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Preface

While we were busy putting together the present collection of articles celebrating
the twentieth birthday of our journal, Discrete & Computational Geometry, and, in
a way, of the field that has become known under the same name, two more years
have elapsed. There is no doubt that DCG has crossed the line between childhood
and adulthood.

By the mid-1980s it became evident that the solution of many algorithmic ques-
tions in the then newly emerging field of computational geometry required classical
methods and results from discrete and combinatorial geometry. For instance, visibility
and ray shooting problems arising in computer graphics often reduce to Helly-type
questions for line transversals; the complexity (hardness) of a variety of geometric
algorithms depends on McMullen’s upper bound theorem on convex polytopes or on
the maximum number of “halving lines” determined by 2n points in the plane, that
is, the number of different ways a set of points can be cut by a straight line into two
parts of the same size; proximity questions stemming from several application areas
turn out to be intimately related to Erdős’s classical questions on the distribution of
distances determined by n points in the plane or in space.

On the other hand, the algorithmic point of view has fertilized several fields of con-
vexity and of discrete geometry which had lain fallow for some years, and has opened
new research directions. Computing the convex hull or the diameter of a point set, or
estimating the volume of a convex body or the maximum density of a packing of trans-
lates of a given convex body, has motivated a wide range of exciting new questions
concerning classical concepts in discrete geometry. Motion planning problems have
triggered the systematic study of the “combinatorial complexity” of the boundary of
the union of geometric objects, and hence the development of Davenport–Schinzel
theory, the use of epsilon-nets, Vapnik–Chervonenkis dimension, and probabilistic
techniques. Similar methods have been needed for range searching, and this has also
led to a renaissance of geometric discrepancy theory.

In the last two decades, DCG has provided a common platform for mathematicians
working in the theory of packing and covering, and in convexity and combinatorial
geometry, as well as for computer scientists interested in computational geometry,
computational topology, geometric optimization, graph drawing, motion planning,
and so on. In fact, exceeding all the expectations of its editors, the journal has served



viii Preface

as an effective catalyst in the creation of a new generation of researchers working on
the common borderline between mathematics and computer science.

The present selection of 28 exceptionally strong articles, many of which solve
longstanding open problems, reflects the current state of our subject, its many differ-
ent facets, and its strong links to other important disciplines.

Nevo and Barvinok–Novik study problems related to Barnette’s Lower Bound
and McMullen’s Upper Bound Theorem, respectively. Nagel gives a proof of the
Kalai–Kleinschmidt–Lee conjecture for the maximum number of empty simplices
in a simplicial polytope. Miller–Pak and Damian–Flatland–O’Rourke prove the ex-
istence of nonoverlapping unfoldings of certain manifolds. Billera–Hsiao–Provan
construct nearly polytopal CW spheres with special properties. Khachiyan–Boros–
Borys–Elbassioni–Gurvich show that generating all vertices of a polyhedron is a hard
problem. Braun establishes improved estimates for the roots of Ehrhart polynomials
of lattice polytopes. Przesławski–Yost give new conditions for the decomposability
of polytopes as a Minkowski sum, while Richardson–Vu–Wu describe the asymp-
totic behavior of certain random polytopes.

Schreiber–Sharir design optimal shortest path algorithms on polytopes. Niyogi–
Smale–Weinberger show how to find the homology of the underlying submani-
fold of a probability distribution with high confidence. Basu–Zell establish new
bounds on Betti numbers of projections of semialgebraic sets. Efficient algorithms
for snap rounding in pixel geometry and for computing optimal embeddings of paths,
trees, and cycles in two and three dimensions are presented by Hershberger and
by Agarwal–Klein–Knauer–Langerman–Morin–Sharir–Soss, respectively. Agarwal–
Har–Peled–Yu apply coresets to design approximation algorithms to shape fitting.
Shewchuk generalizes constrained Delaunay triangulations to higher dimensions,
while Boissonat–Cohen–Steiner–Vegter find the first provably correct implicit sur-
face meshing algorithm, where the mesh is isotopic to the surface.

Ackerman–Buchin–Knauer–Pinchasi–Rote and Gerken solve Murty’s and Erdős’s
many-decade-old problems for finite point configurations. Pfender proves that every
finite graph can be obtained as the visibility graph of a rational point set in the plane,
while Pelsmajer–Schaefer–Štefankovič construct the first examples showing that the
crossing number of a graph is not necessarily the same as its odd-crossing number.
Aliev uses convex geometry to make progress on an old Erdős–Moser problem in
additive number theory. Lee–Solomyak use dynamical systems to answer a ques-
tion of Lagarias on Delone sets. Gronchi–Longinetti solve an extremal problem for
polygons that plays a role in X-ray tomography. Bárány–Hubard–Jerónimo, Borcea–
Goaoc–Petitjean, and Cheong–Goaoc–Holmsen–Petitjean solve various hyperplane-
and line-transversal problems in Euclidean spaces.

Discrete & Computational Geometry saw the light of day in 1986, and this vol-
ume celebrates its majority. By now, the field, which has become inseparable from the
journal, has acquired its own characteristics, its own methodology and toolbox. Deep
connections have been discovered between its basic problems and many other fields of
mathematics and computer science, such as additive combinatorics, topology, real al-
gebraic geometry, randomized algorithms, and data structures. The field has its annual
conferences: the ACM Symposia, the Fall Workshops, and the European Workshops
on Computational Geometry, and a biennial meeting in Schloss Dagstuhl. Established
research institutes such as DIMACS, MSRI, and IPAM regularly run special semester
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programs dedicated to the subject, and Oberwolfach sponsors a meeting every few
years. We have several excellent textbooks for teaching discrete and computational
geometry, not to mention two comprehensive handbooks. The “genie” has been let
out of the bottle. Its movements and actions are now largely independent of the origi-
nal intentions of its “creators,” who include the founding editors of DCG. It has been
a tremendous pleasure and honor to edit the journal, to watch it grow alongside the
field proper, and to serve the community built around it. Our everlasting gratitude
must also go to the late Walter Kaufmann-Bühler, who had the foresight to accept our
original invitation to Springer-Verlag to publish a journal in this new field.

We dedicate the present volume to the members of the very active and gifted com-
munity of researchers who have taken part in the development of the field during the
past more-than-two decades; many of them are represented in its pages.

New York, Jacob E. Goodman
July 2008 János Pach

Richard Pollack

We would like to express our appreciation to those who helped us gather the pho-
tographs that appear in this volume: Ludwig Danzer, Wlodek Kuperberg, Ina Mette
and Ute Motz (of Springer), Willy Moser, Lori Smith, Emo Welzl, and Jörg M. Wills.



Walter Kaufmann-Bühler, Mathematics Editor, Springer-Verlag 
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There Are Not Too Many Magic Configurations

Eyal Ackerman · Kevin Buchin ·
Christian Knauer · Rom Pinchasi · Günter Rote

Abstract A finite planar point set P is called a magic configuration if there is an
assignment of positive weights to the points of P such that, for every line l determined
by P , the sum of the weights of all points of P on l equals 1. We prove a conjecture
of Murty from 1971 and show that if a set of n points P is a magic configuration,
then P is in general position, or P contains n− 1 collinear points, or P is a special
configuration of 7 points.

Keywords Magic configuration · Euler’s formula · Discharging method ·Murty’s
conjecture · Points · Lines · Euclidean plane

1 Introduction

Let P be a finite set of points in the plane. P is called a magic configuration if there
is an assignment of positive weights to the points of P such that, for every line l

determined by P , the sum of the weights of all points of P on l equals 1. Figure 1
shows an example of a point set that is a magic configuration. This special point
set (and any projective transformation of it) is called a failed Fano configuration.

The research by Rom Pinchasi was supported by a Grant from the G.I.F., the German-Israeli
Foundation for Scientific Research and Development.

E. Ackerman
Computer Science Department, Technion—Israel Institute of Technology, Haifa 32000, Israel
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2 There Are Not Too Many Magic Configurations

Fig. 1 Failed Fano
configuration

We prove a conjecture of Murty [8] saying that apart from failed Fano configurations,
every set of n points that is a magic configuration is either in general position, or
contains n− 1 collinear points. A few other remarks on the history of the problem
can be found in The Open Problems Project [2].

Theorem 1 There do not exist magic configurations of cardinality n, other than

• Configurations with n− 1 collinear points, or
• Configurations in general position, that is, with no three points on a line, or
• A configuration with 7 points that up to a projective transformation is depicted in

Figure 1

We will now make some preliminary observations regarding magic configurations.
Many of these observations can be found already in Murty’s paper [8].

Assume that a configuration P of n ≥ 2 points in the plane is magic and that its
points are assigned positive weights that witness the fact that P is magic. Recall that
a line determined by P is called ordinary if it includes precisely two points of P .
By Gallai–Sylvester theorem [4, 10], the points of P must determine an ordinary line
unless they are all collinear.

We claim that unless P has n−1 collinear points, then for every point p ∈ P there
is an ordinary line not passing through p. Indeed, otherwise, by the theorem of Kelly
and Moser [6], the set P \ {p} determines at least 3

7 (n − 1) ordinary lines (see [1]
for the current best bound on the number of ordinary lines determined by n points).
Clearly all these lines must be passing through p. It follows that at most 1

7 (n − 1)
points of P \ {p} lie on an ordinary line through p and these are all the ordinary lines
determined by P , contradicting the Kelly–Moser theorem.

It is now easy to see that unless P has n− 1 collinear points, every point through
which there is an ordinary line must be assigned the weight 1

2 . To see this assume that
p is such a point and assume without loss of generality that it is assigned a weight that
is greater than 1

2 (otherwise look at the other point on the ordinary line through p).
Let q and r be two points different from p that constitute an ordinary line in P . One
of q and r is assigned a weight greater than or equal to 1

2 . The sum of the weights
assigned to the points on the line through that point and p will be strictly greater
than 1, a contradiction.

Denote by A the set of all points in P through which there is an ordinary line,
and assume that P does not have n − 1 collinear points. Then each point in A is
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Fig. 2 Duality between the
plane and the unit sphere

(a) The dual D(p) of a point p is the great circle that is the

intersection of S with the plane through the center of S that is

perpendicular to the line through p and the center of S

(b) The dual D(l) of a line l is the pair of antipodal points that

are the intersection points of S and the line through the center

of S that is perpendicular to the plane through l and the center

of S

assigned a weight of 1
2 . It follows that any line through two points in A must be

ordinary. Observe that |A| ≥ 3, as any noncollinear set of points determines at least
3 ordinary lines (see [6]) and this would be impossible if |A| ≤ 2. Denote by B the
set P \A. Clearly, every point in B must be assigned a weight that is strictly smaller
than 1

2 . Indeed, let b ∈ B and a ∈A. The line through a and b cannot be ordinary for
otherwise b ∈ A. Therefore it must contain a third point c. As the weight assigned
to a is 1

2 , it follows that the weight assigned to b can be at most 1
2 minus the weight

assigned to c.
Theorem 1 will therefore follow from the following theorem.

Theorem 2 Let A and B be two nonempty sets of distinct points in the Euclidean
plane such that |A| ≥ 3. Assume that all the ordinary lines determined by A∪B are
precisely all the lines determined by two points of A. Assume further that every point
in A ∪ B is assigned a positive weight such that the sum of the weights of all points
on any given line determined by A ∪ B is 1. Then the configuration of points A ∪ B

is a failed Fano configuration that is equal, up to a projective transformation, to the
one shown in Fig. 1, where A consists of the points whose weight is 1

2 .
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Fig. 3 A set of lines that
corresponds to the exceptional
configuration of Theorem 3

Instead of proving Theorem 2 we will prove its dual theorem on the sphere. We
refer here to the standard duality under which the dual D(p) of a point p in the plane
is a great circle on the unit sphere S that touches the plane at the origin. The dual
D(l) of a line l in the plane is a pair of antipodal points on S . For a point p in the
plane, D(p) is the great circle on S which is the intersection of S with the plane
through the center of S that is perpendicular to the line through p and the center of S
(see Fig. 2a). For a line l in the plane, D(l) is the pair of antipodal points that are the
intersection points of S and the line through the center of S that is perpendicular to
the plane through l and the center of S (see Fig. 2b). This duality preserves incidence
relations in the sense that if p is a point in the plane that is incident to a line l in the
plane, then D(p) is a great circle on S that is incident to the two points of D(l). Recall
that given an arrangement of curves, an ordinary intersection point is an intersection
point through which precisely two curves pass.

Theorem 3 Let A and B be two nonempty sets of distinct great circles on a sphere
S such that |A| ≥ 3. Assume that all the ordinary intersection points determined by
A∪B are precisely all the intersection points determined by A. Assume further that
every circle in A∪B is assigned a positive weight such that the sum of the weights of
all circles incident to any given intersection point on S is 1. Then the configuration
of circles A ∪ B is the sphere-dual of a failed Fano configuration that is equal, up
to a projective transformation, to the one shown in Fig. 1. The set A consists of the
circles dual to the points whose weight is 1

2 .

Figure 3 shows a projection to the plane of the exceptional configuration of Theo-
rem 3. The projection is a central projection through the center of S on a plane that
touches S . Under this projection every two antipodal points on S are projected to the
same point in the plane.

2 Proof of Theorem 3

We refer to the circles in A as red circles and to the circles in B as blue circles.
We remark that in all the next figures in this paper the solid lines represent the blue
circles, while the dashed lines represent the red circles.

For every circle s ∈ A ∪ B , let W(s) denote the weight assigned to s. As we
observed, for every s ∈A we have W(s)= 1/2, and for every s ∈ B , 0 <W(s) < 1/2.
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Table 1 Charge of objects of B before and after Steps 1–4

object of B ch(·) ch1(·) ch2(·) ch3(·) ch4(·)

bad crossing point −1 0 0 0 0

good crossing point ≥0 ≥0 ≥0 ≥0 ≥0

bad (but not evil) triangle 0 0 −1/4 ≥0 ≥0

evil triangle 0 0 −1/4 −1/4 0

0-quadrangle 1 1 ≥0 ≥0 ≥0

1-quadrangle 1 ≥0 ≥0 ≥0 ≥0

good 2-quadrangle 1 ≥0 ≥0 ≥0 ≥0

bad 2-quadrangle 1 −1 0 0 0

0-pentagon 2 2 ≥3/4 ≥0 ≥0

1-pentagon 2 ≥1 ≥3/4 ≥1/2 ≥1/2

2-pentagon 2 ≥0 ≥0 ≥0 ≥0

r-(k-gon) , k ≥ 6, r ≤ � k2 � k− 3 ≥k − 3− r ≥ 3
4 k− 3− r

2 ≥ 1
2 k− 3 ≥ 1

2 k − 3

We consider the arrangement B of the circles in B on the sphere S . For every face
f in B, the size of f is the number of edges of the face f . We will use the term
‘triangle’ for a face of size three, the term ‘quadrangle’ for a face of size four, etc.
Two faces in B are called adjacent, if they share an edge. Similarly, two edges in
B are called adjacent, if they are incident to the same crossing point. A great circle
s ∈ B and a face f of B are called adjacent, if s includes an edge of f . We begin by
assigning a charge ch(·) to the faces and vertices of the arrangement B: The charge
of a face of size k is k − 3, while the charge of a crossing point of exactly k blue
circles is k− 3. For every k ≥ 2 denote by fk the number of faces in B of size k, and
by tk the number of crossing points of exactly k blue circles. It follows from Euler’s
formula that

∑
k(k − 3)fk +∑k(k − 3)tk + 6 = 0. Therefore, the overall charge is

−6. Observe that any crossing point on a circle b ∈ B , even with a circle in A, is a
crossing point in B. Indeed, otherwise either it is an ordinary intersection point on b,
or it is an intersection point that is not ordinary of at least two circles in A.

Our plan is to redistribute the charges (discharge) in four steps, such that finally
every face and crossing point in B will have a nonnegative charge. Then it will follow
that the total charge is nonnegative, hence a contradiction. For each i = 1,2,3,4
we will denote by chi(·) the charge of an object (a face in B or a crossing point of
blue circles) after the ith step. For convenience, Table 1 summarizes the charges of
selected objects from B through the four steps of discharging.

Note that the only elements whose initial charge is negative are crossing points
through which there are precisely two blue circles. We call such a crossing point bad.
Observe that there are no faces of size two in B. Indeed, otherwise all blue circles pass
through the same two antipodal points p and p′ on the sphere S . As |A| ≥ 3, there is
a circle in A not passing through p, and hence also not through its antipodal point p′.
This circle intersects the circles in B in ordinary intersection points, a contradiction.

The following claim and its corollary will be useful throughout the analysis of the
discharging steps.
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Fig. 4 d is adjacent to two
triangles at two of its opposite
edges

Claim 4 Assume that there is a quadrangle d in B such that there are precisely two
blue circles through every vertex of d , and d is adjacent to two triangles at two of its
opposite edges. Then A∪B is the sphere-dual of a failed Fano configuration.

Proof Let t1 and t2 denote the two triangles adjacent to d at two of its opposite edges.
Let s1, s2, s3. and s4 denote the four blue circles that include the edges of d in the
counterclockwise order so that s1 and s3 separate d from t1 and t2, respectively. Let
x1, x2, x3, and x4 denote the four vertices of d listed in the counterclockwise order so
that x1 is the intersection point of s1 and s2. Since s1 and s2 are the only blue circles
through x1 and s4 and s1 are the only blue circles through x4, it follows that s2 and s4
meet at a vertex of t1 that we denote by x5. Similarly, s2 and s4 meet at a vertex of t2
that we denote by x′5. x5 and x′5 are therefore two antipodal points on the sphere S .
Therefore, x1, x2, x5 and their antipodal points on S are the only intersection points
on s2.

Since there are precisely two blue circles through x1, there must be a red circle
passing through x1. We denote this red circle by r1. r1 cannot cross t1 and therefore
it must cross d . Evidently, r1 must pass through x3. Similarly, there is a red circle r2
passing through x2 and x4. As |A| ≥ 3, there is a third red circle in A that we denote
by r3. r3 and s2 cannot cross at any other point but x5 (and hence also x′5). It follows
that there are precisely three red circles in A since a fourth red circle would have to
cross s2 at a point through which one of r1, r2, or r3 passes.

We claim that s1, s2, s3, and s4 are the only blue circles in B . Indeed, all other
blue circles s5, . . . , sk must cross s2 and s4 at x5 (and hence also at x′5). None of
r3, s5, . . . , sk can cross s1 at x1 or x4, and only one can cross s1 at the intersection
point of s1 and s3. Moreover, no two of r3, s5, . . . , sk cross s1 at a common point.
It follows that one of r3, s5, . . . , sk must cross s1 at an ordinary intersection point, a
contradiction.

Now it easily follows by inspection that A∪B must be the sphere-dual of a failed
Fano configuration. More specifically, by looking at Fig. 3, we see that the sphere-
dual of the failed Fano configuration has the properties of Claim 4. Moreover, from
the assumption of Claim 4 we were led to conclude that there are no lines additional
to those drawn in Fig. 4. It is easy to see that the only intersection point (modulo
antipodals) not already indicated in Fig. 4 is the common intersection point of s1, s3,
and r3. Hence there is a unique arrangement satisfying the conditions of the claim
and it is necessarily the sphere-dual of the failed Fano configuration. �

Corollary 5 Assume that B consists of precisely four circles, then A ∪ B is the
sphere-dual of a failed Fano configuration.
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(a) Step 1 (b) Step 2

(c) Step 3

Fig. 5 Discharging steps 1–3

Proof By previous arguments not all the circles in B are concurrent. If B has pre-
cisely three concurrent circles, then each of them has exactly four crossing points
in B. Since the circles in A cross the circles in B only at vertices of B, and |A| ≥ 3,
there must be two circles of A crossing a circle of B at the same point, which is
impossible. Therefore, B consists of four circles, no three of which are concurrent.
Thus, the arrangement B satisfies the conditions of Claim 4. �

We proceed by describing the four discharging steps and analyzing their effect on
the charges of the faces and intersection points of B.

Step 1 (Charging bad crossing points) Let C denote the arrangement of all circles
in A ∪ B . Since we assume that no ordinary intersection point in C lies on a blue
circle and that every pair of red circles cross at an ordinary point in C, it follows that
through each bad crossing point in B there is precisely one red circle. Let r be a red
circle passing through a bad crossing point p, and let f1 and f2 be the two faces in B
that are incident to p and are crossed by r (see Fig. 5a). Then, we take 1/2 units of
charge from each of f1 and f2 and charge it to p.

After Step 1 every crossing point of blue circles has a nonnegative charge. Let us
now examine the remaining charge at the faces of the arrangement B. A red circle can
cross the boundary of a face in B only at its vertices, for otherwise we would have
either an ordinary intersection point of C on a blue circle, or an intersection point of
two (or more) red circles that is not ordinary in C. Thus, every red circle that crosses a
face f in B induces, in fact, a red diagonal in f . A face f with m such red diagonals
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Fig. 6 A good 2-quadrangle
cannot be incident to exactly
one good crossing point

loses at most m units of charge in Step 1. We use an integer before the name of a
face in B to denote the number of its red diagonals. For example, a 2-hexagon is a
face of size six in B that has precisely two red diagonals. Since triangles cannot have
a (red) diagonal, we refer to them simply as ‘triangles’ instead of 0-triangles. Thus,
triangles do not lose charge in Step 1. Pentagons may have at most two red diagonals,
and thus they remain with a nonnegative charge as well. The only elements whose
charge might be negative after Step 1 are 2-quadrangles, as their charge might be −1,
in case they are incident to four bad crossing points.

A crossing point x of circles from C is called good, if there is a (necessarily one)
red circle through x and at least 3 blue circles through x. We call a 2-quadrangle
good, if it is incident to a good crossing point. We call a 2-quadrangle that is not
incident to any good crossing point a bad 2-quadrangle.

Claim 6 Any good 2-quadrangle is incident to at least two good crossing points.

Proof Assume to the contrary that d is a good 2-quadrangle that is incident to pre-
cisely one good crossing point x. Let s1, s2, s3, and s4 denote the four circles in B
that constitute the edges of d in the counterclockwise order so that s1 and s4 are in-
cident to x. As x is a good crossing point, there is another blue circle through x that
we denote by s0. (See Fig. 6.)

By our assumption, all the crossing points that are incident to d , with the excep-
tion of x, are incident to precisely two blue circles and one red circle. Considering
the crossing point of s1 and s2, we see that W(s1) +W(s2) = 1/2. Similarly, con-
sidering the crossing point of s2 and s3, we see that W(s2) + W(s3) = 1/2, and
in particular W(s1) = W(s3). Considering the crossing point of s3 and s4, we see
that W(s3) + W(s4) = 1/2. Therefore, W(s1) + W(s4) = W(s3) + W(s4) = 1/2.
But this is a contradiction because considering the circles through x we see that
W(s1)+W(s4)≤ 1/2−W(s0) < 1/2. �

As a corollary of Claim 6, we conclude that after Step 1 every good 2-quadrangle
has a nonnegative charge, as it is incident to at most two bad crossing points. We still
have to take care of the bad 2-quadrangles. This will be carried out in the next step.

Step 2 (Charging bad 2-quadrangles) In this step every bad 2-quadrangle compen-
sates for its charge shortage by taking 1/4 units of charge from each of its four neigh-
boring faces. That is, let f be a face in B adjacent to a bad 2-quadrangle d , then d
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Fig. 7 A bad triangle cannot be
adjacent to two bad quadrangles

takes the 1/4 units of charge from the charge of f (see Fig. 5b). Note that in such a
case f does not have red diagonals at the vertices of the edge common to f and d .

It is easy to check, by considering the different possibilities for f , that the only
elements that might have a negative charge after Step 2 are triangles adjacent to bad
2-quadrangles. We refer the reader to the proof of Claim 7 for a proof of this ob-
servation. We call a triangle that is adjacent to a bad 2-quadrangle a bad triangle.
Note that we may assume that a triangle might share an edge with at most one bad
2-quadrangle. Indeed, let t be a triangle adjacent to two bad 2-quadrangles d1 and d2.
Let s1, s2, and s3 denote the three blue circles that constitute the triangle t , such that
s1 and s2 separate t from d1 and d2, respectively (see Fig. 7).

There is a red circle r through the intersection point of s1 and s2. r crosses s3 at a
vertex x1 of d1 and at a vertex x2 of d2, which are therefore antipodal points on the
sphere S . It follows that s1, s2, s3, and another blue circle that passes through x1 and
x2 are the only blue circles in B . By Corollary 5, A∪B is the sphere-dual of a failed
Fano configuration.

Step 3 (Charging some of the bad triangles) In this step we use the excess charge
that exists at faces with at least five edges to charge part of the bad triangles.

Let f be a face in B with k edges, where k ≥ 5. Let t be a bad triangle adjacent to
a bad 2-quadrangle d . We transfer 1/4 units of charge from f to t , if f and t share a
vertex and f is adjacent to (that is, shares an edge with) d (see Fig. 5c).

Before continuing to the last step, we show that after Step 3, every face f with at
least five edges remains with a nonnegative charge.

Claim 7 Let f be a face with k edges, where k ≥ 5. Then after Step 3 f has a
nonnegative charge.

Proof Let r be the number of red diagonals of f . Assume first that k ≥ 6. Right
after Step 1, the charge of f is at least k − 3− r . f has exactly k − 2r vertices that
are not incident to a red diagonal, and hence at most k − 2r edges none of whose
vertices is incident to a red diagonal of f . It follows that f may be adjacent to at
most k − 2r (bad) 2-quadrangles. Therefore, the charge of f right after Step 2 is at
least k−3− r− k−2r

4 . As f may contribute 1/4 units of charge to at most k−2r bad
triangles, the charge of f right after Step 3 is at least k − 3− r − k−2r

2 = k
2 − 3≥ 0.
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(a) An evil pair (�, d) of degree 1 in H (b) An evil pair (�, d) of degree 2 in H

Fig. 8 Evil pairs

It is left to consider the case where f is a pentagon. If f is a 2-pentagon, then f

cannot be adjacent to any (bad) 2-quadrangle. Therefore, Step 2 as well as Step 3 do
not affect the charge of f and it remains at least 0, as it is right after Step 1. If f is
a 1-pentagon, then right after Step 1 the charge of f is at least 1. f may be adjacent
to at most one 2-quadrangle. Therefore, right after Step 2 the charge of f is at least
3/4. f contributes 1/4 units of charge in Step 3 to at most one bad triangle and hence
remains with a charge of at least 1/2 after Step 3.

Finally, if f is a 0-pentagon, then after Step 1 the charge of f is 2. Observe that if
f shares two adjacent edges e1 and e2 with bad 2-quadrangles d1 and d2, respectively,
then the common vertex of e1 and e2 cannot be a vertex of a bad triangle t . Indeed,
otherwise t is adjacent to two bad 2-quadrangles d1 and d2 which we have previously
shown to be only possible in the case where A ∪ B is the sphere-dual of a failed
Fano configuration. From this observation it follows that if f is adjacent to five bad
2-quadrangles, then it does not share a vertex with any bad triangle and hence the
charge of f right after Step 3 is 3/4. If f shares a vertex with five bad triangles, then
it may be adjacent to at most two bad 2-quadrangles (in fact one could show that even
that is not possible) and hence the charge of f after Step 3 is at least 1/4. In all other
cases f is adjacent to at most four bad 2-quadrangles and shares a vertex with at most
four bad triangles and hence the charge of f after Step 3 is at least 0 (we remark that
this last argument is by far suboptimal, yet suffices for our needs). �

Therefore, after Step 3 the only objects with a negative charge are those bad tri-
angles who did not receive 1/4 units of charge in Step 3. We call those triangles
evil.

Step 4 (Charging evil triangles) After Step 3 of discharging, the only elements with-
out the desired charge are evil triangles, as they are charged with−1/4 units of charge
each. We will use the excess charge that exists at the 0-quadrangles to charge with
1/4 units of charge each and every evil triangle.

For every 0-quadrangle q , consider the set E of edges of q that are not edges of
bad 2-quadrangles. Then the charge of q after Step 3 is |E|/4. For every e ∈ E let
�e ∈ B be the great circle that includes e. We call the pair (�e, q) a helping pair and
we designate 1/4 unit from the charge of q to the pair (�e, q).

For any evil triangle t , let d be the bad 2-quadrangle adjacent to it, and let � ∈ B

be the great circle that separates t and d . We call the pair (�, d) an evil pair. We will
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show that there are at least as many helping pairs as there are evil pairs. Thus we will
successfully charge each evil triangle with 1/4 units of charge taken of the excess
charge at the 0-quadrangles after step 3.

Define a bipartite graph H whose vertices are the evil pairs and the helping pairs.
Let (�, d) be an evil pair, let t be the evil triangle adjacent to d and �, and let f and
f ′ be the two faces in B, other than t , that are adjacent to both � and d . Let e and
e′ be the edges of f and f ′, respectively, on �. Since t is evil, then f and f ′ can be
either triangles or 0-quadrangles (see Fig. 8). Moreover, the edges e and e′ cannot be
edges of bad 2-quadrangles, as d is the only bad 2-quadrangle adjacent to t . Each of
(�, f ) and (�, f ′) is a helping pair, assuming f or f ′, respectively, are not triangles.
If f is not a triangle, we connect (�, d) in H to the helping pair (�, f ). Similarly,
if f ′ is not a triangle, we connect (�, d) in H to the helping pair (�, f ′). Observe
that if both f and f ′ are triangles, then by Claim 4, A ∪ B is the sphere-dual of a
failed Fano configuration. Therefore, we may assume that the degree in H of every
evil pair is either 1 or 2 (see Fig. 8). The degree in H of every helping pair is at most
2, because a helping pair (�, q) may be connected only to evil pairs (�′, d) such that
� = �′ and d is adjacent to q . It follows that the connected components of H that
include evil pairs are either paths alternating between evil pairs and helping pairs, or
theoretically, even cycles alternating between evil pairs and helping pairs. Therefore,
in order to show that there are at least as many helping pairs as there are evil pairs,
it is enough to show that no connected component in H is a path both of whose end
vertices are evil pairs.

Indeed, assume to the contrary that there is such a connected component in H . Let
its vertices be (�, d1), (�, q1), . . . , (�, qk−1), (�, dk), so that for every 1 ≤ i ≤ k − 1,
(�, qi) is a helping pair connected to both (�, di) and (�, di+1). It follows that there
is a great circle �′ ∈ B that includes all edges of d1, . . . , dk and q1, . . . , qk−1 that are
opposite to those included in �.

Since the degree in H of (�, d1) is 1, then the face in B, other than q1, adjacent to
both �, �′, and to d1 must be a triangle which we denote by q0. Similarly, the face in B,
other than qk−1, adjacent to both �, �′, and to dk must be a triangle which we denote
by qk . Observe that � and �′ meet at a vertex of q0 and at a vertex of qk (see Fig. 9).

We claim that the only triangles in B adjacent to �′ are q0, qk , and of course their
antipodal triangles on the sphere S . This is because for every 0≤ i ≤ k, the face ad-
jacent to �′ that shares an edge with qi cannot be a triangle as it admits a red diagonal
at least at one of its vertices. And moreover, we may assume that for every 1≤ i ≤ k,
the face adjacent to �′ that shares an edge with di is not a triangle. Indeed, otherwise
by Claim 4, A∪B is the sphere-dual of a failed Fano configuration (recall that there
is an evil triangle adjacent to di on the other side of � on S). This is a contradiction
to a theorem of Levi [7] saying that in any nontrivial arrangement of lines in the
real projective plane, every line must be adjacent to at least 3 triangular faces. (Here,
we apply Levi’s theorem after identifying antipodal points on the sphere S and thus
reducing the great circles in A ∪ B to a set of lines in the projective plane.) Since
the reference to Levi’s theorem is not widely available we refer the reader also to [3,
Sect. 5.4] and [5] for very short proofs of Levi’s theorem.

We conclude that after Step 4, all the faces in the arrangement B have a nonnega-
tive charge, and the same holds for every crossing point in B. Thus, the overall charge
is nonnegative, contradicting the fact the total charge in the beginning was −6.
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(a)

(b)

Fig. 9 A connected component in H both of whose endpoints are evil pairs

3 Notes and Concluding Remarks

If the arrangement B is in general position in the sense that no three blue circle from
B pass through the same point, then Theorem 3 and hence also its dual Theorem 2
could be strengthened as follows leaving the proof almost as is:

Theorem 8 Let A and B be two nonempty disjoint sets of points in the plane such
that |A| > 1, and B is in general position. Assume that no line determined by A

passes through a point of B . Then there is an ordinary line in A∪B through a point
in B , unless A∪B is, up to a projective transformation, the configuration in Fig. 1.

To see why Theorem 8 follows from the proof of Theorem 3, observe that if the
circles in B are in general position, then there are no good crossing points in C, and
hence the assumptions in Theorem 3 on the weights assigned to the circles in C are
not required. In Theorem 8 we allow more than two points of A to be collinear as
long as they are not collinear with a point of B . Indeed, in the proof of Theorem 3 we
did not really use the assumption that every intersection point determined by A is an
ordinary intersection point with respect to A ∪ B , but only that no intersection point
determined by circles from A is incident to a circle from B .
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Proving Theorem 8 for the case B is not required to be in general position would
imply that the following conjecture1 holds. Recall that an ordinary point in a point
configuration P is a point x ∈ P through which there is an ordinary line.

Conjecture 9 Let G= (V ,E) be the Sylvester Graph of a finite set of points P . That
is, V = {p ∈ P |p is an ordinary point in P } and E = {(p1,p2)|p1 and p2 determine
an ordinary line in P }. Then G is a complete (nonempty) graph if and only if no three
points in P are collinear, or P is a failed Fano configuration.

We would like to note a corollary of Theorem 8. It is well known that the set of
edges of a complete graph on 2n vertices can be partitioned into (necessarily 2n− 1)
edge-disjoint perfect matchings. A nice way to realize such a partitioning is to think
about the vertices of K2n as the vertices of a regular (2n − 1)-gon plus its center.
Then every one of the 2n− 1 directions of the edges of the (2n− 1)-gon induces a
perfect matching in which two points are matched if the straight line they determine
is parallel to the direction we choose, plus taking the center to be matched with the
remaining point. These 2n− 1 perfect matchings are edge-disjoint.

Now let G be a complete geometric graph on 2n vertices in general position in
the plane. We call a matching in G geometrically induced, if the lines containing the
edges of the matching are concurrent. If a matching of G is geometrically induced,
then the meeting point of all lines that include an edge of the matching is called the
center of the matching. The question is can we partition the set of edges of a complete
geometric graph G on 2n vertices in general position in the plane into edge-disjoint
geometrically induced perfect matchings. By Theorem 8, this is impossible unless
n= 1 or n= 2. Indeed, assume it is possible and let B be the set of 2n vertices of G,
and let A be the set of all points that are the centers of the geometrically induced
perfect matchings. Then A and B satisfy the assumptions in Theorem 8.

It is an interesting open question of what is the maximum possible number of edge-
disjoint geometrically induced perfect matchings of a complete geometric graph on
2n vertices in general position in the plane. It seems natural to conjecture that the
answer should be n+ 1. This number is attained for the set of vertices of a regular
2n-gon in the plane when n is even. Here observe that the geometrically induced
perfect matchings whose centers are the points at infinity that correspond to the n

directions of the edges of the regular 2n-gon plus the center of the 2n-gon, are all
pairwise edge-disjoint.

One can try to weaken the notion of a magic configuration and omit the restriction
of all weights assigned to the points being positive. In this case there seem to be a
much larger variety of magic configurations and yet not every configuration is magic.
In this context it is interesting to note that given that a configuration is magic (even in
the weak sense) it is very easy to assign the right weights (and in a unique way) to the
points, just as a function of the number of lines determined by the set that pass through
each of the points of the set. To this end let p1, . . . , pn denote the points of a magic
configuration P . For every 1≤ i ≤ n let xi denote the weight assigned to pi and let
ki be the number of lines determined by P that pass through pi . For convenience

1This conjecture is attributed to Sylvester according to Smyth [9].
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denote Y =∑n
i=1 xi . Fix i and consider the point pi . There are ki lines determined

by P that pass through pi . The sum of the weights assigned to the points of P on
each of these lines is 1. It follows that Y = ki − xi(ki − 1). Therefore, xi = ki−Y

ki−1 . We
can get an explicit expression for xi just in terms of kj (j = 1, . . . , n). Observe that

Y =∑n
j=1 xj =

∑n
j=1

Y−kj
1−kj

. Therefore,

Y =
∑n

j=1
kj

kj−1

1+∑n
j=1

1
kj−1

, and hence, xi = 1

ki − 1

(

ki −
∑n

j=1
kj

kj−1

1+∑n
j=1

1
kj−1

)

.

Observe in particular that if ki = ki′ , then xi = xi′ . It is also clear from here that
the weights assignment is unique, if exists.
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