African Landscapes
Interdisciplinary Approaches
AFRICAN LANDSCAPES
Edited by Michael Bollig and Olaf Bubenzer

AS PASTORALISTS SETTLE:
Social, Health, and Economic Consequences of the Pastoral Sedentarization in Marsabit District, Kenya
Elliot Fratkin and Eric Abella Roth

RISK MANAGEMENT IN A HAZARDOUS ENVIRONMENT:
A Comparative Study of Two Pastoral Societies
Michael Bollig

SEEKING A RICHER HARVEST:
The Archaeology of Substenence Intensification, Innovation and Change
Edited by Tina L. Thurston and Christopher T. Fisher

STAYING MASAAI?:
Livelihoods, Conversation, and Development in the East African Rangelands

For more information about this series, including the most recent titles, please visit the series homepage at www.springer.com/series/6877
Preface

Landscape has been a crucial concept to produce, store, and to present knowledge on human–environment interactions in various academic disciplines and in works of art. It has been bemoaned that the concept is ambiguous and inadequate for scientific discourses because of its vagueness, its equivocalness, and its proneness to ideological cooptation. The sheer number of attempts at a more precise definition bespeaks the uneasiness scientists feel when dealing with the term. Despite its analytical shortcomings the use of landscape as a key concept to analyse and interpret human–environment interaction is rather increasing than decreasing.

Not only have the cultural studies discovered the term with its unrivalled appeal to stress boundedness, integration, and heterogeneity at the same time, but also anthropology, cultural studies, and history have undergone a spatial turn during the last two decades integrating the landscape concept into their disciplinary lexicon. By refocussing on the landscape concept historians and anthropologists emphasise that environments and historical and cultural processes are linked by a great number of interrelated feedback loops. Landscapes are not merely scenery and stage but are intimately interwoven with history and culture. At the same time the concept is reevaluated in the geosciences where it had been discarded since the 1970s in favour of more problem-centred and less ambiguous concepts. Landscape also has a continued appeal to artists expressing their thoughts and feelings about man’s placement in and interaction with nature (Schama, 1995).

The widespread use of the landscape concept corresponds with an era in which global environmental change has indeed changed most natural landscapes into heavily used environments. Various land-use activities have transformed large parts of the globe’s surface and human activities have appropriated one third to one half of global ecosystem production (Foley et al., 2005, p. 570). Croplands and pastures constitute major parts of the planet’s surface. The clearing of tropical forests may lead to drier and warmer regional climates in the near future, whereas the clearing of boreal forests may result in cooler climates in the North (Nemani et al., 2003).

Escobar’s claim (1999, p. 1) that we have entered an epoch which is defined by the sense of being “after nature” is as true as his tenet that geocological processes are increasingly reshaped by human activities and constituted by discursive practices. Escobar’s claim resounds with the wording of Noble Prize laureate Paul Crutzen, who has named the recent geological phase “anthropocene” (Crutzen & Steffen, 2003). Crutzen and Escobar emphasise the increasing human
dependence on these very processes and resources and the growing understanding
that major environmental processes are beyond the control of humans: even if
we succeed in reducing CO₂ output the effects of global warming will transform
landscapes profoundly over the next decades to come (IPCC, 2007). Glaciers
will vanish and coastal areas will become inundated; some deserts may expand
and others shrink. Large dams, water carriers, and the expansion of megacities
transform landscapes as much as the artificial exclusion of humans from specific
sites and entire biomes designated as parks and wilderness areas. However, our
potential to control and correct geoecological processes is very limited. Escobar’s
emphasis that environments resist being fully coopted by humans, is borne out by
numerous contemporary reports on major catastrophes and the increasing vulner-
ability of ecosystems.

As human–environment feedback loops define most of the basic stressors
that constitute “human life” in relation to both biology and geoecological proc-
cesses, there is a need for an interdisciplinary approach to landscape research. It is
odd that most of the current literature is usually linked more or less clearly to one
scientific field, either being affiliated with the natural sciences or the humanities.
True interdisciplinary approaches to landscapes bridging this gap are exceedingly
rare. It is here that this volume wants to make an impact: over the past ten years
the contributors to this volume have cooperated in an interdisciplinary programme
– the Collaborative Research Centre ACACIA (Arid Climate, Adaptation and
Cultural Innovation in Africa) – dealing with the interrelation between cultural
processes and geoecological dynamics in Africa’s arid areas. The concept ‘land-
scape’ has been crucial in all projects, be they Egyptological, Africanist, anthro-
pological, geographical, botanical, historical, or archaeological.

The attempt to work along a unified definition of the landscape concept
was given up early on. Rather it was deemed to be more rewarding to have each
discipline explore its own access to the topic and from there explore bridges
between different disciplinary approaches. The belief in a diversity of landscape
approaches made it necessary to explicate the epistemological fundamentals of
one’s own conceptual base. However, there has been a basic understanding that
‘for constructivists, the challenge lies in learning to incorporate into their analy-
yses the biophysical basis of reality; for realists it is examining their frameworks
from the perspective of their historical constitution’ (Escobar, 1999, p. 3).

Michael Bollig and Olaf Bubenzer

Literature

Change, 61, 251–257.
40, 1–30.
Nemani R. et al. (2003) Climate-driven increases in global terrestrial net primary production from
Contents

Contributors xi
List of Tables xiii
List of Figures xv

Visions of Landscapes: An Introduction
Michael Bollig 1

Part I Arid Landscapes: Detection and Reconstruction – Perspectives from Earth Sciences and Archaeology

1. Landscape in Geography and Landscape Ecology, Landscape Specification, and Classification in Geomorphology
 Olaf Bubenzer 41

2. Towards a Reconstruction of Land Use Potential: Case Studies from the Western Desert of Egypt
 Andreas Bolten, Olaf Bubenzer, Frank Darius, and Karin Kindermann 57

3. Landscape Ecology of Savannas from Disturbance Regime to Management Strategies
 Anja Linstädter 79

4. Quantitative Classification of Landscapes in Northern Namibia using an ASTER Digital Elevation Model
 Gunter Menz and Jochen Richters 105

5. Risks and Resources in an Arid Landscape: An Archaeological Case Study from the Great Sand Sea, Egypt
 Heiko Riemer 119
<table>
<thead>
<tr>
<th>Part II</th>
<th>State, Power, and Control in Africa’s Arid Landscapes: Perspectives from the Historical Sciences</th>
</tr>
</thead>
</table>
Tilman Lenssen-Erz and Jörg Linstädter |
| 7. The ‘Landscapes’ of Ancient Egypt: Intellectual Reactions to the Environment of the Lower Nile Valley|
Michael Herb and Philippe Derchain | 201 |
| 8. A Land of Goshen: Landscape and Kingdom in Nineteenth Century Eastern Owambo (Namibia) | Patricia Hayes | 225 |
| 9. From the Old Location to Bishops Hill: The Politics of Urban Planning and Landscape History in Windhoek, Namibia | Jan-Bart Gewald | 255 |
| 10. Landscape and Nostalgia: Angolan Refugees in Namibia Remembering Home and Forced Removals | Inge Brinkman | 275 |

<table>
<thead>
<tr>
<th>Part III</th>
<th>Identity, Memory, and Power in Africa’s Arid Landscapes: Perspectives from Social and Cultural Anthropology</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. The Anthropological Study of Landscape</td>
<td>Martin Rössler</td>
</tr>
<tr>
<td>12. Kinship, Ritual, and Landscape Amongst the Himba of Northwest Namibia</td>
<td>Michael Bollig</td>
</tr>
<tr>
<td>13. The Spectator’s and the Dweller’s Perspectives: Experience and Representation of the Etosha National Park, Namibia</td>
<td>Ute Dieckmann</td>
</tr>
<tr>
<td>14. Is This a Drought or Is This a Drought and What Is Really Beautiful? Different Conceptualisations of the Khuiseb Catchment (Central Namibia) and Their Consequences</td>
<td>Nina Gruntkowski</td>
</tr>
</tbody>
</table>
Contents

15. Where Settlements and the Landscape Merge:
 Towards an Integrated Approach to the Spatial Dimension
 of Social Relations
 Thomas Widlok
 407

Part IV
Language and the Conceptualisation and Epistemics of
African Arid Landscapes: Perspectives from Linguistics
and Oral History

16. Two Ways of Conceptualising Natural Landscapes:
 A Comparison of the Otjiherero and Rumanyo
 Word Cultures in Namibia
 Wilhelm J.G. Möhlig
 431

17. Landscape Conceptualisation in Mbukushu:
 A Cognitive-Linguistic Approach
 Birte Kathage
 455

18. Otjiherero Praises of Places: Collective Memory Embedded
 in Landscape and the Aesthetic Sense of a Pastoral People
 Jekura U. Kavari and Laura E. Bleckmann
 473

Index
501
Contributors

Laura E. Bleckmann, University of Leuven, Leuven, Belgium

Michael Bollig, Institute of Cultural and Social Anthropology, University of Cologne, Cologne, Germany

Andreas Bolton, Department of Geography, University of Cologne, Cologne, Germany

Inge Brinkman, African Studies Center, Leiden University, Leiden, Netherlands

Olaf Bubenzer, Department of Geography, University of Heidelberg, Heidelberg, Germany

Frank Darius, Department of Geography, University of Cologne, Cologne, Germany

Phillipe Derchain, Seminar of Egyptology, University of Cologne, Cologne, Germany

Ute Dieckmann, Institute of Cultural and Social Anthropology, University of Cologne, Cologne, Germany

Jan-Bart Gewald, African Studies Center, Leiden University, Leiden, Netherlands

Nina Gruntkowski, Department of Geography, University of Cologne, Cologne, Germany

Patricia Hayes, History Department, University of the Western Cape, Bellville, South Africa

Michael Herb, Department of Geography, University of Bonn, Bonn, Germany

Birte Kathage, Africa Consulting, Cologne, Germany

Jekura U. Kavari, University of Namibia, Windhoek, Namibia

Karin Kindermann, Department of Geography, University of Cologne, Cologne, Germany
Contributors

Tilman Lenssen-Erz, African Research Center, University of Cologne, Germany

Anja Linstädter, Botanical Institute, University of Cologne, Cologne, Germany

Jörg Linstädter, African Research Center, University of Cologne, Germany

Gunter Menz, Department of Geography, University of Bonn, Bonn, Germany

Wilhelm J.G. Möhlig, African Studies Center, Leiden University, Leiden, Netherlands

Jochen Richters, Department of Ecology, Technische Universität Berlin, Berlin, Germany

Heiko Riemer, African Research Center, University of Cologne, Germany

Martin Rössler, Institute of Cultural and Social Anthropology, University of Cologne, Cologne, Germany

Thomas Widlok, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
List of Tables

Table 2.1 Archaeological attributes, which have been used for the main ordination matrix; abbreviations, categories, and number (n) of respective cases by region 66

Table 2.2 Environmental variables, which have been used for the secondary ordination matrix; abbreviations, categories, and number (n) of all classified locations for the background 67

Table 3.2 Comparison of the disturbance regime (1) in a near-natural savanna landscape (Etosha National Park), (2) in a landscape utilised according to pastoral-nomadic practice (Kaokoland), and (3) in an overutilised landscape (Kaokoland, close to permanent settlements). All landscapes are situated in northwestern Namibia. Some types of disturbances affect the tree layer (TL) and the grass layer (GL) to different degrees. Consequently, the recovery potential (i.e., the time required to return to the original state) also differs. Disturbance events with a high spatial extent and disturbance events with medium to low recovery potential are printed in bold 94

Table 3.3 Divergent economic objectives of different user groups in southern African savannas in relation to the ecological status. The ‘desired’ disturbance regime of a landscape is realised by specific management practices 96

Table 4.1 Number of samples for various subset sizes (e.g., 50 × 50 matrix) and percentage coverages for the three landscape units (UKH, ESC, and LKH) 111

Table 4.2 Variance of the first principal component (PCA1) and the cumulative values of principal components 1 through 5 ($\sum\text{PCA}_i$, $i = 1$ through 5) for varying subset sizes for the Upper Kunene Hills (UKH) and Lower Kunene Hills (LKH) study area (sample size is 30) 112

Table 4.3 Variance for the first principal component (PCA1) and cumulative values of principal components 1 through 5 ($\sum\text{PCA}_i$, $i = 1$ through 5) when varying coverage fractions
for the optimized subset sizes (from Table 4.2) for the study areas 114

Table 5.1 Cumulative evaporation rates per month after rainfall at the beginning of May (calculated on values from Dakhla; source of daily potential evaporation: Griffiths, 1972) 137

Table 16.1 Comparative List of Vowels 437
Table 16.2 Comparative List of Consonants 438
Table 16.3 Comparative List of Noun Classes 439
Table 16.4 Semantic Structure of Mountainous Areas in Otjiherero 443
Table 16.5 Terms Denoting Parts of River 446
Table 16.6 Terms Denoting Parts of River Embankment 447
Table 16.7 Terms Denoting Hippo Activities 447
Table 16.8 Semantic Structure of River Landscape in Rumanyo 448
Table 17.1 Feature Type 464
Table 17.2 Emphasised prototypical features (type PART) assigned to landscape entities in Mbukushu 465
List of Figures

Figure 0.1 Albrecht Altdorfer, Danube Landscape with Castle near Wörth (Courtesy Bildarchiv Preußischer Kulturbesitz) 4
Figure 0.2 Pieter Brueghel; The Fall of the Icarus (Courtesy Bildarchiv Preußischer Kulturbesitz) 5
Figure 0.3 Humboldt, ‘Geographie der Pflanzen in den Tropenländern’ (geography of plants in the tropic countries; Courtesy Bildarchiv Preußischer Kulturbesitz) 7
Figure 0.4 Panorama illustrating clearly discernible types and peculiar characteristics of landscape (Passarge, 1921) 8
Figure 0.5 Designed and undesigned German culture landscape. (Gröning & Wolschke-Bulmahn, 1987; Courtesy Lit.-Verlag) 10
Figure 0.6 Representation of a landscape of potential habitat (green) of the Mexican spotted owl (Strix occidentalis lucida) in the Southwest (United States) as an island model and a graph (Urban & Keitt, 2001; Courtesy Ecological Society of America, ESA) 12
Figure 0.7 Google-Earth presentation of the Darfur conflict (Courtesy Google-Earth in cooperation with the Holocaust Memorial Museum in Washington) 15
Figure 0.8 James Lyell’s discovery of the archival character of sediments (Lyell, 1830) 17
Figure 1.1 Relation between size and persistence of landforms as well as the approximate human impact (Changed after Dikau, 1988 and Ahnert, 1996) 46
Figure 1.2 Direction, type, strength of curvature, slope, extension, and height of landform elements (Adapted from Dikau, 1988) 48
Figure 1.3 Box model (schematic) of structural taxonomical elements as basis for the georelief classification 50
Figure 2.1 Archaeological sites within the Western Desert of Egypt recorded during archaeological surveys by B.O.S. and ACACIA (1980–2002). Displayed are three different spatial scale factors according to the scale discussion. 1: Landsat 5 image (30 m resolution); 2: ASTER image (15 m resolution); 3: Quickbird image (0.61 m resolution) 59
Figure 2.2 Archaeological sites and flow-accumulation in the Djara area. The flow-accumulation is derived from the digital elevation model. Clearly visible is the accumulation of sites along the main drainage line in the centre of the figure

Figure 2.3 Archaeological sites and flow-accumulation in the Regenfeld area. The flow-accumulation is derived from the digital elevation model. For better understanding the flow-accumulation raster is aggregated from 30 to 90 m pixel resolution. Clearly visible is the incidence of archaeological sites at the calculated dune penetration point

Figure 2.4 Histograms showing the distribution of the Topo-Index (see Table 2.2) values among sites with a certain age, or presence/absence of artefact types, against their background. OES – ostrich egg shell artefacts

Figure 2.5 Histograms showing the distribution of the Hydro-Index (see Table 2.2) values among sites with a certain age and presence/absence of artefact types, against their background. OES – ostrich egg shell artefacts

Figure 2.6 Triplot of the CCA, showing the ordination of prehistoric sites with respect to axes 1 and 2 from presence/absence of observations of archaeological remains. Artefact types are placed at their centroids in ordination space. Topo-Index is correlated with axis 1; Hydro-Index is correlated with axis 2. For details and abbreviations, see text

Figure 2.A1 ASTER spectral bands (top) compared to Landsat ETM+ (bottom). The rectangular boxes indicate the sensor channel with the respective spatial resolution on the top of the boxes. VNIR – visible and near infrared; SWIR – short-wave infrared; TIR – thermal infrared.

Figure 2.A2 Flow chart for further calculation

Figure 3.1 A visualization of the patch-corridor-matrix model. The matrix is the most extensive and most connected landscape component (Forman & Godron, 1986). Corridors are linear landscape elements, and patches are nonlinear landscape elements inserted into the matrix. In this visualization, patches of type 1 are connected by corridors, whereas patches of type 2 are not

Figure 3.2 Sizes and longevities of vegetation patch types in the savanna landscape of Serengeti National Park, Tanzania (After Belsky, 1989, p. 267)

Figure 3.3 The paradigm shift in savanna ecology between equilibrium/disequilibrium concepts (a)–(c) and the concept of ecological buffering mechanisms (d).
The first three concepts focus on the system’s behaviour within its boundaries: (a) stable equilibrium, (b) multiple steady states, and (c) unstable equilibrium. The new ecological buffering concept (d) focuses on the system’s boundaries, in particular the mechanisms that allow a savanna to persist in critical situations where the system is driven to its boundaries (After Jeltsch et al., 2000, p. 162)

Figure 3.4 The ecological status: reaction of species along a grazing gradient (Modified from Dyksterhuis, 1949, p. 109)

Figure 3.5 Stability and variance of landscape dynamics as a function of two ratios. On the x-axis, the spatial extent, which is the spatial relation between disturbance patch size and landscape area is given, on the y-axis, the recovery potential (i.e., the temporal relation between disturbance interval and recovery interval). The lines separate landscape types that display qualitatively different dynamics. These types are derived from regions of high or low standard deviation (SD) in the proportion of the landscape occupied by the mature stage of vegetation (Graph after Turner et al., 1993, pp. 219, 220)

Figure 4.1 MODIS satellite image mosaic of NW Namibia. True color composite compiled from images acquired between June and July 2001. Overlaid with geomorphologic data from the Digital Atlas of Namibia (2001) and the ‘Central Kaokoveld’ study area (red)

Figure 4.2 ASTER-based Digital Elevation Model (DEM) of the Central Kaokoveld as represented as a shaded relief image. Geomorphic boundaries of the three study areas UKH, ESC, and LKH are shown as modified from the Digital Atlas of Namibia (2001)

Figure 4.3 Expression of the landform types for the Lower Kunene Hills (LKH) as a result of the PCA analysis (size: 25 × 25 matrix and coverage: 25%)

Figure 4.4 Expression of the landform types for the Upper Kunene Hills (UKH) as a result of the PCA analysis (size: 50 × 50 matrix and coverage: 50%)

Figure 5.1 Map of northeast Africa showing the ACACIA sites (1–12) and other localities (13–17) mentioned in the text: 1, Djara; 2, Abu Gerara; 3, Abu Tartur; 4, Eastpans; 5, Meri; 6, Khufu; 7, Mudpans; 8, Abu Minqar; 9, Regenfeld; 10, Glass Area; 11, Wadi el-Bakht; 12, Wadi el-Akhdar; 13, Fayum; 14, Farafra; 15, Dakhla; 16, Bir Kiseiba; 17, Nabta Playa
Figure 5.2	Southeastern Great Sand Sea showing the study area of Regenfeld and distribution of excavated or surveyed sites (map outlined after Klitzsch et al., 1987)	122
Figure 5.3	Excavation 96/1–2 on the eastern fossil dune slope at Regenfeld playa in progress (view northeast). The playa is silted up to the lorry’s position, but covered with a thin layer of windblown sand. The lower edge of the shadow in the background approximately marks the foot of the steep active dune crest rising up to 50 m above the playa’s shoreline, and the underlying fossil dune shows a rounded body (taken December 1997)	123
Figure 5.4	Study area of Regenfeld showing the survey routes and the recorded sites in order of decreasing archaeological activities. Cumulative histograms of calibrated \(^{14}\text{C}\)-dates from the Eastern Sahara illustrating the occupational development and related climate change: A, Egyptian Western Desert curve; B, Regional curves from the Nile Valley and the Western Desert including the core desert of Mudpans and Regenfeld. Ticks on the y-scale indicate the mean values of individual dates	130
Figure 5.5	Regenfeld sequence showing the results of archaeobotanical and archaeozoological studies of the Regenfeld assemblages	132
Figure 5.6	Map of northeast Africa showing areas with permanent availability of groundwater and with relief favourable to frequent local groundwater during the Holocene	134
Figure 5.7	Map of Regenfeld playa showing the major physiographic units (cf. Figure 5.8)	136
Figure 5.8	Topographic map of Regenfeld playa showing the approximate edge of the playa and the distribution of sites and surface finds (based on tachymetric measurement in December 1996)	137
Figure 5.9	Provenience of raw material classes for stone artefact production found on the northern Regenfeld sites. Flint originated on the Eocene limestone formation back of the oases, quartzite and quartzitic sandstone most probably came from the south, and Libyan Desert Silica Glass (LDSG) provenienced in the Glass Area at the western margins of the Great Sand Sea (Klitzsch et al., and after a sketch by F. Klees)	139
Figure 5.10	The fall-off in artefacts made of Libyan Desert Silica Glass (LDSG) with increasing distance from its source	140
Figure 5.11 Lithic flake tool traditions in the southern Great Sand Sea and vicinities. Small arrowheads or dots indicate existence (not numbered) on survey sites or rare occurrence. Individual signature can incorporate several sites

Figure 5.12 Characteristic stone tools from Regenfeld: 1–7, elongated triangles and backed points; 8, blade core; 9, strangulated blade; 10–11, bifacial tools; 12–14, transversal arrowheads; 15, stemmed point; 16–17, upper grinders; 18–19, lower grinders

Figure 5.13 Number of grinding stones (upper and lower grinders) in Regenfeld assemblages

Figure 5.14 Map of northeastern Africa showing the distribution and age of early domesticated animals

Figure 5.15 Schematic profile of the southern Great Sand Sea landscape showing the possible landscape elements (physiographic units)

Figure 5.16 Campsite pattern: Number of stone tools (flake tools and grinders) in individual Regenfeld assemblages classified by different classes of artefact density

Figure 5.17 Campsite pattern: Setting of sites in different physiographic units in the Regenfeld area

Figure 5.18 Campsite pattern: Artefact classes found on Mid-Holocene sites of Regenfeld. Blank production includes production debitage and cores (OES = Ostrich Egg Shells)

Figure 6.1 Categorization of landscape relevant for landscape archaeology

Figure 6.2 Chaîne opératoire for landscape-archaeological research

Figure 6.3 Human needs as defined in the present study, correlated with the levels of Maslow’s pyramid of human needs (Maslow, 1970)

Figure 6.4 Analytical scheme of the relationship among resources, use potential, and human needs

Figure 6.5 Chronological sequence of the Gilf Kebir

Figure 6.6 Analysis of relations between use of resources and human needs for the archaeological phases Gilf B and Gilf C

Figure 6.7 Reconstruction of the Wadi Bakht landscape focusing on resources and use patterns during the phase Gilf B (c. 6500–4500 bce)

Figure 6.8 Specific matrix of relationships between use of resources and human needs of the prehistoric painters of the Brandberg/Daureb
Figure 6.9 A section of the Later Stone Age Brandberg/Daureb landscape indicating resources and reconstructing the use patterns in a schematic representation. Note that the ecotope did not undergo a change comparable to that of the Sahara (Photo: courtesy of H. Mooser) 188

Figure 6.10 Analysis of relations between use of resources and human needs for the Chad case study 190

Figure 7.1 Scheme of the landscape of the Nile Valley giving the topographical factors constituting the habitat of Ancient Egypt (Drawing by the author) 204

Figure 7.2 Sketch of the chapel of KA=j-m-nfrt with the line of reading the decoration (Drawing by the author) 214

Figure 7.3 Chapel of KA = j-m-nfrt, decorations of the north wall and the northern section of the east wall (Simpson, 1992: Plates A, G) 215

Figure 7.5 Chapel of KA = j-m-nfrt, decorations of the south wall (Simpson, 1992: Plate E) 218

Figure 7.6 Chapel of KA = j-m-nfrt, decorations of the west wall (Simpson, 1992: Plates C, B, D) 219

Figure 7.7 Sketch of the inner façade of the temple of Esna showing the scene-division (Drawing by the author) 221

Figure 7.8 Inner façade of the temple of Esna, offering scene (Photograph by Dagmar Budde, Mainz) 222

Figure 7.9 Decoration over the gate of the inner façade of the temple of Esna, showing the nocturnal sun personified by the god Khnum (Photograph by Dagmar Budde, Mainz) 223

Figure 8.1 Narrating the past. The Reverend Vilho Kaulinge interviewed by Patricia Hayes and Natangwe Laban Shapange, September, October 1989 229

Figure 8.2 How travellers may ascertain the breadth of a river, valley, or any distance of an object by taking an additional 60 paces and making reference to the Table for Rough Triangulation (Galton, 1864, p. 282) 241

Figure 8.3 Detail of the map to illustrate the routes of Francis Galton, 1852 243

Figure 8.4 Postcolonial landscape. Visit to the graves of the Kwanyama kings near Namakunde in southern Angola, officially designated as national patrimony, 1999 (Photographs Patricia Hayes) 250

Figure 9.1 Alte Feste (Old Fort) in Windhoek ±1906, with prisoner of war encampment in the foreground 259

Figure 9.2 Original caption: ‘Windhoek – View towards native quarter’ – View towards west showing Rhenish Mission Church with site of old location 260
List of Figures

Figure 9.3 View of Old Location 1930s; note the trees
(Steinhoff, 1938) 263
Figure 9.4 Destruction of the last structures in the Old Location 1967 265
Figure 9.5 Map illustrating the site of the Old Native Location
in Windhoek circa 1931 267
Figure 10.1 Map drawn by Monika Feinen, University of Cologne 278
Figure 10.2 Picture of Mangarangandja area with remains of the
golf course (Likuwa, 2005, p. 106) 283
Figure 11.1 The highlands in the regency of Gowa,
South Sulawesi (Photographed by Martin Rössler) 307
Figure 11.2 Individual experience of the landscape in
German romanticism: C. D. Friedrich: The Wanderer
Above the Sea of Fog, 1818 (Courtesy Hamburger Kunsthalle) 312
Figure 11.3 Panorama of two Kaoko hunters posed against landscape
(Courtesy National Archives of Namibia, A450 Hahn Collection) 317
Figure 12.1 Kinship relations of those involved in the ritual 333
Figure 12.2 Schematic presentation of the ritual homestead;
genealogy tied to ritual homestead 335
Figure 12.3 The ritual ground at Ombuku 335
Figure 12.4 Women wailing before setting off to the evaru 337
Figure 12.5 Women crawling to the ancestral fire in festive gear 338
Figure 12.6 Relationship between actor offering a sacrificial
oxen and ancestor commemorated 339
Figure 12.7 Reading the intestines 340
Figure 12.8 Oxen skulls displayed at a gravesite 341
Figure 12.9 Ancestral grave at Ombuku 342
Figure 12.10 Ovipande act as a symbolic device to memorise
larger ceremonies 346
Figure 12.11 Location of graves visited during one day’s evaru 347
Figure 13.1 Photo Pan (Ute Dieckmann, 2007) 358
Figure 13.2 Waterhole Okaukuejo by sunset (Ute Dieckmann, 2003) 360
Figure 13.3 Halali Koppsies from the main road
(Ute Dieckmann, 2002) 363
Figure 13.4 Extract of a cultural map, illustrating seasonal
mobility, Nububes in the south 364
Figure 13.5 Nububes (Ute Dieckmann, 2003) 366
Figure 13.6 Goat kraal at ||Nububes; some kraals at other
locations are easier to recognise (Ute Dieckmann, 2003) 367
Figure 13.7 Photograph of a travel account to Etosha (Heck 1955) 373
Figure 14.1 Topnaar Settlements (Desert Research
Foundation of Namibia) 387
Figure 14.2 Khomas Hochland after rain (Photo: N. Gruntkowski) 394
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3</td>
<td>Namib Desert at the lower !Khuiseb (Photo: N. Gruntkowski)</td>
<td>395</td>
</tr>
<tr>
<td>15.1</td>
<td>≠Akhoe Hai//om hunter-gatherers in northern Namibia moving camp</td>
<td>410</td>
</tr>
<tr>
<td>15.2</td>
<td>Basic elements of permeability maps</td>
<td>412</td>
</tr>
<tr>
<td>15.3</td>
<td>≠Akhoe Hai//om dry-season camp (mapped in Figure 15.6)</td>
<td>414</td>
</tr>
<tr>
<td>15.4</td>
<td>Ground plan of an Owambo homestead. P = Passage, 9 = meeting place (olupale), 31–35 = huts of the homestead head; all other numbers refer to quarters occupied by wives and children, visitors, and livestock (for more details see Widlok, 1999c)</td>
<td>415</td>
</tr>
<tr>
<td>15.5</td>
<td>Permeability map of the homestead shown in Figure 15.4. + indicates a ‘carrier’ (e.g., a visitor) who enters the settlement. In order to reach the meeting place (9) the visitor has to go through a number of separate passages and entrance spaces in order to move on to the sleeping hut of the household head (33); there are more passages to pass through as well as an anteroom (22) and the daytime living rooms of the household head (31, 32). By contrast, there are a number of ways that can take an outside visitor to the meeting place (either via the boys’ huts 57–59 and the cattle enclosures 60–63 or alternatively via waiting huts 67–69 and or past the wives’ quarters 44–49 and 70–71); see also Hillier and Hanson (1984) and Widlok (1999c)</td>
<td>416</td>
</tr>
<tr>
<td>15.6</td>
<td>Permeability map of a ≠Akhoe Hai//om dry-season camp</td>
<td>417</td>
</tr>
<tr>
<td>15.7</td>
<td>The meeting place olupale/olupare</td>
<td>419</td>
</tr>
<tr>
<td>15.8</td>
<td>Ground plan of a ≠Akhoe Hai//om wet-season camp</td>
<td>420</td>
</tr>
<tr>
<td>15.9</td>
<td>Permeability map of a ≠Akhoe Hai//om wet-season camp</td>
<td>421</td>
</tr>
<tr>
<td>15.10</td>
<td>Owambo homestead in northern Namibia</td>
<td>422</td>
</tr>
<tr>
<td>17.1</td>
<td>Recent Hambukushu settlement area (Graphic: Monika Feinen)</td>
<td>457</td>
</tr>
<tr>
<td>17.2</td>
<td>Conceptual transfer from concrete to abstract entities (Heine et al., 1991:48)</td>
<td>460</td>
</tr>
<tr>
<td>17.3</td>
<td>Conceptual transfer: the case of ndundu (Graphic: Monika Feinen)</td>
<td>462</td>
</tr>
<tr>
<td>17.4</td>
<td>Conceptual transfer: the case of ditondo (‘deep part of the river’) (Graphic: Monika Feinen)</td>
<td>463</td>
</tr>
<tr>
<td>17.5</td>
<td>Conceptual hierarchy of landscape entities</td>
<td>468</td>
</tr>
<tr>
<td>18.1</td>
<td>The Omerangura mountains in Opuwo – ‘where Kazu went through’ (Bleckmann, 2005)</td>
<td>474</td>
</tr>
<tr>
<td>18.2</td>
<td>Praises of places</td>
<td>481</td>
</tr>
<tr>
<td>18.3</td>
<td>Mountain pass of Otjikotoona (3D-satellite image [Landsat, SRTM] subproject E1, CRC 389)</td>
<td>483</td>
</tr>
<tr>
<td>Figure 18.4</td>
<td>Ehomba mountain (3D-satellite image [Landsat, SRTM] subproject E1, CRC 389)</td>
<td>484</td>
</tr>
<tr>
<td>Figure 18.5</td>
<td>Omuhiva (3D-satellite image [Landsat, SRTM] subproject E1, CRC 389)</td>
<td>488</td>
</tr>
<tr>
<td>Figure 18.6</td>
<td>Spring in Omuhiva: ‘at the spring of Nanganga’ (Bleckmann, 2005)</td>
<td>489</td>
</tr>
<tr>
<td>Figure 18.7</td>
<td>Cattle ombambi</td>
<td>490</td>
</tr>
<tr>
<td>Figure 18.8</td>
<td>Map illustrating the spatialisation of collective memory</td>
<td>495</td>
</tr>
<tr>
<td>Figure 18.9</td>
<td>Epupa: ‘at the brownish and reddish hills’ (Bleckmann, 2005)</td>
<td>496</td>
</tr>
</tbody>
</table>
In the following chapter I trace the history of the landscape concept. I especially focus on the tradition of the landscape concept in German thought, mainly because I think that the changing interpretations of the concept and the multiple layers of meaning are rewarding to an archaeology of landscape concepts. The landscape concept in German thought resounds with ambiguities and puts the risks of ideological cooptation into focus. In contrast to this the meaning of landscape seems to have been more stable in the English and French tradition. On the other hand the German landscape concept has profoundly influenced the thinking about landscapes in diverse sciences. Franz Boas for example took on the idea of the landscape from Herder and the early nineteenth century geographer Carl Ritter (Boas, 1887, pp. 137ff.), who both opted for a holistic approach to human–environment relations and the historical dimension of these relations.

The idea that a peculiar landscape, a people, and its history were intimately linked and unique became a key idea in early twentieth century U.S. anthropology. The founding father of academic German geography, Friedrich Ratzel, had a profound effect on Frederick Jackson Turner’s ideas on the relation amongst geology, biology, and history (N. Finzsch, personal communication, 2007). Ratzel (1882/1891) had argued in his two volumes on anthropogeography that human societies can only be successful as long as they adapt to geophysical givens of specific landscapes. Turner applied these ideas to his historical model of the American frontier (Turner, 1920) which was largely influential in American historiography. Phenomenological approaches to landscapes such as advocated by one of the founding fathers of U.S. American geography, Carl O. Sauer (see Sauer,
1925), are linked to similar approaches in German geography (see, e.g., Hettner, 1923, but also earlier writers such as Carl Ritter).

Carl Troll, a highly influential geographer in Germany between the 1930s and 1960s coined the term landscape ecology (Lauer, 1976) in an attempt to re-focus the concept, which had been tarnished with fascist and racist ideas during the early decades of the twentieth century. Influenced by aerial photographs that, for the first time, were available with a wide coverage, he underlined a natural sciences perspective to landscapes and saw the analysis of flows and feedback loops between different elements of the system as the key to the analysis of landscapes (Troll, 1970).

1. ETHYMOLOGY

Today we are confronted with two rather dissimilar definitions of the term landscape: whereas the Oxford English Dictionary explains landscape as ‘view’, ‘prospect’, and ‘representation’ of ‘natural inland scenery’, a standard German dictionary (Duden Wörterbuch) defines the German word Landschaft as ‘part, section of land surface . . . shaped in a particular way with regard to its external appearance.’ (quoted after Luig & von Oppen, 1997, p. 9). Much of the recent debate on this term gives evidence of a cleft between naturalistic and mentalistic approaches and I spend some time explaining from where the different meanings come. During the past 1000 years the concept was enriched with various layers of meaning linking political, ecological, and cognitive aspects of human–environment relations and through the course of history the landscape concept has absorbed meanings in different European historical contexts.

The term Landschaft (landscape) is derived from the Germanic verbal abstract *skapi which can be translated with composition or nature, *skapi itself being derived from skapjan, to create (Müller, 1977, p. 4). Words to which the verbal abstract was attached were either abstract nouns, collective nouns, or expressions of spatiality such as the old English burhscipe (urban area) or nidscipe (badness) or the old Saxon term heriskepi, as part of a territory. In old German the term landscaf alluded to the quality of a larger settlement area (Müller, 1977, p. 6). It then referred to the social institutions of an area and in an extended meaning to the land in which such norms were adhered. There is little evidence that the old German landscaf referred to natural features of a settlement area. In several medieval texts landscaf is used as a translation for the Latin term provincia. Notker (ad 950–1022), a monk working from St. Gallen, defines landscaf as ‘provincia is diu lantscaf. Regio dû gibûrda. Mâmage regions mugen sîn in êinero prouincia.’ (transl.: ‘Provincia is the landscape. Regio is the inhabited land/landscape. Several regions can constitute a province’, quoted after Müller, 1977, p. 6). In contrast to this the Latin term terra referring to the earth’s surface, is rarely translated with lantscaf. Already in medieval German the older meaning of norms and standards of a people shaping (creating) a particular lant,
was gradually replaced by a new use of the term. Then \textit{lantschaft} referred to the knights and/or the political elite of a given area. In Gottfried of Straßburg’s \textit{Tristan} (1980, p. 394) the narrator, for example, says ‘\textit{Do kom al die lantschaft/und volkes ein so michel kraft}’ (transl. ‘There came all the knights of the region and so many people’) thereby clearly juxtaposing the \textit{lantschaft} (the knights of the region) from the \textit{volk} (the people). From here it was just a small step to the late medieval use of the term as ‘council of estates’ or ‘council of political representatives of an area’. In the German language this meaning of \textit{landschaft} was retained well into the nineteenth century and a dictionary from the 1830s (\textit{Allgemeine deutsche Realencyklopädie,} 1830, p. 427) still gives this meaning.

During the Renaissance the content of the term changes once again. During the early Renaissance in Northern Italy urban elites attached strong aesthetic connotations to adjoining rural areas and a special way of painting landscapes emerged (Luig & von Oppen, 1997, p. 10; Daniels & Cosgrove, 1988, p. 5), which subjects were rural scenes, nature as viewed by urban elites. Whereas in the Middle Ages landscapes had remained in the background of paintings and had been reduced to allegoric representations, in the early sixteenth century landscapes became the focus of paintings. It is first in the southwest of Germany that landscape (\textit{landschafft}) takes this alternative aesthetic meaning. In 1525 Albrecht Altdorfer painted \textit{Donaulandschaft mit Schloss bei Wörth} (Danube Landscape with Castle near Wörth) which is reckoned to be the first painting which has a landscape as its sole focus (see Figure 1). It is perceivable that during this period the concept landscape gained a new meaning, implicating the view of a detached but interested observer in a rural landscape.

New technical aids such as the \textit{camera obscura} and the \textit{velum} were used to create a three-dimensional space and to depict landscapes in perspective. Furthermore the development of oil painting in the Netherlands allowed for a more intense portrayal of the play of light and shadow in a landscape. From the middle of the sixteenth century Dutch landscape painting flourished connected to names such as Pieter Brueghel and Hieronymus Bosch in an older school of landscape painters and van Goyen and van Ruisdael in a later school of landscape artists. The Dutch use of landscape (\textit{landschap}) in connection with artistic but naturalistic depictions of landscapes is then transported into English, where we find this use of the term during the latter part of the sixteenth century (Hirsch, 1995, p. 2; Forman & Godron, 1986, pp. 5ff.). Whereas in German alternative meanings of landscape coexisted, in English landscape took on the meaning of a visual representation of rural scenery.

Whereas the aesthetic use of the term dominated in English, in the German language the term also became applied to segments of the earth and closely tied to what was conceptualised as nature. Luig and von Oppen (1997, p. 12) point out that at the same time the concept ‘nature’, originally describing the quality of something, became an abstract singular denoting prediscursive aspects of life and was conceptualised as an antidote to culture (see also Casimir, 2007). This wedge between nature and culture then became an essential part of the landscape
concept over the next centuries. Only when nature was differentiated from culture on epistemological grounds could the landscape concept take on connotations of natural structures and processes. Josuua Maaler’s Latin dictionary edited in 1561

Figure 0.1. Albrecht Altdorfer, Danube Landscape with Castle near Wörth (Courtesy Bildarchiv Preußischer Kulturbesitz) (See also Color Plates)
in Zürich takes landschaft as land (in contrast to water) and translates the term with the Latin tractus which is a smaller well-defined spatial unit (Müller, 1977, p. 9) (and not with provincia as with Notker some 500 years earlier). Parallel to landscape painting, cartography became another, scientific way to approach and represent the structures and details of landscapes in the sixteenth and seventeenth centuries (on the development of cartography as an early branch of geography see Bagrow & Skelton, 1964; Harley & Woodward, 1987; Burnett, 1999; see also Figure 2).

Bollig and Heinemann (2002) trace, for the southwestern part of the African continent, how maps containing fictitious and narrated elements characteristic for the seventeenth and eighteenth centuries were replaced by more naturalistic maps during the second part of the nineteenth century.

An aesthetic interpretation of the landscape concept prevailed and during the Romantic period, landscape representations were not only popular in writing, painting, and music (Kuzniar, 1988) but also became imbued with a specific morality. Landscape was good to think about and – in contemporary terms – allusions to one’s rootedness in the landscape were politically correct. Especially in Germany landscape poetry became emblematic for the political movement propagating a German national identity. Whereas earlier Renaissance paintings had mainly portrayed encultured landscapes with buildings and other signs of human settlement, now wilderness as much as settled landscapes became topics for popular presentations.

Figure 0.2. Pieter Brueghel; The Fall of the Icarus (Courtesy Bildarchiv Preußischer Kulturbesitz) (See also Color Plates)
Landscape painters of the Romantic period sought the sublime in landscapes; rarely were their paintings meant to be objective representations of landscapes (Kuzniar, 1988). They were meant to symbolise transcendent relations between humans, God, and nature and were media for introspection and religious experience and on the other hand, Romantic landscape paintings contained implicit political messages: German nationalism, for example, finds its expression in the choice of special landscapes or landscape elements (e.g., oak, fir tree). Tieck’s description of the Alps or Caspar David Friedrich’s paintings of rural scenes (Körner, 1995, see also Rössler, this volume) described awe-inspiring nature and pointed out correlations between human emotions, national identity, and particular features of a landscape. Landscapes were imbued with a political meaning as ideas on the agreement between the character of a nation and the features of the landscape it inhabited became prominent (see, e.g., Heinrich von Kleist, Clemens Brentano in Apel, 2000).

The link between landscape and identity became a salient topic of the arts but also of discourses in incipient academic disciplines such as history and geography. Von Humboldt used the concept in the 1840s as an umbrella term to describe the ‘totality of a part of the earth’ (Humboldt, 1845) and pleaded for a naturalistic approach to landscapes. His landscape depictions contained many scribblings specifying elevation, topography, and vegetation (see Figure 3).

In the 1880s Grimm and Grindel (1885, p. 131) defined *Landschaft* as (1) region, land complex in relation to its position and natural characteristics and (2) the artistic representation of such a region (Grimm & Grindel, 1885, p. 131). Luig and von Oppen (1997, p. 11) argue that at the turn of the twentieth century landscape identities in Europe became popularised and politicised, when at the same time the landscape concept was elevated to a key concept of scientific geoeconomic enquiry. Whereas in the German language the natural sciences approach to the landscape concept came to coexist with a politicised (landscape as identity) and with an artistic and at times metaphysical meaning (landscapes as reflection of transcended or psychological realities), in the English language the artistic meanings of the term predominated clearly (as it did in French).

The German geographer Hard (1969) made an effort to account for the rise and the demise of the landscape concept in various disciplines in Western Europe since the late nineteenth century. He sampled titles of books and articles which had incorporated the landscape concept and then counted the different types of meanings that occurred. An initial finding showed that since the 1880s the use of the landscape concept had increased rapidly. Apparently the concept was enthusiastically embraced by intellectuals with a background in the humanities. Only since the 1920s did geography as a discipline take on the cover term as a leading concept. Taking off from the perspective Alexander von Humboldt had cherished, Passarge (1921) and Hettner (1923) developed *Landschaftskunde* – although with different approaches – to a dominating branch of geography. They looked for clearly discernible types of landscape and tried to understand their peculiar characteristics (see also definition of *Landschaft* in Meyers Lexikon, 1939, p. 210). Passarge (1921, p. 217) emphasises the natural components of the landscape and maintains that a landscape is established by features of the ‘solid earth
Figure 0.3. Humboldt, ‘Geographie der Pflanzen in den Tropenländern’ (geography of plants in the tropic countries; Courtesy Bildarchiv Preußischer Kulturbesitz) (See also Color Plates)
surface’ (*feste Erdrinde*; topography, rock stratum, soils, and climate). A landscape in Passarge’s methodology is set up by various discernible parts (see Figure 4).

Hettner (1923) criticises Passarge for only focussing on inorganic nature and vegetation when discussing landscapes and proposes that human interaction with geoeccological processes must be part of the landscape analysis. The differentiation between cultural and natural landscapes became a major classificatory achievement of this period (see especially Sauer, 1925). Hard shows that in Germany between 1910 and 1940 landscape became a dominant concept in the humanities, in geography, and in artistic presentations. Progressively the landscape concept was (mis)used to present the vitality and forces connecting a physical landscape

Figure 0.4. Panorama illustrating clearly discernible types and peculiar characteristics of landscape (Passarge, 1921)