A = T bond is weaker than the C ≡ G one and sep-
arates more easily. The backbone of the DNA molecule consists of sugars
(deoxyribose, dR) and phosphates (P) and is oriented. There is a phosphoryl
radical (P) on one end (the 5′ end) and a hydroxyl (OH) on the other (3′

end). By convention, DNA sequences are written in the order in which they
are transcribed from the 5′ to the 3′ end.

The structure of DNA guarantees that the overall frequencies of A and
T are equal and that the frequencies of C and G are equal. Indeed, this
observation was one of the clues to the structure of DNA. If DNA sequences
were constructed by rolling a four-sided die, then all four nucleotides (which
are also called base pairs) would have a frequency near 1/4, but they do not.
If one examines the 12 million nucleotide sequence of the yeast genome, which
consists of the sequence of one strand of each of its 16 chromosomes, then the
frequencies of the four nucleotides are

A = 0.3090 T = 0.3078 C = 0.1917 G = 0.1913

Watson and Crick (1953a), in their first report on the structure of DNA,
wrote: “It has not escaped our attention that the specific [nucleotide base]
pairing we have postulated immediately suggests a possible copying mecha-
nism of the genetic material.” Later that year at a Cold Spring Harbor meet-
ing, Watson and Crick (1953b) continued: “We should like to propose . . . that
the specificity of DNA replication is accomplished without recourse to specific
protein synthesis and that each of our complimentary DNA chains serves as
a template or mould for the formation onto itself of a new companion chain.”
This picture turned out to be correct. When DNA is ready to multiply, its
two strands pull apart, along each one a new strand forms in the only possible
way, and we wind up with two copies of the original. The precise details of
the replication process are somewhat complicated, but are not important for
our study.

Much of the sequence of the 3 billion nucleotides that make up the human
genome apparently serves no function, but embedded in this long string are
about 30,000 protein-coding genes. These genes are transcribed into ribonu-
cleic acid (RNA), so-called messenger RNA (mRNA), which subsequently is
translated into proteins. RNA is usually a single-stranded molecule and differs
from DNA by having ribose as its backbone sugar and by using the nucleotide
uracil (U) in place of thymine (T).

Amino acids are the basic structural units of proteins. All proteins in all
organisms, from bacteria to humans, are constructed from 20 amino acids. The
next table lists them along with their three-letter and one-letter abbreviations.
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Ala A Alanine Leu L Leucine
Arg R Arginine Lys K Lysine
Asn N Asparagine Met M Methionine
Asp D Aspartic acid Phe F Phenylalanine
Cys C Cysteine Pro P Proline
Gly G Glycine Ser S Serine
Glu E Glutamic acid Thr T Threonine
Gln Q Glutamine Trp W Tryptophan
His H Histidine Tyr Y Tyrosine
Ile I Isoleucine Val V Valine

Amino acids are coded by triplets of adjacent nucleotides called codons. Of
the 64 possible triplets, 61 code for amino acids, while 3 are stop codons,
which terminate transcription. The correspondence between triplets of RNA
nucleotides and amino acids is given by the following table. The first letter of
the codon is given on the left edge, the second on the top, and the third on
the right. For example, CAU codes for Histidine.

U C A G
Phe Ser Tyr Cys U

U ” ” ” ” C
Leu ” Stop Stop A
” ” ” Trp G

Leu Pro His Arg U
C ” ” ” ” C

” ” Gln ” A
” ” ” ” G
Ile Thr Asn Ser U

A ” ” ” ” C
” ” Lys Arg A

Met ” ” ” G
Val Ala Asp Gly U

G ” ” ” ” C
” ” Glu ” A
” ” ” ” G

Note that in 8 of 16 cases, the first two nucleotides determine the amino
acid, so a mutation that changes the third base does not change the amino
acid that is coded for. Mutations that do not change the amino acid are
called synonymous substitutions; the others are nonsynonymous. For example,
a change at the second position always changes the amino acid coded for,
except for UAA → UGA, which are both stop codons.

In DNA, adenine and guanine are purines while cytosine and thymine are
pyrimidines. A substitution that preserves the type is called a transition; the
others are called transversions. As we will see later in this chapter, transitions
occur more frequently than transversions.
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Most of the genes in our bodies reside on DNA in the nucleus of our cells
and are organized into chromosomes. Lower organisms such as bacteria are
haploid. They have one copy of their genetic material. Most higher organ-
isms are diploid (i.e., have two copies). However, some plants are tetraploid
(four copies), hexaploid (six copies, e.g., wheat), or polyploid (many copies,
e.g., sorghum, which has more than 100 chromosomes of 8 basic types). Sex
chromosomes in diploids are an exception to the two-copy rule. In humans,
females have two X chromosomes, while males have one X and one Y . In
birds, males have two Z chromosomes, while females have one Z and one W .

When haploid individuals reproduce, there is one parent that passes copies
of its genetic material to its offspring. When diploid individuals reproduce,
there are two parents, each of which contributes one of each of its pairs of
chromosomes. Actually, one parent’s contribution may be a combination of
its two chromosomes, since homologous pairs (e.g., the two copies of human
chromosome 14) undergo recombination, a reciprocal exchange of genetic ma-
terial that may be diagrammed as follows:

→

Fig. 1.2. Recombination between homologous chromosomes.

As we will see in Chapter 3, recombination will greatly complicate our
analysis. Two cases with no recombination are the Y chromosome, which ex-
cept for a small region near the tip does not recombine, and the mitochondrial
DNA (mtDNA), a circular double-stranded molecule about 16,500 base pairs
in length that exist in multiple identical copies outside the nucleus and are
inherited from the maternal parent. mtDNA, first sequenced by Anderson et
al. (1981), contains genes that code for 13 proteins, 22 tRNA genes, and 2
rRNA genes. It is known that nucleotide substitutions in mtDNA occur at
about 10 times the rate for nuclear genes. One important part of the molecule
is the control region (sometimes referred to as the D loop), which is about
1,100 base pairs in length and contains promoters for transcription and the
origin of replication for one of the DNA strands. It has received particular
attention since it has an even higher mutation rate, perhaps an order of mag-
nitude larger than the rest of the mtDNA.

These definitions should be enough to get the reader started. We will give
more explanations as the need arises. Readers who find our explanations of the
background insufficient should read the Cartoon Guide to Genetics by Gonick
and Wheelis (1991) or the first chapter of Li’s (1997) Molecular Evolution.
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1.2 Wright-Fisher model

We will begin by considering a genetic locus with two alleles A and a that have
the same fitness in a diploid population of constant size N with nonoverlapping
generations that undergoes random mating. The first thing we have to do is
to explain the terms in the previous sentence.

A genetic locus is just a location in the genome of an organism. A common
example is the sequence of nucleotides that makes up a gene.

The two alleles, A and a, could be the “wrinkled” and “round” types of peas
in Mendel’s experiments. More abstractly, alleles are just different versions of
the genetic information encoded at the locus.

The fitness of an individual is a measure of the individual’s ability to survive
and to produce offspring. Here we consider the case of neutral evolution in
which the mutation changes the DNA sequence but this does not change the
fitness.

Diploid individuals have two copies of their genetic material in each cell. In
general, we will treat the N individuals as 2N copies of the locus and not
bother to pair the copies to make individuals. Note: It may be tempting to
set M = 2N and reduce to the case of M haploid individuals, but that makes
it harder to compare with formulas in the literature.

To explain the terms nonoverlapping generations and random mating, we use
a picture.

A a a a

a a A a

a a A A

a A A A

generation n

→

generation n + 1

Fig. 1.3. Wright-Fisher model.

In words, we can represent the state of the population in generation n by an
“urn” that contains 2N balls: i with A’s on them and 2N − i with a’s. Then,
to build up the (n + 1)th generation, we choose at random from the urn 2N
times with replacement.

Let Xn be the number of A’s in generation n. It is easy to see that Xn is a
Markov chain, i.e., given the present state, the rest of the past is irrelevant for
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predicting the future. Remembering the definition of the binomial distribution,
it is easy to see that the probability there are j A’s at time n + 1 when there
are i A’s in the urn at time n is

p(i, j) =
(

2N

j

)
pj

i (1 − pi)2N−j (1.1)

Here pi = i/2N is the probability of drawing an A on one trial when there
are i in the urn, and the binomial coefficient

(
2N

j

)
=

(2N)!
j!(2N − j)!

is the number of ways of choosing j things out of 2N , where j! = 1 · 2 · · · j is
“j factorial.”

Fixation probability

The long-time behavior of the Wright-Fisher model is not very exciting.
Since we are, for the moment, ignoring mutation, eventually the number of
A’s in the population, Xn, will become 0, indicating the loss of the A allele,
or 2N , indicating the loss of a. Once one allele is lost from the population,
it never returns, so the states 0 and 2N are absorbing states for Xn. That is,
once the chain enters one of these states, it can never leave. Let

τ = min{n : Xn = 0 or Xn = 2N}

be the fixation time; that is, the first time that the population consists of all
a’s or all A’s.

We use Pi to denote the probability distribution of the process Xn starting
from X0 = i, and Ei to denote expected value with respect to Pi.

Theorem 1.1. In the Wright-Fisher model, the probability of fixation in the
all A’s state,

Pi(Xτ = 2N) =
i

2N
(1.2)

Proof. Since the number of individuals is finite, and it is always possible to
draw either all A’s or all a’s, fixation will eventually occur. Let Xn be the
number of A’s at time n. Since the mean of the binomial in (1.1) is 2Np, it
follows that

E(Xn+1|Xn = i) = 2N ·
(

i

2N

)
= i = Xn (1.3)

Taking expected value, we have EXn+1 = EXn. In words, the average value
of Xn stays constant in time.

Intuitively, the last property implies

i = EiXτ = 2NPi(Xτ = 2N)
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and this gives the desired formula. To prove this, we note that since Xn = Xτ

when n > τ ,

i = EiXn = Ei(Xτ ; τ ≤ n) + Ei(Xn; τ > n)

where E(X ; A) is short for the expected value of X over the set A. Now let
n → ∞ and use the fact that |Xn| ≤ 2N to conclude that the first term
converges to EiXτ and the second to 0.

From (1.2) we get a famous result of Kimura:

Theorem 1.2. Under the Wright-Fisher model, the rate of fixation of neutral
mutations in a population of size N is the mutation rate μ.

Proof. To see this note that mutations occur to some individual in the popu-
lation at rate 2Nμ and go to fixation with probability 1/2N .

Heterozygosity

To get an idea of how long fixation takes to occur, we will examine the
heterozygosity, which we define here to be the probability that two copies of
the locus chosen (without replacement) at time n are different:

Ho
n =

2Xn(2N − Xn)
2N(2N − 1)

Theorem 1.3. Let h(n) = EHo
n be the average value of the heterozygosity at

time n. In the Wright-Fisher model

h(n) =
(

1 − 1
2N

)n

· h(0) (1.4)

Proof. It is convenient to number the 2N copies of the locus 1, 2, . . . 2N and
refer to them as individuals. Suppose we pick two individuals numbered x1(0)
and x2(0) at time n. Each individual xi(0) is a descendant of some individual
xi(1) at time n − 1, who is a descendant of xi(2) at time n − 2, etc. xi(m),
0 ≤ m ≤ n describes the lineage of xi(0), i.e., its ancestors working backwards
in time.

If x1(m) = x2(m), then we will have x1(�) = x2(�) for m < � ≤ n. If
x1(m) �= x2(m), then the two choices of parents are made independently, so
x1(m+1) �= x2(m+1) with probability 1−(1/2N). In order for x1(n) �= x2(n),
different parents must be chosen at all times 1 ≤ m ≤ n, an event with
probability (1 − 1/2N)n. When the two lineages avoid each other, x1(n) and
x2(n) are two individuals chosen at random from the population at time 0, so
the probability that they are different is Ho

0 = h(0).

A minor detail. If we choose with replacement above, then the statistic is

Hn =
2Xn(2N − Xn)

(2N)2
=

2N − 1
2N

Ho
n

and we again have EHn = (1 − 1/2N)n · H0. This version of the statistic is
more commonly used, but is not very nice for the proof given above.
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x1(0)

x1(1)

�
�

�
�

������������
�

�
�

�
�����x1(n)

x2(0)

x2(1)

����������������
�

�
�

�					x2(n)

0 1 n − 1 n

Fig. 1.4. A pair of genealogies.

1.2.1 The coalescent

When x is small, we have (1− x) ≈ e−x. Thus, when N is large, (1.4) can be
written as

h(n) ≈ e−n/(2N)h(0)

If we sample k individuals, then the probability that two will pick the same
parent from the previous generation is

≈ k(k − 1)
2

· 1
2N

where the first factor gives the number of ways of picking two of the k individ-
uals and the second the probability they will choose the same parent. Here we
are ignoring the probability that two different pairs choose the same parents
on one step or that three individuals will all choose the same parent, events
of probability of order 1/N2.

Theorem 1.4. When measured in units of 2N generation, the amount of time
during which there are k lineages, tk, has approximately an exponential dis-
tribution with mean 2/k(k − 1).

Proof. By the reasoning used above, the probability that the k lineages remain
distinct for the first n generations is (when the population size N is large)

≈
(

1 − k(k − 1)
2

· 1
2N

)n

≈ exp
(
−k(k − 1)

2
· n

2N

)

Recalling that the exponential distribution with rate λ is defined by

P (T > t) = e−λt

and has mean 1/λ, we see that if we let the population size N → ∞ and
express time in terms of 2N generations, that is, we let t = n/(2N), then the
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time to the first collision converges to an exponential distribution with mean
2/k(k − 1). Using terminology from the theory of continuous-time Markov
chains, k lineages coalesce to k − 1 at rate k(k − 1)/2. Since this reasoning
applies at any time at which there are k lineages, the desired result follows.

The limit of the genealogies described in Theorem 1.4 is called the coa-
lescent. Letting Tj be the first time that there are j lineages, we can draw a
picture of what happens to the lineages as we work backwards in time:

T1

T2

T3

T4

T5 = 0
t5

t4

t3

t2

3 1 4 2 5

Fig. 1.5. A realization of the coalescent for a sample of size 5.

For simplicity, we do not depict how the lineages move around in the set
before they collide, but only indicate when the coalescences occur. To give the
reader some idea of the relative sizes of the coalescent times, we have made
the tk proportional to their expected values, which in this case are

Et2 = 1, Et3 = 1/3, Et4 = 1/6, Et5 = 1/10

T1 is the time of the most recent common ancestor (MRCA) of the sample.
For a sample of size n, T1 = tn + · · · + t2, so the mean

ET1 =
n∑

k=2

2
k(k − 1)

= 2
n∑

k=2

(
1

k − 1
− 1

k

)
= 2 ·

(
1 − 1

n

)

This quantity converges to 2 as the sample size n → ∞, but the time, t2, at
which there are only two lineages has Et2 = 1, so the expected amount of time
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spent waiting for the last coalescence is always at least half of the expected
total coalescence time.

Simulating the coalescent

It is fairly straightforward to translate the description above into a simu-
lation algorithm, but for later purposes it is useful to label the internal nodes
of the tree. The following picture should help explain the procedure
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3 1 4 2 5

6
7

8

9

V0 = {1, 2, 3, 4, 5}

V1 = {2, 3, 5, 6}

V2 = {3, 6, 7}

V3 = {7, 8}

Fig. 1.6. Notation for the coalescent simulation algorithm.

For a sample of size n, we begin with V0 = {1, 2, . . . n} and Tn = 0.
For k = 0, 1, . . . n − 2 do

• Pick two numbers ik and jk from Vk.
• Let Vk+1 = Vk − {ik, jk} ∪ {n + k + 1}.
• In the tree connect ik → n + k + 1 and jk → n + k + 1.
• Let tn−k be an independent exponential with mean

(
n−k

2

)−1
.

• Let Tn−k−1 = Tn−k + tn−k.

To implement this in a computer, one can let tn−k =
(
n−k

2

)−1
log(1/Uk),

where the Uk are independent uniform(0, 1). From the construction it should
be clear that the sequence of coalescence events is independent of the sequence
of times of interevent times tn, . . . t2.

In the next two sections, we will introduce mutations. To do this in the
computer, it is convenient to define the ancestor function in the third step of
the algorithm above so that anc[ik] = n + k + 1 and anc[jk] = n + k + 1. For
example, anc[2] = 7 and anc[5] = 7. One can then label the branches by the
smaller number 1 ≤ i ≤ 2n − 2 on the lower end and, if mutations occur at
rate μ per generation and θ = 4Nμ, introduce a Poisson number of mutations
on branch i with mean

θ

2
· (Tanc[i] − Ti)



1.2 Wright-Fisher model 11

The reason for the definition of θ will become clear in Section 1.4. Before we
move on, the reader should note that we first generate the genealogy and then
introduce mutations.

1.2.2 Shape of the genealogical tree

The state of the coalescent at any time can then be represented as a partition,
A1, . . . Am, of {1, 2, . . . n}. That is, ∪m

i=1Ai = {1, 2, . . . n}, and if i �= j the sets
Ai and Aj are disjoint. In words, each Ai consists of one subset of lineages that
have coalesced. To explain this notion, we will use the example that appears
in the two previous figures. In this case, as we work backwards in time, the
partitions are

T1 {1, 2, 3, 4, 5}
T2 {1, 3, 4} {2, 5}
T3 {1, 4} {2, 5} {3}
T4 {1, 4} {2} {3} {5}

time 0 {1} {2} {3} {4} {5}

Initially, the partition consists of five singletons since there has been no coa-
lescence. After 1 and 4 coalesce at time T4, they appear in the same set. Then
2 and 5 coalesce at time T3, etc. Finally, at time T1 we end up with all the
labels in one set.

Let En be the collection of partitions of {1, 2, . . . n}. If ξ ∈ En, let |ξ| be
the number of sets that make up ξ, i.e., the number of lineages that remain
in the coalescent. If, for example, ξ = {{1, 4}, {2, 5}, {3}}, then |ξ| = 3. Let
ξn
i , i = n, n − 1, . . . 1 be the partition of {1, 2, . . . n} at time Ti, the first time

there are i lineages. Kingman (1982a) has shown

Theorem 1.5. If ξ is a partition of {1, 2, . . . n} with |ξ| = i, then

P (ξn
i = ξ) = cn,i w(ξ)

Here the weight w(ξ) = λ1! · · ·λi!, where λ1, . . . λi are the sizes of the i sets
in the partition and the constant

cn,i =
i!
n!

· (n − i)!(i − 1)!
(n − 1)!

is chosen to make the sum of the probabilities equal to 1.

The proof of Theorem 1.6 will give some insight into the form of the constant.
The weights w(ξ) favor partitions that are uneven. For example, if n = 9 and
i = 3, the weights based on the sizes of the sets in the partition are as follows:

3-3-3 4-3-2 5-2-2 4-4-1 5-3-1 6-2-1 7-1-1
216 288 480 576 720 1440 5040
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Proof. We proceed by induction working backwards from i = n. When i = n,
the partition is always {1}, . . .{n}, all the λi = 1, and cn,n = 1 (by definition,
0! = 1). To begin the induction step now, write ξ < η (and say ξ is finer than
η) if |ξ| = |η| + 1 and η is obtained by combining two of the sets in ξ. For
example, we might have

ξ = {{1, 4}, {2, 5}, {3}} and η = {{1, 3, 4}, {2, 5}}

When ξ < η and |ξ| = i, there is exactly one of the
(

i
2

)
coalescence events

that will turn ξ into η, so

P (ξn
i−1 = η|ξn

i = ξ) =

{
2

i(i−1) if ξ < η

0 otherwise
(1.5)

and we have
P (ξn

i−1 = η) =
2

i(i − 1)

∑
ξ<η

P (ξn
i = ξ) (1.6)

If λ1, . . . λi−1 are the sizes of the sets in η, then for some � with 1 ≤ � ≤ i− 1
and some ν with 1 ≤ ν < λ�, the sets in ξ have sizes

λ1, . . . λ�−1, ν, λ� − ν, λ�+1, . . . λi−1

Using the induction hypothesis, the right-hand side of (1.6) is

=
2

i(i − 1)

i−1∑
�=1

λ�−1∑
ν=1

cn,i w�,ν

(
λ�

ν

)
· 1
2

where the weight

w�,ν = λ1! · · ·λ�−1! ν! (λ� − ν)! λ�+1! · · ·λi−1!

and
(
λ�

ν

)
· 1

2 gives the number of ways of picking ξ < η with the �th set in η
subdivided into two pieces of size ν and λ� − ν. (We pick ν of the elements to
form a new set but realize that we will generate the same choice again when
we pick the λ� − ν members of the complement.)

It is easy to see that w�,ν

(
λ�

ν

)
= w(η) so the sum above is

= w(η)
cn,i

i(i − 1)

i−1∑
�=1

λ�−1∑
ν=1

1

The double sum =
∑i−1

�=1(λ� −1) = n− (i−1). The last detail to check is that

cn,i

i(i − 1)
· (n − i + 1) = cn,i−1 or

cn,i

cn,i−1
=

i(i − 1)
n − i + 1

(1.7)

but this is clear from the definition.
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To write the partition ξn
i , it is natural, as we have done in the example

above, to order the sets so that ξn
i,1 is the set containing 1, ξn

i,2 contains the
smallest number not in ξn

i,1, etc. However, to compute the distribution of the
sizes of sets in the coalescent, it is useful to put the sets in the partition into
a randomly chosen order.

Theorem 1.6. Let π be a randomly chosen permutation of {1, 2, . . . i} and let
λj = |ξn

i,π(j)| be the size of the jth set in ξn
i when they are rearranged according

to π. (λ1, λ2, . . . λi) is uniformly distributed over the vectors of positive integers
that add to n.

Tajima (1983) proved this in the case i = 2. In words, if we pick one of the
two sets in ξn

2 at random, its size is uniformly distributed on 1, 2, . . . n − 1.

Proof. If we randomly order the sets in ξ, then each ordered arrangement has
probability cn,iw(ξ)/i!. If we only retain information about the sizes, then by
considering the number of collections of sets that can give rise to the vector
(λ1, . . . λi), we see that it has probability:

cn,iw(ξ)
i!

· n!
λ1!λ2! · · ·λi!

=
(n − i)!(i − 1)!

(n − 1)!
= 1

/(
n − 1
i − 1

)

Since the final quantity depends only on n and i and not on the actual vector,
we have shown that the distribution is uniform. To see that the denominator
of the last fraction gives the number of vectors of positive integers of length
i that add up to n, imagine n balls separated into i groups by i − 1 pieces of
cardboard. For example, if n = 10 and i = 4, we might have

O O O|O|O O O O|O O

Our i− 1 pieces of cardboard can go in any of the n− 1 spaces between balls,
so there are

(
n−1
i−1

)
possible vectors (j1, . . . , ji) of positive integers that add up

to n.

As a consequence of Theorem 1.6, we get the following amusing fact.

Theorem 1.7. The probability that the most recent common ancestor of a
sample of size n is the same as that of the population converges to (n−1)/(n+
1) as the population size tends to ∞.

When n = 10, this is 9/11.

Proof. Consider the first split in the coalescent tree of the population. Let X
be the limiting proportion of lineages in the left half of the tree, and recall that
X is uniformly distributed on (0, 1). In order for the MRCA of the sample to
come before that of the population either all of the n lineages must be in the
left half or all n in the right half. Thus, the probability the MRCAs coincide
is

1 −
∫ 1

0

xn + (1 − x)n dx = 1 − 2
n + 1

and this gives the desired result.
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Our final result in this section gives a dynamic look at the coalescent
process running backwards.

Theorem 1.8. To construct the partition ξn
i from ξn

i−1 = {A1, . . . Ai−1}, we
pick a set at random, picking Aj with probability (λj − 1)/(n − i − 1), where
λj = |Aj |, and then split Aj into two sets with sizes k and λj − k, where k is
uniform on 1, 2, . . . λj − 1.

Proof. By elementary properties of conditional probability,

P (ξn
i = ξ|ξn

i−1 = η) =
P (ξn

i−1 = η|ξn
i = ξ)P (ξn

i = ξ)
P (ξn

i−1 = η)

Suppose ξ < η are partitions of the correct sizes, and ξ is obtained from η by
splitting Aj into two sets with sizes k and λj −k. It follows from Theorem 1.5
and (1.5) that

P (ξn
i = ξ)

P (ξn
i−1 = η)

=
cn,i

cn,i−1
· k!(λj − k)!

λj !
=

i(i − 1)
n − i + 1

· k!(λj − k)!
λj !

Using (1.7), now we have

P (ξn
i = ξ|ξn

i−1 = η) =
1

n − i + 1
· k!(λj − k)!

λj !
· 2

The first factor corresponds to picking Aj with probability (λj −1)/(n− i−1)
and then picking k with probability 1/(λj − 1). Getting the correct division
of Aj to produce ξ has probability 1/

(
λj

k

)
. The final 2 takes into account the

fact that we can also generate ξ by choosing λj − k instead of k.

1.3 Infinite alleles model

In this section, we will consider the infinite alleles model. As the name should
suggest, we assume that there are so many alleles that each mutation is always
to a new type never seen before. To explain the reason for this assumption,
Kimura (1971) argued that if a gene consists of 500 nucleotides, the number
of possible DNA sequences is

4500 = 10500 log 4/ log 10 = 10301

For any of these, there are 3 · 500 = 1500 sequences that can be reached
by single base changes, so the chance of returning where one began in two
mutations is 1/1500 (assuming an equal probability for all replacements).
Thus, the total number of possible alleles is essentially infinite.

The infinite alleles model arose at a time when one had to use indirect
methods to infer diferences between individuals. For example, Coyne (1976)
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and Singh, Lewontin, and Felton (1976) studied Drosophila by performing
electrophoresis under various conditions. Coyne (1976) found 23 alleles in 60
family lines at the xanthine dehydrogenase locus of Drosophila persimilis that
displayed the following pattern, which we call the allelic partition:

a1 = 18, a2 = 3, a4 = 1, a32 = 1

That is, there were 18 unique alleles, 3 alleles had 2 representatives, 1 had
4, and 1 had 32. Singh, Lewontin, and Felton (1976) found 27 alleles in 146
genes from the xanthine dehydrogenase locus of D. pseudoobscura with the
following pattern:

a1 = 20, a2 = 3, a3 = 7, a5 = 2, a6 = 2, a8 = 1, a11 = 1, a68 = 1

The infinite alleles model is also relevant to DNA sequence data when there
is no recombination. Underhill et al. (1997) studied 718 Y chromosomes. They
found 22 nucleotides that were polymorphic (i.e., not the same in all of the
individuals). The sequence of nucleotides at these variable positions gives the
haplotype of the individual. In the sample, there were 20 distinct haplotypes.
The sequences can be arranged in a tree in which no mutation occurs more
than once, so it is reasonable to assume that the haplotypes follow the infinite
alleles model. The allelic partition has

a1 = 7, a2 = a3 = a5 = a6 = a8 = a9 = a26 = a36 = a37 = 1,

a82 = 2, a149 = 1, a266 = 1.

After looking at the data, the first obvious question is: What do we expect
to see? The answer to this question is given by Ewens’ sampling formula.
This section is devoted to the derivation of the formula and the description
of several perspectives from which one can approach it. At the end of this
section, we will lapse into a mathematical daydream about the structure of a
randomly chosen permutation.

1.3.1 Hoppe’s urn, Ewens’ sampling formula

The genealogical process associated with the infinite alleles version of the
Wright-Fisher model is a coalescent with killing. When there are k lineages,
coalescence and mutation occur on each step with probability

k(k − 1)
2

· 1
2N

as before, but now killing of one of the lineages occurs with probability kμ
because if a mutation is encountered, we know the genetic state of that in-
dividual and all of its descendants in the sample. Speeding up the system
by running time at rate 2N , the rates become k(k − 1)/2 and kθ/2, where
θ = 4Nμ.
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Turning the coalescent with killing around backwards leads to Hoppe’s
(1984) urn model. This urn contains a black ball with mass θ and various
colored balls with mass 1. At each time, a ball is selected at random with a
probability proportional to its mass. If a colored ball is drawn, that ball and
another of its color are returned to the urn. If the black ball is chosen, it is
returned to the urn with a ball of a new color that has mass 1. The choice
of the black ball corresponds to a new mutation and the choice of a colored
ball corresponds to a coalescence event. A simulation should help explain the
definition. Here a black dot indicates that a new color was added at that time
step.

•

•

•

•

time 1

2

3

4

5

6

7

8

9

10

11

Fig. 1.7. A realization of Hoppe’s urn.

As we go backwards from time k+1 to time k in Hoppe’s urn, we encounter
a mutation with probability θ/(θ+k) and have a coalescence with probability
k/(θ+k). Since in the coalescent there are k+1 lineages that are each exposed
to mutations at total rate kθ/2 and collisions occur at rate (k + 1)k/2, this is
the correct ratio. Since by symmetry all of the coalescence events have equal
probability, it follows that

Theorem 1.9. The genealogical relationship between k lineages in the coales-
cent with killing can be simulated by running Hoppe’s urn for k time steps.

This observation is useful in computing properties of population samples
under the infinite alleles model. To illustrate this, let Kn be the random
variable that counts the number of different alleles found in a sample of size
n. Here and throughout the book, log is the “natural logarithm” with base e.
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Theorem 1.10 (Watterson (1975)). For fixed θ, as the sample size n →
∞,

EKn ∼ θ log n and var (Kn) ∼ θ log n

where an ∼ bn means that an/bn → 1 as n → ∞. In addition, the central limit
theorem holds. That is, if χ has the standard normal distribution, then

P

(
Kn − EKn√

var (Kn)
≤ x

)
→ P (χ ≤ x)

Proof. Let ηi = 1 if the ith ball added to Hoppe’s urn is a new type and
0 otherwise. It is clear from the definition of the urn scheme that Kn =
η1 + · · · + ηn and η1, . . . ηn are independent with

P (ηi = 1) = θ/(θ + i − 1) (1.8)

To compute the asymptotic behavior of EKn, we note that (1.8) implies

EKn =
n∑

i=1

θ

θ + i − 1
(1.9)

Viewing the right-hand side as a Riemann sum approximating an integral,

...............................

.....................................................................................................

θ θ + 1 θ + n

it follows that
n∑

i=1

1
θ + i − 1

∼
∫ n+θ

θ

1
x

dx = log(n + θ) − log(θ) ∼ log n (1.10)

From this, the first result follows. To prove the second, we note that

var (Kn) =
n∑

i=1

var (ηi) =
n∑

i=2

θ(i − 1)
(θ + i − 1)2

(1.11)

As i → ∞, (i − 1)/(θ + i − 1) → 1, so
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var (Kn) ∼
n∑

i=2

θ

θ + i − 1
∼ θ log n

by the reasoning for EKn. Since the ηi are independent, the final claim follows
from the triangular array form of the central limit theorem. See, for example,
(4.5) in Chapter 2 of Durrett (2005).

An immediate consequence of Theorem 1.10 is that Kn/ logn is an asymp-
totically normal estimator of the scaled mutation rate θ. However, the asymp-
totic standard deviation of Kn/ log n is quite large, namely of order 1/

√
log n.

Thus, if the true θ = 1 and we want to estimate θ with a standard error
of 0.1, a sample of size e100 is required. Given this depressingly slow rate of
convergence, it is natural to ask if there is another way to estimate θ from the
data. The answer is NO, however. As we will see in Theorem 1.13 below, Kn

is a sufficient statistic. That is, it contains all the information in the sample
that is useful for estimating θ.

The last result describes the asymptotic behavior of the number of alleles.
The next one, due to Ewens (1972), deals with the entire distribution of the
sample under the infinite alleles model.

Theorem 1.11 (Ewens’ sampling formula). Let ai be the number of al-
leles present i times in a sample of size n. When the scaled mutation rate is
θ = 4Nμ,

Pθ,n(a1, . . . an) =
n!

θ(n)

n∏
j=1

(θ/j)aj

aj!

where θ(n) = θ(θ + 1) · · · (θ + n − 1).

The formula may look strange at first, but it becomes more familiar if we
rewrite it as

cθ,n

n∏
j=1

e−θ/j (θ/j)aj

aj !

where cθ,n is a constant that depends on θ and n and guarantees the sum of the
probabilities is 1. In words, if we let Y1, . . . Yn be independent Poisson random
variables with means EYj = θ/j, then the allelic partition (a1, a2, . . . an) has
the same distribution as(

Y1, Y2, . . . , Yn

∣∣∣∣∣
∑
m

mYm = n

)

One explanation of this can be found in Theorem 1.19.

Proof. In view of Theorem 1.9, it suffices to show that the distribution of
the colors in Hoppe’s urn at time n is given by Ewens’ sampling formula. We
proceed by induction. When n = 1, the partition a1 = 1 has probability 1 so


