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As any human activity needs goals, mathematical research needs problems.
—David Hilbert

Mechanics is the paradise of mathematical sciences.
—Leonardo da Vinci

Series Preface

Mechanics and mathematics have been complementary partners since New-
ton’s time, and the history of science shows much evidence of the beneficial
influence of these disciplines on each other. Driven by increasingly elabo-
rate modern technological applications, the symbiotic relationship between
mathematics and mechanics is continually growing. However, the increasingly
large number of specialist journals has generated a duality gap between the
partners, and this gap is growing wider.

Advances in Mechanics and Mathematics (AMMA) is intended to bridge
the gap by providing multidisciplinary publications that fall into the two
following complementary categories:

1. An annual book dedicated to the latest developments in mechanics and
mathematics;

2. Monographs, advanced textbooks, handbooks, edited volumes, and selected
conference proceedings.

The AMMA annual book publishes invited and contributed comprehensive
research and survey articles within the broad area of modern mechanics and
applied mathematics. The discipline of mechanics, for this series, includes
relevant physical and biological phenomena such as: electromagnetic, ther-
mal, and quantum effects, biomechanics, nanomechanics, multiscale model-
ing, dynamical systems, optimization and control, and computation methods.
Especially encouraged are articles on mathematical and computational mod-
els and methods based on mechanics and their interactions with other fields.
All contributions will be reviewed so as to guarantee the highest possible sci-
entific standards. Each chapter will reflect the most recent achievements in
the area. The coverage should be conceptual, concentrating on the method-
ological thinking that will allow the nonspecialist reader to understand it.
Discussion of possible future research directions in the area is welcome.
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Thus, the annual volumes will provide a continuous documentation of the
most recent developments in these active and important interdisciplinary
fields. Chapters published in this series could form bases from which possible
AMMA monographs or advanced textbooks could be developed.

Volumes published in the second category contain review/research contri-
butions covering various aspects of the topic. Together these will provide an
overview of the state-of-the-art in the respective field, extending from an in-
troduction to the subject right up to the frontiers of contemporary research.
Certain multidisciplinary topics, such as duality, complementarity, and sym-
metry in mechanics, mathematics, and physics are of particular interest.

The Advances in Mechanics and Mathematics series is directed to all sci-
entists and mathematicians, including advanced students (at the doctoral
and postdoctoral levels) at universities and in industry who are interested in
mechanics and applied mathematics.

David Y. Gao
Ray W. Ogden



Preface

The theory of variational inequalities plays an important role in the study
of both the qualitative and numerical analysis of nonlinear boundary value
problems arising in mechanics, physics, and engineering science. For this rea-
son, the mathematical literature dedicated to this field is extensive, and the
progress made in the past four decades is impressive. A part of this progress
was motivated by new models arising in contact mechanics. At the heart of
this theory is the intrinsic inclusion of free boundaries in an elegant mathe-
matical formulation.

Contact between deformable bodies abounds in industry and everyday life.
Because of the industrial importance of the physical processes that take place
during contact, a considerable effort has been made in their modeling, analy-
sis, numerical analysis and numerical simulations, and, as a result, the math-
ematical theory of contact mechanics has made impressive progress recently.
Owing to their inherent complexity, contact phenomena lead to mathematical
models expressed in terms of strongly nonlinear evolutionary problems.

Antiplane shear deformations are one of the simplest classes of deforma-
tions that solids can undergo: in antiplane shear (or longitudinal shear) of a
cylindrical body, the displacement is parallel to the generators of the cylin-
der and is independent of the axial coordinate. For this reason, the antiplane
problems play a useful role as pilot problems, allowing for various aspects of
solutions in solid mechanics to be examined in a particularly simple setting.
In recent years, considerable attention has been paid to the analysis of such
kinds of problems.

The purpose of this book is to introduce to the reader the theory of vari-
ational inequalities with emphasis on the study of contact mechanics and,
more specifically, with emphasis on the study of antiplane frictional contact
problems. The contents cover both abstract results in the study of varia-
tional inequalities as well as the study of specific antiplane frictional contact
problems. This includes their modeling and variational analysis. Our inten-
tion is to illustrate the cross-fertilization between modeling and applications
on the one hand, and nonlinear mathematical analysis on the other hand.

ix
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Thus, within the particular setting of antiplane shear, we show how new and
nonstandard models in contact mechanics lead to new types of variational
inequalities and, conversely, we show how the abstract results on variational
inequalities can be applied to prove the unique solvability of the correspond-
ing contact problems. In writing this book, our aim was also to draw the atten-
tion of the applied mathematics community to interesting two-dimensional
models arising in solid mechanics, involving a single nonlinear partial differen-
tial equation that has the virtue of relative mathematical simplicity without
loss of essential physical relevance.

Our book, divided into four parts with 11 chapters, is intended as a uni-
fied and readily accessible source for mathematicians, applied mathemati-
cians, engineers, and scientists, as well as advanced graduate students. It is
organized with two different aims, so that readers who are not interested in
modeling and applications can skip Parts III and IV and will find an elemen-
tary introduction to the theory of variational inequalities in Part II of the
book; alternatively, readers who are interested in modeling and applications
will find in Parts III and IV the mechanical models that lead to the various
classes of variational inequalities presented in Part II of the book.

A brief description of the parts of the book follows.
Part I is devoted to the basic notation and results that are fundamental

to the developments later in this book. We review the background on func-
tional analysis and function spaces that we need in the study of variational
inequalities. The material presented is standard and can be found in many
textbooks and monographs. For this reason, we present only very few details
of the proofs.

Part II represents one of the main parts of the book and includes original
results. We present various classes of variational inequalities for which we
prove existence results and, for some of them, we prove uniqueness, regu-
larity, and convergence results. To this end we use convexity, monotonicity,
compactness, time discretization, regularization, and fixed point arguments.
Most of the concepts and results presented in this part can be extended to
more general variational inequalities involving nonlinear operators on reflex-
ive Banach spaces or to hemivariational inequalities; however, since our aim
is to provide an accessible presentation of the theory of variational inequali-
ties with emphasis in the study of antiplane frictional contact problems, we
restrict ourselves to the framework of Hilbert spaces, linear operators, and
convex analysis, as is sufficient for later development.

The terminology we use in this part of book is the following: if the time
derivative of the unknown function u appears in the formulation of a vari-
ational inequality (and, therefore, an initial condition for u is needed), we
refer to it as an evolutionary variational inequality. Otherwise, we refer to it
as an elliptic variational inequality. If the nondifferentiable convex functional
j depends explicitly on u or on its time derivative u̇, we refer to the corre-
sponding variational inequality as a quasivariational inequality. If both the
data and the solution of a variational inequality depend on the time variable
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that plays the role of a parameter, the corresponding variational inequality
is called a time-dependent variational inequality. Finally, if an integral term
containing the solution or its derivative appears in the formulation of a vari-
ational inequality, we refer to it as a history-dependent variational inequality.
This classification is not strict and is intended to distinguish among the
types of variational inequalities used in the mathematical theory of contact
mechanics, as it is illustrated in Part IV.

Part III presents preliminary material of contact mechanics that is needed
in the rest of the book. We summarize basic notions and equations of mechan-
ics of continua, then we introduce the frictional contact conditions as well as
the constitutive laws that are used in the rest of the book. We then specialize
the equations and conditions in the context of the antiplane shear and, as an
example, we study a displacement-traction problem involving linearly elastic
materials. The material presented in this part provides the background for
the modeling of the antiplane frictional contact problems studied in Part IV
of the book.

Part IV represents the other main part of the book and is partially based
on our original research. It deals with the study of static and quasistatic
frictional antiplane contact problems. We model the material behavior with
isotropic linearly elastic and viscoelastic constitutive laws and, in the case of
viscoelastic materials, we consider both short and long memory. Friction is
modeled with versions of Coulomb’s law in which the friction bound is either
a function that does not depend on the process variables or depends on the
slip or slip rate. Particular attention is paid to history-dependent frictional
problems in which the friction bound depends on the total slip or the total
slip rate. For each one of the problems, we provide a variational formulation
then we use the abstract results in Part II in order to establish existence and
sometimes uniqueness, regularity, and convergence results.

Each of the four parts of the book is divided into several chapters. All
the chapters are numbered consecutively. Mathematical relations (equalities,
inequalities, and inclusions) are numbered by chapter and their order of oc-
currence. For example, (4.3) is the third numbered mathematical relation
in Chapter 4. Definitions, problems, theorems, propositions, lemmas, and
corollaries are numbered consecutively within each chapter. For example, in
Chapter 9, Problem 9.5 is followed by Theorem 9.6.

Each part ends with a section in which we present bibliographical com-
ments. We provide references for the principal results presented, as well as
information on important topics related to but not included in the body of
the text. The list of the references at the end of the book includes only papers
or books that are closely related to the subjects treated in this monograph.

This book is a result of cooperation between the authors during the past
several years and was partially supported by the Integrated Action France-
Romania Brâncuşi No. 06080RF/03. Part of the material is based on the
Ph.D. thesis of the second author as well as on our joint work with several col-
laborators to whom we express our thanks. We especially thank Weimin Han,
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Constantin Niculescu, Vicenţiu Rădulescu, Meir Shillor, and Juan M. Viaño
for our beneficial cooperation and for their constant support. We extend our
gratitude to David Y. Gao for inviting us to make the contribution in the
Springer book series on Advances in Mechanics and Mathematics (AMMA).
Finally, we thank the unknown referees for their valuable suggestions, which
improved the final form of the book.

Perpignan, France Mircea Sofonea
Craiova, Romania Andaluzia Matei

July 2008
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Part I
Background on Functional Analysis



Chapter 1
Preliminaries

This chapter presents preliminary material from functional analysis that will
be used in subsequent chapters. Most of the results are stated without proofs,
as they are standard and can be found in many references. We start with
a review of definitions and properties of linear normed spaces and Banach
spaces, including results on duality and weak convergence. We then recall
some properties of the Hilbert spaces. Finally, we present miscellaneous re-
sults that will be applied repeatedly in this book; they include elements of
convex analysis, fixed point theorems, and well-known inequalities. All the
linear spaces considered in this book including abstract normed spaces, Ba-
nach spaces, Hilbert spaces, and various function spaces are assumed to be
real spaces. We assume that the reader has some knowledge of linear algebra
and general topology.

1.1 Linear Operators on Normed Spaces

The notion of a norm in a general linear space is an extension of the ordinary
length of a vector in R

2 or R
3 and is provided by the following definition.

Definition 1.1. Given a linear space X, a norm ‖ · ‖X is a function from X
to R with the following properties.

1. ‖u‖X ≥ 0 ∀u ∈ X, and ‖u‖X = 0 iff u = 0X .
2. ‖αu‖X = |α| ‖u‖X ∀u ∈ X, ∀α ∈ R.
3. ‖u+ v‖X ≤ ‖u‖X + ‖v‖X ∀u, v ∈ X.

The pair (X, ‖ · ‖X) is called a normed space.

Here and everywhere in this book, 0X will denote the zero element of X.
Also, we will simply say X is a normed space when the definition of the norm
is understood from the context.

3



4 1 Preliminaries

On a linear space, various norms can be defined. Sometimes, it is desir-
able to know if two norms are related and, for this reason, we introduce the
following definition.

Definition 1.2. Let ‖ · ‖(1) and ‖ · ‖(2) be two norms over a linear space X.
The two norms are said to be equivalent if there exist two constants c1, c2 > 0
such that

c1 ‖u‖(1) ≤ ‖u‖(2) ≤ c2 ‖u‖(1) ∀u ∈ X. (1.1)

The notion of a seminorm is useful in the study of various nonlinear bound-
ary problems and in error estimates of some numerical approximations.

Definition 1.3. Given a linear space X, a seminorm | · |X is a function from
X to R satisfying the following properties.

1. |u|X ≥ 0 ∀u ∈ X.
2. |αu|X = |α| |u|X ∀u ∈ X, ∀α ∈ R.
3. |u+ v|X ≤ |u|X + |v|X ∀u, v ∈ X.

It follows from above that a seminorm satisfies the properties of a norm
except that |u|X = 0 does not necessarily imply u = 0X .

With a norm at our disposal, we use the quantity ‖u − v‖X to measure
the distance between u and v. Consequently, the norm is used to define the
bounded sets and the convergence of sequences in the space X.

Definition 1.4. Let (X, ‖ · ‖X) be a normed space. A subset A ⊂ X is
bounded if there exists M > 0 such that ‖u‖X ≤ M for all u ∈ A. A sequence
{un} ⊂ X is bounded if there exists M > 0 such that ‖un‖X ≤ M for all
n ∈ N or, equivalently, if supn ‖un‖X < ∞.

Definition 1.5. Let X be a normed space. A sequence {un} ⊂ X is said to
converge (strongly) to u ∈ X if

‖un − u‖X → 0 as n → ∞.

In this case, u is called the (strong) limit of the sequence {un} and we write

u = lim
n→∞un or un → u in X.

It is easy to verify that a limit of a sequence, if it exists, is unique. The
adjective “strong” is introduced in the previous definition to distinguish this
convergence from other types of convergence that will be introduced in the
next section. Using (1.1) it is easy to see that, for two equivalent norms,
convergence in one norm implies the convergence in the other norm.

The convergence of sequences is used to introduce closed sets and dense
sets in a normed space.
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Definition 1.6. Let A be a subset of a normed space X. The closure A of
A is the union of A and the set of the limits of all the convergent sequences
from A. The set A is said to be closed if A = A and dense if A = X.

To test the convergence of a sequence without knowing the limiting ele-
ment, it is usually convenient to refer to the notion of a Cauchy sequence.

Definition 1.7. Let X be a normed space. A sequence {un} ⊂ X is called a
Cauchy sequence if ‖um − un‖X → 0 as m,n → ∞.

Obviously, a convergent sequence is a Cauchy sequence but in a general
infinite dimensional space, a Cauchy sequence may fail to converge. This
justifies the following definition.

Definition 1.8. A normed space is said to be complete if every Cauchy seq-
uence from the space converges to an element in the space. A complete
normed space is called a Banach space.

Given two linear spaces X and Y , an operator T : X → Y is a rule that
assigns to each element in X a unique element in Y . A real-valued operator
defined on a linear space X is called a functional. If both X and Y are
normed spaces, we can consider the continuity and Lipschitz continuity of
the operators.

Definition 1.9. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed spaces. An
operator T : X → Y is said to be

1. continuous at u ∈ X if

un → u in X =⇒ T (un) → T (u) in Y ;

2. continuous if it is continuous at each element of the space X;
3. Lipschitz continuous if there exists LT > 0 such that

‖T (u) − T (v)‖Y ≤ LT ‖u− v‖X ∀u, v ∈ X.

Clearly, if T is Lipschitz continuous, then it is a continuous operator, but
the converse is not true in general.

We now consider a particular, yet important, type of operators called linear
operators.

Definition 1.10. Let X and Y be two linear spaces. An operator L : X → Y
is called linear if

L(α1u1 + α2u2) = α1L(u1) + α2L(u2) ∀u1, u2 ∈ X, α1, α2 ∈ R.

For a linear operator L, we usually write L(v) as Lv. For the sake of
simplicity, we sometimes write Lv even when L is not linear. A well-known
important property of a linear operator is the following.
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Theorem 1.11. Let X and Y be normed spaces and let L : X → Y be a
linear operator. Then L is continuous on X iff there exists M > 0 such that

‖Lu‖Y ≤ M‖u‖X ∀u ∈ X.

From Theorem 1.11, we conclude that for a linear operator, continuity and
Lipschitz continuity are equivalent.

We will use the notation L(X,Y ) for the space of linear continuous opera-
tors from a normed space X to another normed space Y . In the special case
Y = X, we use L(X) to replace L(X,X). For L ∈ L(X,Y ), the quantity

‖L‖L(X,Y ) = sup
0X �=u∈X

‖Lu‖Y

‖u‖X
(1.2)

is called the operator norm of L and L �→ ‖L‖L(X,Y ) defines a norm on the
space L(X,Y ). The norm (1.2) enjoys the following compatibility property

‖Lu‖Y ≤ ‖L‖L(X,Y )‖u‖X ∀u ∈ X.

Moreover, the following result holds.

Theorem 1.12. Let X be a normed space and let Y be a Banach space. Then
L(X,Y ) is a Banach space.

Later in the book, we will need the concept of compact operators.

Definition 1.13. Let X and Y be two normed spaces and L : X → Y be a
linear operator. The operator L is said to be compact if for every bounded
sequence {un} ⊂ X, the sequence {Lun} ⊂ Y has a subsequence converg-
ing in Y .

The previous definition shows, in other words, that a linear operator L :
X → Y is compact if for each sequence {un} ⊂ X that satisfies the inequality
supn ‖un‖X < ∞, we can find a subsequence {unk

} ⊂ {un} and an element
y ∈ Y such that Lunk

→ y in Y . Compact operators are also called completely
continuous operators.

We now consider an important type of real valued mappings defined on a
product of linear spaces.

Definition 1.14. Let X and Y be linear spaces. A mapping a : X ×Y → R

is called bilinear form if it is linear in each variable, that is, for every
u1, u2, u ∈ X, v1, v2, v ∈ Y , and α1, α2 ∈ R,

a(α1u1 + α2u2, v) = α1 a(u1, v) + α2 a(u2, v),
a(u, α1v1 + α2v2) = α1 a(u, v1) + α2 a(u, v2).

In the case X = Y , we say that a bilinear form is symmetric if

a(u, v) = a(v, u) ∀u, v ∈ X.
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If both X and Y are normed spaces, we can consider the continuity of the
bilinear forms.

Definition 1.15. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two normed spaces. A
bilinear form a : X × Y → R is said to be continuous if there exists a
constant M > 0 such that

|a(u, v)| ≤ M ‖u‖X‖v‖Y ∀u ∈ X, ∀ v ∈ Y.

In the case X = Y , we say that a bilinear form is X-elliptic if there exists a
constant m > 0 such that

a(u, u) ≥ m ‖u‖2
X ∀u ∈ X.

Bilinear symmetric continuous and X-elliptic forms defined on a Hilbert
space X will be used in Part II of this book in the study of variational and
quasivariational inequalities.

1.2 Duality and Weak Convergence

For a normed space X, the space L(X,R) is called the dual space of X and is
denoted by X ′. The elements of X ′ are linear continuous functionals on X.
The duality pairing between X ′ and X is usually denoted by 	(u) or 〈u′, u〉
for 	, u′ ∈ X ′ and u ∈ X. As it follows from (1.2), the norm on X ′ is given by

‖	‖X′ = sup
0X �=u∈X

|	(u)|
‖u‖X

.

Also, by Theorem 1.12 we know that (X ′, ‖ · ‖X′) is a Banach space.

We can now introduce another kind of convergence in a normed space.

Definition 1.16. Let X be a normed space. A sequence {un} ⊂ X is said to
converge weakly to u ∈ X if for every 	 ∈ X ′,

	(un) → 	(u) as n → ∞.

In this case, u is called the weak limit of {un} and we write un ⇀ u in X.

It follows from the Hahn-Banach theorem that the weak limit of a se-
quence, if it exists, is unique. Also, it is easy to see that the strong conver-
gence implies the weak convergence, i.e., if un → u in X, then un ⇀ u in X.
The converse of this property is not true in general.

The weak convergence of sequences is used to define weakly closed sets in
a normed space.
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Definition 1.17. Let X be a normed space. A subset A ⊂ X is said to be
weakly closed if it contains the limits of all weakly convergent sequences
{un} ⊂ A.

Clearly, every weakly closed subset of X is closed, but the converse of this
property is not true, in general. An important exception is provided by the
class of convex sets that is introduced below.

Definition 1.18. Let X be a linear space. A subset K ⊂ X is said to be
convex if it has the property

u, v ∈ K ⇒ (1 − t)u+ t v ∈ K ∀ t ∈ [0, 1].

For t ∈ [0, 1], the expression (1−t)u+t v is said to be a convex combination
of u and v. The set { (1− t)u+ t v : t ∈ [0, 1] } consists of all the points on the
line segment connecting u and v. We see that if K is convex and u, v ∈ K,
then the line segment connecting u and v is contained in K.

Theorem 1.19. A convex subset of a normed space X is closed if and only
if it is weakly closed.

We now introduce the concept of reflexive spaces. To this end, consider a
normed space X and denote by X ′′ = (X ′)′ the dual of the Banach space
X ′, which will be called the bidual of X. The bidual X ′′ is a Banach space.
Each element u ∈ X induces a linear continuous functional 	u ∈ X ′′ by the
relation 	u(u′) = 〈u′, u〉 for every u′ ∈ X ′. The mapping u �→ 	u from X into
X ′′ is linear and isometric, i.e., ‖	u‖X′′ = ‖u‖X for all u ∈ X. Therefore,
the normed space X may be viewed as a linear subspace of the Banach
space X ′′ by the embedding u �→ 	u = χ(u). We introduce the following
definition.

Definition 1.20. A normed space X is said to be reflexive if X may be
identified with X ′′ by the canonical embedding χ (i.e., if χ(X) = X ′′).

A reflexive space must be complete and is hence a Banach space. We have
the following important property of a reflexive space.

Theorem 1.21. (Eberlein-Smulyan) If X is a reflexive Banach space, then
each bounded sequence in X has a weakly convergent subsequence.

It follows that if X is a reflexive Banach space and the sequence {un} ⊂ X
is bounded (i.e., supn ‖un‖X < ∞), then we can find a subsequence {unk

} ⊂
{un} and an element u ∈ X such that unk

⇀ u in X. Furthermore, it can be
proved that if the limit u is independent of the subsequence extracted, then
the whole sequence {un} converges weakly to u.

On the dual of a normed space, besides the weak convergence, we can
introduce the notion of weak * convergence.


