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Preface

In recent years there has been an explosion of network data – that is, measure-
ments that are either of or from a system conceptualized as a network – from seem-
ingly all corners of science. The combination of an increasingly pervasive interest
in scientific analysis at a systems level and the ever-growing capabilities for high-
throughput data collection in various fields has fueled this trend. Researchers from
biology and bioinformatics to physics, from computer science to the information
sciences, and from economics to sociology are more and more engaged in the col-
lection and statistical analysis of data from a network-centric perspective.

Accordingly, the contributions to statistical methods and modeling in this area
have come from a similarly broad spectrum of areas, often independently of each
other. Many books already have been written addressing network data and network
problems in specific individual disciplines. However, there is at present no single
book that provides a modern treatment of a core body of knowledge for statistical
analysis of network data that cuts across the various disciplines and is organized
rather according to a statistical taxonomy of tasks and techniques. This book seeks
to fill that gap and, as such, it aims to contribute to a growing trend in recent years
to facilitate the exchange of knowledge across the pre-existing boundaries between
those disciplines that play a role in what is coming to be called ‘network science.’

The book is written for students and researchers with a ‘mature’ knowledge of
statistics and hence is intended not only for statisticians but also for people involved
with network data in various other areas, like those mentioned above. Background
in calculus and linear algebra and some reasonable foundation in statistics and prob-
ability are expected. Beyond that, I have attempted to build all necessary material as
needed.

In an effort to reach this admittedly diverse audience successfully, I have aimed
in each chapter to communicate the material in a manner that strikes an appropriate
balance between concepts, on the one hand, and technical depth and rigor, on the
other. It is expected that the interested reader will want – and, indeed, is encouraged
– to pursue the relevant primary sources for details I may have chosen to omit. The
book is in this sense intended to serve as an entrée to the larger literature. Copious
use of references has been made throughout the book for this very purpose. In addi-
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tion, the exercises at the end of each chapter provide further opportunities to explore
some of the topics in greater depth. There are both analytical and computational ex-
ercises to be found, with the latter frequently designed to be fairly open-ended in
nature, so as to encourage exploration. Finally, the methods and models presented
herein are illustrated throughout the book with examples from a wide range of dis-
ciplines. I have found this overall approach to the pedagogy of the material to work
well when I taught classes of precisely the diversity that I envision for the readership
of this book.

The book itself would not have been possible without the help, feedback, and sup-
port of many. I thank my editor, John Kimmel, and the other folks at Springer, for
their help and guidance throughout the publication process. The idea for the writing
of this book arose while I was on sabbatical during the 2004-2005 academic year,
in the Laboratoire d’Informatique Algorithmique, Fondements, et Applications (LI-
AFA), at l’Université Paris 7, courtesy of CNRS, and in the Department of Statistics,
at Harvard University. My own work in this area has been generously supported by
grants from the United States National Institutes of Health (NIH), National Science
Foundation (NSF), and Office of Naval Research (ONR). Students and colleagues
attending the courses I taught on this material, at Harvard University in Spring 2005
and at Boston University in Fall 2005, are gratefully acknowledged for their interest,
questions, and hard work. Many of the datasets used in this book were generously
shared by colleagues from around the world, including Ignacio Alvarez-Hamelin,
Mark Coates, Mark Crovella, Tim Gardner, Sucharita Gopal, Boris Hayete, Mark
Kramer, Emmanuel Lazergas, Naoki Nariai, Robert Nowak, Xiaoyu Jiang, and Fa-
bien Viger. In addition, Ignacio Alvarez-Hamelin, Kevin Boyack, Ulrik Brandes,
Rui Castro, Sucharita Gopal, and Mark Kramer were kind enough to produce and
share some of the more stunning figures found herein. For graciously responding
to my unabashed solicitations for feedback on material in various chapters, I am in-
debted to Ignacio Alvarez-Hamelin, Alain Barrat, Ulrik Brandes, Tom Britton, Hugh
Chipman, Mark Crovella, Tim Gardner, Boris Hayete, Peter Hoff, David Hunter, Xi-
aoyu Jiang, Simon Kasif, Naoki Nariai, Robert Nowak, Pip Pattison, Mike Rabbat,
Garry Robbins, Martin Steffen, Shu Yang, and Ji Zhu. Special thanks in this regard
are due to Joe Whittaker, whose comments were extensive and invariably helpful.
Notwithstanding all of this feedback, however, any typos, mistakes, and other sim-
ilar errors are of course my own. Andrej Mrvar, of the Pajek software team, is
also to be thanked for his help in responding to my numerous questions. Finally,
although surely inadequate in measure, I offer my heartfelt thanks to my wife, Josée
Dupuis, not only for her love, patience, and support over the many months that I was
submersed in the writing of this book, and for her reading of the final manuscript,
but also for serving as my R guru, fielding even my many late-night queries when
she would surely have rather preferred to continue uninterrupted with her own work!

Eric D. Kolaczyk
Boston, Massachusetts

March, 2009
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Chapter 1
Introduction and Overview

The systematic collection and analysis of data on networks of one form or another
goes back at least to the 1930’s in certain select areas of science, and in fact has
subtle roots reaching back centuries further. However, during the decade surround-
ing the turn of the 21st century, network-centric analysis, as a general approach to
scientific inquiry, has reached entirely new levels of prevalence and sophistication,
with practitioners in fields now ranging from the physical and mathematical sci-
ences to the social sciences and humanities. In this chapter we present a ‘birds-eye’
view of the area that is gradually coming to be known as ‘network science,’ starting
with some background, continuing with a mosaic of examples, and finishing with a
discussion of the organization and philosophy of this book.

1.1 Why Networks?

The oft-repeated statement that “we live in a connected world” perhaps best cap-
tures, in its simplicity, why networks have come to hold such interest in recent
years. For example, from the ‘small world’ studies of Harvard sociologist Stanley
Milgram [277] and later the play of Guare [188] comes the suggestion that we are
each separated from any other person on the planet by at most six other people (i.e.,
‘six degrees’). And this concept arose even before the Internet and related inven-
tions like email, chat-rooms, and blogs! Similarly, we see constantly in the popular
press examples of the inter-connectedness of various human institutions (e.g., gov-
ernments) and processes (e.g., economies), and also of humans and natural systems
(e.g., in regards to the impact of humans on climate and the environment).

The image of a network – that is, essentially, something resembling a net – is
a natural one to use to capture the notion of elements in a system and their inter-
connectedness. Note, however, that the term ‘network’ seems to be used in a variety
of ways, at various levels of formality. The Oxford English Dictionary, for example,
defines the word network in its most general form simply as “a collection of inter-
connected things.” On the other hand, frequently ‘network’ is used inter-changeably

1E.D. Kolaczyk, Statistical Analysis of Network Data, Springer Series in Statistics, 
DOI 10.1007/978-0-387-88146-1_1, © Springer Science+Business Media, LLC 2009 
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with the term ‘graph’ since, for mathematical purposes, networks are most com-
monly represented in a formal manner using graphs of various kinds. In an effort to
emphasize the distinction between the general concept and its mathematical formal-
ization, in this book we will use the term ‘network’ in its most general sense above,
and – at the risk of the impression of a slight redundancy – we will refer to a graph
representing such a network as a ‘network graph.’ The discussion of the remainder
of this chapter is at the level of networks, while technical material throughout the
rest of the book is generally developed in reference to a specific network graph(s).

The seeds of network-based analysis in the sciences, particularly its mathematical
foundation of graph theory, are often placed in the 1735 solution of Euler to the now
famous Königsberg bridge problem, in which he proved that it was impossible to
walk the seven bridges of that city in such a way as to traverse each only once.
Since then, particularly since the mid-1800’s onward, these seeds have grown in a
number of key areas. For example, in mathematics the formal underpinnings were
systematically laid, with König [235] cited as the first key architect. The theory of
electrical circuits has always had a substantial network component, going back to
work of Kirchoff, and similarly the study of molecular structure in chemistry, going
back to Cayley. As the fields of operations research and computer science grew
during the mid-1900’s, networks were incorporated in a major fashion in problems
involving transportation, allocation, and the like. And similarly during that time
period, a small subset of sociologists, taking a particularly quantitative view towards
the topic of social structure, began developing the use of networks in characterizing
interactions within social groups.

Presently, examples of network-based analysis may now be found far beyond
the traditional areas listed above, involving topics ranging from computer network-
ing and the Internet to biology and gene networks to library science and webs of
knowledge. Two important contributing factors to this growth are (i) an increas-
ing tendency towards a systems-level perspective in the sciences, away from the
reductionism that characterized much of the previous century, and (ii) an accom-
panying facility for high-throughput data collection, storage, and management. The
quintessential example is perhaps that of the changes in biology over the past 10 to
20 years, during which the complete mapping of the human genome, a triumph of
computational biology in and of itself, has now paved the way for fields like sys-
tems biology to be pursued aggressively, wherein a detailed understanding is sought
of how the components of the human body, at the genetic level and higher, work
together.

The focus of this book is on the statistical analysis of network data. More specif-
ically, we aim to present a core set of methods and models for the analysis of mea-
surements that are either of or from a system conceptualized as a network. Such
data are collected daily in a host of different areas. Each area, naturally, has its
own unique questions and problems under study. Nevertheless, from a statistical
perspective, there is a methodological foundation emerging, composed of tasks and
tools that are each common to some non-trivial subset of research areas involved
with network science. It is our goal here to present this foundation.
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Much of the challenge in analyzing network data stems from the fact that they in-
volve, either explicitly or implicitly, quantities of a relational nature. As such, mea-
surements are typically both high-dimensional and dependent. Additionally, such
data are often substantial in quantity, and thus computational tractability is gener-
ally an issue not far from the surface when developing and using statistical methods
and models in this area. The study of data that are either high-dimensional, depen-
dent, or massive in quantity each is in itself currently an important topic of research
in statistical theory and methods. In the analysis of network data, all three are often
present in a unique fashion.

1.2 Examples of Networks

In order to better appreciate the nature of the statistical foundation emerging in the
analysis of network data, it is useful to have some initial sense of the contexts in
which networks arise, the scientific questions being asked, and the measurements
being taken. While many such examples are to be found throughout the rest of the
book, we present here in this section an initial glimpse, meant to provide somewhat
of a mosaic picture. For convenience, and following Newman [296], the presentation
is organized loosely into four classes of networks: technological, social, biological,
and informational. These divisions are intended to be soft, and not hard, as many
networks can be said to fall into more than one category.

1.2.1 Technological Networks

Arguably the networks most familiar to us are those of a technological nature (i.e.,
human constructions consciously created in a network form). Examples include
communication networks (e.g., telephone networks or the Internet), transportation
networks (e.g., networks of roads or rails, or networks of airline routes), and energy
networks (e.g., networks for delivery of electricity or gas, or electrical circuits).

Some or all of the topology of such networks is often known by some entity. For
example, telephone service providers maintain knowledge of the lines they lay and
manufacturers of electrical circuits begin with blueprints of circuit designs. Connec-
tivity may be in the form of a literal physical tie, such as a fiber optic cable or a gas
line, or in the form of a virtual connection, such as a wireless link between a cellular
phone and a nearby tower or the travel of an airplane between the airports of two
cities. Interest in these networks is often focused on the flow of some correspond-
ing ‘commodity’ across the network, be it Internet traffic packets, freight carried by
trains, or units of electrical energy.

Consider the rather celebrated example of the Internet, which is essentially a net-
work of digital devices communicating over wired and wireless connections via a
set of communication protocols. Starting from comparatively modest beginnings, as
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a 100-node research network in the mid-1970s, the Internet today is effectively a
network of networks, linking on the order of hundreds of millions of devices and
responsible for carrying the communication traffic that underlies everything from
electronic banking transactions to email correspondence to music, video, and gam-
ing entertainment.

Figure 1.1 shows a visual representation of a portion of the Internet, at a certain
level of granularity – the sub-network known as Abilene. Abilene is part of the In-
ternet2 project,1 a research project devoted to development of the ‘next generation’
Internet. It serves as a so-called ‘backbone’ network for universities and research
labs across the United States in a manner analogous to the federal highway system
of roads. The 11 large-scale ‘Core’ nodes in this network correspond to regional
network aggregation points, connected by systems of optical transportation tech-
nologies and routing devices, denoted here as links. In addition, connected to each
Core node are additional nodes, such as ‘Connector’ nodes and ‘Exchange Points.’
The Connector nodes are network infrastructures through which local ‘Participant’
networks from universities and research labs access Abilene; the Exchange Points
are similar, but instead serve to integrate Abilene with other ‘Peer’ Networks, such
as similar networks in other countries. Note the clear hierarchical structure, which
also continues down into the Participant networks themselves, and is replicated in
the Peer networks, ultimately descending down to the laptops and such sitting in
people’s offices.

While most people largely take the Internet for granted, as a part of the infras-
tructure around which their daily lives are built, there is substantial interest in mea-
suring and studying the Internet, in both the research and commercial communities.
Network-oriented questions regarding the Internet tend to focus on those relating to
its topology, the traffic it carries, the interaction of the two, and in turn the interac-
tion of those with social and economic factors. For example, in regards to topology
we may ask, “What does the Internet look like?” “How big is it?” and “What are
its structural characteristics?” In terms of traffic, questions include “How much traf-
fic is flowing across the network?” “How can I distinguish between ‘normal’ and
‘anomalous’ traffic?” and “Does my network have the capacity to meet anticipated
demands?” See the book by Crovella and Krishnamurthy [105], for example.

In order to answer questions like these, measurements are taken in the Internet
in a variety of active and passive manners. For example, it is possible to actively
probe the Internet with small packets of traffic and register the responses that return
to the sender as a result of communication protocols, which provides information on
the routes the packets traveled and hence some insight into Internet topology. Con-
versely, it is also possible to ‘sit’ passively on an Internet link and monitor the traffic
flowing by to a greater or lesser extent, depending on the granularity of information
desired. We will see statistical topics of particular relevance to measurements like
these in Chapter 3 (i.e., mapping networks), Chapter 5 (i.e., network sampling bias),
Chapter 7 (i.e., Internet topology identification), Chapter 8 (i.e., spread of epidemics
in a network), and Chapter 9 (i.e., analysis of network flow data).

1 http://www.internet2.edu/
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Fig. 1.1 Depiction of the Abilene network in the Internet. Different nodes represent various forms
of network ‘entities’, while different colors of links indicate various levels of communication band-
width. Note that some node names appear more than once, corresponding to the phenomena of
‘multi-homing’, wherein a given network connects to another at more than one location. Figure
courtesy of Sucharita Gopal.

1.2.2 Social Networks

A class of networks with one of the longest histories of systematic study, dating
back to at least the 1930’s, is that of social networks (i.e., networks representing the
interactions among a collection of social entities or ‘actors’). Such entities typically
are people or groups of people, but sometimes are non-human, such as animals. The
type of interactions considered in this area varies and is constrained in part by the
unit and nature of the social entities involved. Examples of social interactions in-
clude friendships among people, membership of people in larger social groups (e.g.,
clubs, companies, etc.), contacts between people (e.g., sexual contacts, meetings be-
tween members of terrorist cells, etc.), cooperation on a common endeavor, and the
exchange of resources. Specific examples of social networks include networks of
friendships among school children, sexual contacts within a community, corporate
alliances among businesses, email exchanges between individuals, co-authorship on
scientific articles, and trade agreements among nations.

The study of such networks is of particular interest to, and has traditionally been
the province of, researchers in social sciences like sociology, anthropology, and psy-
chology, although this interest is increasingly shared now by researchers in a number
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of other areas, such as business and public health. The focus in these areas typically
is on social structure and the quantitative characterization and analysis of such struc-
ture, which they aim to accomplish through the measurement of social interactions
and the analysis of the resulting social network topologies. Questions of interest
include “Who interacts with whom and what factors influence the tendency to inter-
act?” “Which interactions are mutual?” “Are friends of friends also friends?” “What
social groups, if any, exist in the network?”, “Who are the power brokers?” “Who is
central to the network and who is peripheral?” and “Which actors are similar in the
roles they play?”

Figure 1.2 shows a visual representation of a particular social network, the so-
called ‘karate club network’ of Zachary [411]. Nodes represent members of a karate
club observed by Zachary for roughly two years during the 1970’s, and links con-
necting two nodes indicate social interactions between the two members (thickness
of the links reflects relative frequency of interactions). This dataset is somewhat
unique in that Zachary had the curious fortune (from a scientific perspective) to wit-
ness the club split into two different clubs during his period of observation, due to a
dispute between the head teacher and an administrator. It was originally published
in conjunction with a model for information flow in small groups in the presence
of conflict and fission. It has since become a favorite among researchers developing
algorithms for detection of social subgroups, since the truth of membership in the
two subgroups is a known quantity.

Social network scientists often face unique measurement challenges. Potential
difficulties include the identification of social entities of interest, their willingness
to be recruited into studies, and possible sources of bias in their response. For ex-
ample, drug addicts or sex workers, two subpopulations of considerable interest to
those studying the impact of social structure on the spread of the AIDS virus, are
not necessarily obvious to identify in the general population. Once identified, they
may have serious qualms about participating in a study. And once having agreed,
in principle, to participate, they may be understandably reluctant to fully disclose
information on, say, the sharing of hypodermic needles or their sexual partners. All
of these issues, and others like them, can have an important impact on the statistical
analysis of such data.

In recent years, the Internet has begun to have a fascinating impact on the field
of social network analysis, due both to the potential for large-scale data acquisition
and storage and the actual types of social interactions facilitated by the Internet.
Examples of networks whose study is impacted in this manner include networks
of email exchanges or phone calls, which can be measured by exploiting the exist-
ing computer infrastructure in the underlying technological networks, or networks
of scientific collaborations, now relatively easily compiled on large scales because
of the prevalence of electronic publication and archiving. Many of these networks
are significantly larger than the size of typical social networks studied in the past.
However, this characteristic can lead to its own issues. For example, the sheer mag-
nitude of emails sent or calls made daily on a service provider’s network quickly
leads to concerns about data volume, which can make even seemingly simple tasks
of network summary and visualization highly nontrivial.
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Fig. 1.2 Zachary’s ‘karate club’ network. Subgroups, centered around actors 1 and 34, are indi-
cated by the coloring and shape of their nodes, using blue squares and red circles, respectively.
Links between actors within the same subgroup are colored similar to their nodes, while links
between actors of different subgroups are shown in yellow.

We will encounter various social network tools and other topics of relevance
to social network analysis in Chapter 3 (i.e., mapping networks), Chapter 4 (i.e.,
descriptive analysis of observed network structure), Chapter 5 (i.e., the sampling of
network graphs), and Chapter 6 (i.e., the modeling of network graphs).

1.2.3 Biological Networks

Networks are a natural and commonly used tool for representing the internal work-
ings of biological systems, at all different scales. For example, intra-cellular net-
works of interest include those describing the regulatory behavior among genes,
the physical affinity for binding among proteins, the participation of metabolites to-
gether in biochemical processes, and combinations thereof. Similarly, a well-known
example of an inter-cellular network is a network of neurons. On the other hand,
networks describing interactions among complete organisms include ecological net-
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works, such as those describing predator-prey relationships, and epidemiological
networks, characterizing the spread of disease in a population.

As an illustration of a biological network, consider the network representation
in Figure 1.3, which characterizes the cellular-level biomolecular process underly-
ing the circadian clock mechanism in the organism Drosophila melanogaster (fruit
fly). The ‘circadian rhythm,’ a 24-hour periodic cycle common to most living be-
ings, is shown here as being driven by a feedback loop that creates a corresponding
accumulation and decay in the quantities of two proteins, Per and Tim. Both the
proteins and the genes that code for the proteins are indicated in the diagram, as
rectangular and circular nodes, respectively, while the links indicate various steps in
the overall process, including DNA translation and transcription, phosphorylation,
suppression, and even physical movement across the nuclear membrane (drawn as
a vertical dashed line).

Fig. 1.3 Network representation of the circadian clock mechanism in Drosophila melanogaster
(fruit fly), as of June 30, 2003, from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [2].

Historically, the construction of such networks has been tremendously time-
consuming. However, since roughly the mid-1990’s, with the advent of high-
throughput measurement techniques in genomics, the entire nature of this task has
changed dramatically. The flood of data brings with it the potential to infer relational
information like that in Figure 1.3 on a large scale in a semi- to fully-automated
fashion. As a result, substantial energy is being focused on creating system-wide
network representations of interactions among the different relevant biological ele-
ments (e.g., genes, proteins, etc.), and on the use of such networks for discovering
higher-level phenomena associated with cellular processes. Examples of such tasks



1.2 Examples of Networks 9

range from the basic ‘mapping’ of the underlying biological system, to the search
for meaningful clusters or sub-networks of system elements (i.e., ‘motifs’), to the
inference of roles in cellular function (e.g., protein function prediction) and the pre-
diction of the behavior of the overall system in the face of external influences (e.g.,
the response to new cancer drug treatments).

Not surprisingly, the nature of the data collected on biological networks and the
manner in which they are analyzed and used vary widely with the nature of the
underlying biological system being studied and our ability to obtain relevant mea-
surements. We will encounter a variety of examples of biological networks, at vari-
ous scales, and topics relevant to their study in Chapter 3 (i.e., mapping networks),
Chapter 5, (i.e., network sampling), Chapter 6 (i.e., detection of network motifs),
Chapter 7 (i.e., inference of networks), and Chapter 8 (i.e., protein function predic-
tion and modeling of epidemiological processes).

1.2.4 Information Networks

Of particular use in this modern ‘information age,’ although by no means new, are
information networks (i.e., networks describing relationships among elements of
information). Standard examples include networks of citations between academic
journals or papers, networks of co-authorship on papers, or networks indicating se-
mantic relationships (e.g., synonym, antonym, etc.) between words or concepts. In
addition, the Internet has helped spawn a number of well-known classes of informa-
tion networks. The pre-eminent example is the World Wide Web (WWW), in which
nodes typically are web pages and edges indicate the referencing of one page by an-
other. Another class of Internet-related information networks are peer-to-peer (i.e.,
‘P2P’), networks, in which nodes are typically Internet users and links indicate the
exchange of content (e.g., music or movies) through an associated network protocol
(e.g., Napster, Gnutella, KaZaa, etc.).

The ‘mapping’ of information networks in an informative fashion is usually a
non-trivial task of significant interest in itself, particularly given their often mas-
sive size. Additionally, there is generally strong interest in questions regarding the
structure of such networks, including which nodes are linked to many other nodes
(e.g., “Who are the most highly cited authors within the mathematical sciences lit-
erature?”), whether certain tightly inter-woven subgraphs may be found (e.g., “How
does the content of web pages induce clustering on the WWW?”), and the manner
in which network size and structure change over time (e.g., “What are the dynamics
of the lifetime of a scientific innovation?”).

As an illustration of an information network, consider the network depicted in
Figure 1.4, which is an example of an important class of sub-networks of the WWW
called ‘web-logs’ or simply ‘blogs’. Blogs are a form of Web authorship, primarily
textual in nature but increasingly more multimedia based. The corresponding web
page(s) of a blog consists of a set of entries, often on a particular topic(s), that are
archived in reverse chronological order and usually updated frequently. ‘Blogging,’
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as the act of maintaining a blog is called, has come to refer to a range of activities
that include personal journal keeping, citizen reporting, information dissemination,
and social interaction (e.g., support groups, political action, etc.). In fact, blog net-
works can be viewed not only as information networks, but often also as social
networks representing so-called ‘virtual communities.’

Fig. 1.4 AIDS Blog Network

The network in Figure 1.4 is a snapshot of the pattern of citation among 146
unique blogs related to AIDS, patients, and their support networks, collected by
Gopal [184] over a randomly selected three-day period in August 2005. A directed
edge from one blog to another indicates that the former has a link to the latter in
their web page (more specifically, the former refers to the latter in their so-called
‘blogroll’). Collection of such data is facilitated by the very Internet, protocols, and
software that make blogging possible in the first place. The resulting measurements
can include not only indications of pairwise blogger interactions, but also informa-
tion on blog content. Interesting questions relate, for example, to the dynamics of
formation of blog communities, the role(s) of individual or subgroups of bloggers
in those communities, and the spread of information throughout a blog network.

We will encounter topics relevant to information networks like this in Chap-
ter 3 (i.e., mapping networks), Chapter 4 (i.e., description of structure and patterns),
Chapter 5 (i.e., network graph sampling), and Chapter 7 (i.e., link prediction).
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1.3 About this Book

Given the vast array of contexts in which networks arise, the multitude of questions
asked in regards to those networks, and the variety of measurements taken towards
the goal of answering these questions, how can one propose to write a single book
on general topics relevant to the statistical analysis of network data? The answer to
this question lies in the fact that it is possible – and indeed quite useful – to cate-
gorize many of the various tasks faced in the analysis of network data in different
domains according to a statistical taxonomy. In so doing, a certain order and struc-
ture emerges for presenting some core of the multitude of statistical methods and
models proposed in this area by researchers across diverse disciplines. It is along
the lines of such a taxonomy, with the goal of presenting such a core, that this book
is organized.

Broadly speaking, the material in this book is broken down into topics of (i) de-
scriptive methods, in Chapters 3 - 4, and (ii) modeling and inference, in Chapters 6 -
10, with Chapter 5 playing somewhat of a transition role between the two. Interwo-
ven throughout, we integrate relevant issues of data collection, data management,
and computing. Of course, in reality ‘descriptive’ and ‘inferential’ techniques are
not always cleanly separated, nor in practice does the task of statistical analysis
flow linearly from the former to the latter and simply stop, but rather is generally
iterative. Nevertheless, we find this organization convenient.

In more detail, the contents of this book are as follows. Chapter 2 contains prelim-
inary technical material on graphs, probability, and statistical inference necessary
for the rest of the book. Following these preliminaries, methods for the descrip-
tive analysis of network data are developed in Chapters 3 and 4. In the former we
concentrate on the task of converting network measurements into a network graph
representation, while in the latter we focus on the description of structure and the
identification of patterns in such network graphs. In Chapter 5 we explore the effects
of sampling on the extent to which characteristics of an observed network graph
reflect the corresponding characteristics of the underlying network being studied.
Then in Chapters 6 and 7 we turn to the task of modeling network graphs. In Chap-
ter 6 we study models for describing an observed network graph, while in Chap-
ter 7 we consider the problem of inferring a network graph based on incomplete
or indirect measurements. Next, in Chapters 8 and 9 we turn to problems involving
the modeling and inference of processes on a network graph. Chapter 8 concerns
network-indexed processes, of both a static and dynamic nature, while Chapter 9 is
devoted to the special case of network flow processes.

Finally, in Chapter 10 we briefly discuss the topic of graphical models. The
graphical modeling paradigm differs from that associated with most of the models
described in this book – wherein graphs serve either as data objects themselves or
effectively as indexing for other data objects – in that graphs are used to describe the
conceptual structure (or, more formally, collections of conditional independence re-
lations) associated with statistical inference. Nevertheless, the two perspectives are
by no means entirely distinct, and in fact we will encounter a number of instances
of graphical models earlier in Chapters 6 through 9. The purpose of Chapter 10 is to
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make more precise the role that can be played by graphical models in the analysis
of network data.

We have aimed in the writing of each chapter to concentrate on what we see as
a core set of topics relevant to the theme of the chapter. In doing so, we inevitably
exclude certain worthwhile and valuable aspects of the literature. For example, most
of the material in the book is developed around the case of static network graphs.
Material on dynamic network graphs (i.e., those evolving in time), an increasingly
active but less mature area of network research, is included where relevant in cer-
tain chapters as only a small subsection near the end. In an attempt to compensate
somewhat for this and similar truncation or exclusion of topics, we have included
additional references to the literature in the section ‘Additional Related Topics and
Reading’ appearing at the end of each chapter. However, admittedly, even through
this device it is impossible to be comprehensive.

This book is intended for students and researchers across a wide range of quan-
titative disciplines, including bioinformatics, computer science, economics, infor-
mation science, mathematics, physics, sociometrics, and – of course – statistics.
At a minimum, a reader will need a solid foundation in calculus and linear alge-
bra, as well as the equivalent of a strong introductory course in probability and in
statistical modeling. Readers with additional background will (hopefully!) reap ad-
ditional benefit accordingly. For those readers outside of statistics who would like
to establish a more thorough grounding in statistical modeling and inference beyond
the level of an introductory course, we recommend Wasserman’s All of Statistics:
A Concise Course in Statistical Inference [392], a text written expressly for such
readers.

The material in this book is generally presented in a manner that attempts to
strike a balance between concepts and mathematical detail. It is expected that read-
ers will want to follow the various threads woven throughout to their origins in the
literature, and copious use of references has been made for this purpose. In addi-
tion, in order to encourage readers to explore certain topics in greater depth, we
have included with each chapter a handful of exercises. These are a combination of
analytical and computational exercises. The analytical exercises are often comple-
tion problems, picking up loose threads of a more technical nature from the main
body of the chapter. The computational exercises are often open-ended, a format
we have found useful in teaching this material to students of diverse backgrounds,
allowing them to define and attack problems in specific topic areas in a manner most
beneficial to whatever network-oriented agendas they bring to the course.

Lastly, we comment on the topic of software. The sheer variety of software avail-
able in this area for statistical analysis of network data mirrors the number of com-
munities involved in such work. In this book we have chosen to be ‘software ag-
nostic,’ in that we do not advocate nor solely use any one particular software for
the examples presented. There are two reasons for this choice. First, no single soft-
ware package at this time is best suited for conducting all of the statistical analyses
described in this book – and it is not our aim to develop such a package. Second,
when we have taught this material, our experience has been that students often come
to the course already with a preferred package(s). Most of the network figures in
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this book were created using Pajek [24, 111], while computing for the numerical
illustrations generally was done using either the R [1] or MATLAB R© software
environments. We will attempt to maintain on the website for this book

http://math.bu.edu/people/kolaczyk/SAND.html

a (surely incomplete!) list of popular packages and software for network analysis.
Readers are encouraged to help us maintain this list and to let us know of important
omissions. Machine-readable copies of most data used in this book are also available
from this website.



Chapter 2
Preliminaries

This chapter contains technical background for the material addressed throughout
the rest of the book. We begin in Section 2.1 with an overview of necessary topics
from graph theory, which provides us with much of the language and infrastructure
for manipulating and describing networks and network data. We then turn in Sec-
tion 2.2 to a brief review of fundamental elements from probability and statistical
inference, which will provide us with most of the language and principles used here
for the modeling and analysis of network data. Finally, in Section 2.3, we discuss,
through a series of examples, some of the unique challenges inherent in the statis-
tical analysis of network data. Readers sufficiently familiar with both graph theory
and statistical inference may wish to skip this chapter and move directly to Chap-
ter 3, after perhaps a quick detour to glance through the examples of Section 2.3 and
the issues raised therein.

2.1 Background on Graphs

We have seen that the term ‘network,’ as commonly used, refers simply to a col-
lection of elements and their inter-relations. The sub-field of mathematics known as
graph theory lends precision to this notion. In particular, it provides a body of defini-
tions, tools, techniques, and results for discussing graphs and their properties. These
will play an especially important role in the material of Chapters 3 and 4. We review
here some of the basic terminology and concepts on graphs, discuss common fam-
ilies of graphs, introduce certain important connections between graphs and matrix
algebra, and then briefly visit the topic of graph data structures and algorithms.
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2.1.1 Basic Definitions and Concepts

Formally, a graph G = (V,E) is a mathematical structure consisting of a set V of
vertices (also commonly called nodes) and a set E of edges (also commonly called
links), where elements of E are unordered pairs {u,v} of distinct vertices u,v ∈ V .
The number of vertices Nv = |V | and the number of edges Ne = |E| are sometimes
called the order and size of the graph G, respectively. Often, and without loss of gen-
erality,1 we will label the vertices simply with the integers 1, . . . ,Nv, and the edges,
analogously. A graph H = (VH ,EH) is a subgraph of another graph G = (VG,EG)
if VH ⊆ VG and EH ⊆ EG. An induced subgraph of G is a subgraph G′ = (V ′,E ′),
where V ′ ⊆ V is a prespecified subset of vertices and E ′ ⊆ E is the collection of
edges to be found in G among that subset of vertices.

As defined, a graph has no edges for which both ends connect to a single vertex
(called loops) and no pairs of vertices with more than one edge between them (called
multi-edges). A graph with either of these properties is called a multi-graph. For
simplicity, and reflecting the bulk of common practice, the presentation in this book
will concentrate primarily on graphs, and not multi-graphs, though reference to the
latter will be made where appropriate. When it is necessary to indicate explicitly
that a graph G is not a multi-graph, we will refer to it as a simple graph, and its
edges, as proper edges.

A graph G for which each edge in E has an ordering to its vertices (i.e., so that
{u,v} is distinct from {v,u}, for u,v ∈ V ) is called a directed graph or digraph.
Such edges are called directed edges or arcs, with the direction of an arc {u,v} read
from left to right, from the tail u to the head v. Note that there is a natural extension
of digraphs to multi-digraphs, where multiple arcs (i.e., multi-arcs) share the same
head and tail. Note too, however, that digraphs may have two arcs between a pair
of vertices without their being multi-arcs if the vertices play opposite roles of head
and tail for the respective arcs. In this case, the two arcs are said to be mutual.

It is necessary to have a language for discussing the connectivity of a graph. One
of the most basic notions of connectivity is that of adjacency. Two vertices u,v ∈V
are said to be adjacent if joined by an edge in E. Similarly, two edges e1,e2 ∈ E
are adjacent if joined by a common endpoint in V . A vertex v ∈ V is incident on
an edge e ∈ E if v is an endpoint of e. From this follows the notion of the degree
of a vertex v, say dv, defined as the number of edges incident on v. The degree
sequence of a graph G is the sequence formed by arranging the vertex degrees dv in
non-decreasing order. The sum of the elements of the degree sequence is equal to
twice the number of edges in the graph (i.e., twice the size of the graph). Note that
for digraphs, vertex degree is replaced by in-degree (i.e., din

v ) and out-degree (i.e.,
dout

v ), which count the number of edges pointing in towards and out from a vertex,
respectively. Hence, digraphs have both an in-degree sequence and an out-degree
sequence.

1 Technically, a graph G is unique only up to relabellings of its vertices and edges that leave the
structure unchanged. Two graphs that are equivalent in this sense are called isomorphic.
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It is also useful to be able to discuss the concept of movement about a graph.
For example, a walk on a graph G, from v0 to vl , is an alternating sequence
{v0,e1,v1,e2, . . . ,vl−1,el ,vl}, where the endpoints of ei are {vi−1,vi}. The length
of this walk is said to be l. Refinements of a walk include trails, which are walks
without repeated edges, and paths, which are trails without repeated vertices. A trail
for which the beginning and ending vertices are the same is called a circuit. Sim-
ilarly, a walk of length at least three, for which the beginning and ending vertices
are the same, but for which all other vertices are distinct from each other, is called
a cycle. Graphs containing no cycles are called acyclic. In a digraph, these notions
generalize naturally. For example, a directed walk from v0 to vl proceeds from tail
to head along arcs between v0 and vl .

A vertex v in a graph G is said to be reachable from another vertex u if there exists
a walk from u to v. The graph G is said to be connected if every vertex is reachable
from every other. A component of a graph is a maximally connected subgraph. That
is, it is a connected subgraph of G for which the addition of any other remaining
vertex in V would ruin the property of connectivity. For a digraph, there are two
variations of the concept of connectedness. A digraph G is weakly connected if its
underlying graph (i.e., the result of stripping away the labels ‘tail’ and ‘head’ from
G) is connected. It is called strongly connected if every vertex v is reachable from
every u by a directed walk.

A common notion of distance between vertices on a graph is defined as the length
of the shortest path(s) between the vertices (which we set equal to infinity if no such
path exists). This distance is often referred to as geodesic distance, with ‘geodesic’
being another name for shortest paths. The value of the longest distance in a graph
is called the diameter of the graph.

Finally, it is not uncommon to equip (or ‘decorate’) a graph G with auxiliary nu-
merical values on its vertices, edges, or both. For example, edges e ∈ E are often
accompanied by edge weights. In fact, extending the notion of edge weights to all
pairs of vertices, the edge set E itself can be represented through a set {we} of such
weights, i.e., we = 1 if e ∈ E and 0 if e /∈ E. When edges are weighted, the corre-
sponding length of a walk (trail, path, etc.) is measured as the sum of the values of
the weights along the edges traversed in the walk. The notion of distance generalizes
accordingly. These concepts extend naturally to digraphs.

Similarly, graph labellings may be used in representing a multi-graph as a deco-
rated graph. Specifically, given a multi-graph, we can define a graph G having the
same vertex set V and having an edge set E such that distinct elements u,v ∈V have
an edge between them if there is at least one multi-edge between them in the multi-
graph. Then, equip each vertex v ∈ V with a label denoting the number of loops
possessed by v in the multi-graph, and similarly, equip each edge with the number
of multi-edges it represents.

Of course, in this book a particularly common source of labels for graph vertices
and edges will be in the form of measurements of functions or processes on a given
graph. However, we postpone introducing the necessary notation for such quantities
until Section 2 of this chapter.
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2.1.2 Families of Graphs

Graphs come in all ‘shapes and sizes,’ as it were, but there are a number of families
of graphs that are commonly encountered in practice. Such prevalence typically is
due to some combination of relevance and tractability, with the latter being of an
analytical or computational nature, or both. We describe here a handful of the most
common examples of graph families.

A complete graph is a graph where every vertex is joined to every other vertex
by an edge. Figure 2.1 shows, on the left, a representation of a complete graph. This
concept is perhaps most useful in practice through its role in defining a clique, which
is a complete subgraph. A subgraph H of a graph G is said to be a maximal clique if
it is complete and no other such subgraph contains it. Cliques are an extreme form
of a ‘highly inter-connected’ subgraph, the existence and detection of which is often
of interest in the analysis of a network. We will encounter additional, more flexible
forms of this idea in Chapter 4.

Fig. 2.1 Left: a complete graph. Right: a portion of a 4-regular graph.

A regular graph is a graph in which every vertex has the same degree. A regular
graph with common degree d is called d-regular. Figure 2.1 shows, on the right, a
portion of a 4-regular graph, such as is found in the common lattice defining, say, the
squares on a chess board.2 Regular graphs arise commonly in the study of various
quantities in physics and chemistry (e.g., crystal structure), and arise frequently in
geo-spatial settings (e.g., as a model of pixel adjacencies in image processing).

A connected graph with no cycles is called a tree. The disjoint union of such
graphs is called a forest. Trees are of fundamental importance in the analysis of
networks. They serve, for example, as a key data structure in the efficient design
of many computational algorithms. A digraph whose underlying graph is a tree is
called a directed tree. Often such trees have associated with them a special vertex

2 Technically, to render this example truly 4-regular, the board must be made cyclic, in the manner
of a circle, by joining the top and bottom edges (thus creating a tube) and then the open ends (thus
creating a so-called toroidal lattice).



2.1 Background on Graphs 19

called a root, which is distinguished by being the only vertex from which there is a
directed path to every other vertex in the graph. Such a graph is called a rooted tree.
An example is shown in Figure 2.2. A vertex preceding another vertex on a path
from the root is called an ancestor, while a vertex following another vertex is called
a descendant. Immediate ancestors are called parents, and immediate descendants,
children. A vertex without any children is called a leaf. Given a rooted tree of this
sort, it is not uncommon to represent it diagrammatically without any indication of
its directedness, as this is to be understood from the definition of the root.

Fig. 2.2 Left: a rooted tree. Center: a DAG. Right: the undirected graph underlying the DAG.

An important generalization of the concept of a tree is the directed acyclic graph
(i.e., the DAG). A DAG, as its name implies, is directed and has no cycles. However,
unlike a directed tree, its underlying graph is not a tree, in that replacing the arcs
with undirected edges leaves a (simple) graph that contains cycles. Nevertheless,
it is often possible to still design efficient computational algorithms on DAGs that
take advantage of this near-tree-like structure. An example of a DAG is shown in
Figure 2.2, along with its underlying graph.

A bipartite graph is a graph G = (V,E) such that the vertex set V may be par-
titioned into two disjoint sets, say V1 and V2, and each edge in E has one endpoint
in V1 and the other in V2. Such graphs are typically used to represent ‘member-
ship’ networks, for example, with ‘members’ (e.g., people) denoted by vertices in
V1, and the corresponding ‘organizations’ (e.g., clubs), by vertices in V2. It is not
uncommon to accompany a bipartite graph with at least one of two possible induced
graphs. Specifically, a graph G1 = (V1,E1) may be defined on the vertex set V1 by
assigning an edge to any pair of vertices that both have edges in E to at least one
common vertex in V2. Similarly, a graph G2 may be defined on V2. Figure 2.3 shows
an example of a bipartite graph G and its induced graph G1.

As a last example, we mention the class of planar graphs. A graph G is said
to be planar if, informally speaking, it may be drawn in the plane, with vertices
as dots and edges as lines, in such a way that no pair of edges intersect anywhere
other than at vertices to which they are jointly incident. Planar graphs are often
an appropriate representation of networks with a spatial component, such as many
technological networks, and have a number of special properties induced by the
structural requirement that they ‘lie in’ the plane.
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Fig. 2.3 Left: a bipartite graph. Right: a graph induced by the bipartite graph on the ‘white’ vertex
set.

2.1.3 Graphs and Matrix Algebra

We shall see that it is frequently useful in the modeling and analysis of network
data to be able to characterize a graph G and certain aspects of its structure using
matrices and matrix algebra. Our ability to do so in a rigorous manner derives from
a formal blending of graph theory with matrix algebra, in a field called algebraic
graph theory, the roots of which go back to Kirchoff and his study of electrical
networks. We briefly describe a handful of the elements from this area that will be
of particular use to us in various parts of this book.

The fundamental connectivity of a graph G may be captured in an Nv×Nv binary,
symmetric matrix A with entries

Ai j =
{

1, if {i, j} ∈ E ,
0, otherwise ,

(2.1)

where we use the integers 1, . . . ,Nv generically to denote the elements of V and we
represent an edge e ∈ E explicitly as an unordered pair of vertices i, j ∈V . In words,
A is non-zero for entries whose row-column indices correspond to vertices in G
joined by an edge, and zero, for those that are not.

The matrix A, called the adjacency matrix, is useful not only for storing connec-
tivity information, but also in that certain operations on A yield additional informa-
tion concerning G. For example, the row sum Ai+ = ∑ j Ai j is simply equal to the
degree di of vertex i. Note that, by symmetry, Ai+ = A+i. Furthermore, if we let Ar

denote the r-th power of A, then the entry Ar
i j yields the number of walks of length

r between i and j on G. Finally, there are many interesting and useful relations in-
volving the eigenvalues of G. For example, it can be shown that G is a regular graph
if and only if the maximum degree dmax of G is an eigenvalue of A.

An adjacency matrix may also be defined for digraphs, by adjusting the definition
in (2.1) so that Ai j = 1 if {i, j} ∈ E represents a directed edge from i to j. Of course,
A is now no longer symmetric. However, it still contains similarly useful additional
information. For example, Ai+ = dout

i and A+ j = din
j .


