
Springer Series in Statistics

Advisors:
P. Bickel, P. Diggle, S. Fienberg,
U. Gather, I. Olkin, S. Zeger

For other titles published in this series, go to
www.springer.com/series/692



Carlo Gaetan · Xavier Guyon

Spatial Statistics
and Modeling

Translated by Kevin Bleakley

123



Carlo Gaetan
Dipartimento di Statistica
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Preface

Spatial analysis methods have seen a rapid rise in popularity due to demand from a
wide range of fields. These include, among others, biology, spatial economics, im-
age processing, environmental and earth science, ecology, geography, epidemiology,
agronomy, forestry and mineral prospection.

In spatial problems, observations come from a spatial process X = {Xs, s ∈ S}
indexed by a spatial set S, with Xs taking values in a state space E. The positions
of observation sites s ∈ S are either fixed in advance or random. Classically, S is a
2-dimensional subset, S ⊆R

2. However, it could also be 1-dimensional (chromatog-
raphy, crop trials along rows) or a subset of R

3 (mineral prospection, earth science,
3D imaging). Other fields such as Bayesian statistics and simulation may even re-
quire spaces S of dimension d ≥ 3. The study of spatial dynamics adds a temporal
dimension, for example (s, t) ∈ R

2×R
+ in the 2-dimensional case.

This multitude of situations and applications makes for a very rich subject. To
illustrate, let us give a few examples of the three types of spatial data that will be
studied in the book.

Geostatistical data

Here, S is a continuous subspace of R
d and the random field {Xs, s ∈ S} observed

at n fixed sites {s1, . . . ,sn} ⊂ S takes values in a real-valued state space E. The
rainfall data in Figure 0.1-a and soil porosity data in Fig. 0.1-b fall into this cate-
gory. Observation sites may or may not be regularly spaced. Geostatistics tries to
answer questions about modeling, identification and separation of small and large
scale variations, prediction (or kriging) at unobserved sites and reconstruction of X
across the whole space S.

Lattice data and data on fixed networks

Here, S is a fixed discrete non-random set, usually S ⊂ R
d and X is observed at

points in S. Points s might be geographical regions represented as a network with

v
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Fig. 0.1 (a) Rainfall over the Swiss meteorological network on May 8, 1986 (during the passage
of Chernobyl’s radioactive cloud. This is the sic dataset from the geoR package of R (178)); (b)
Soil porosity (soil dataset from the geoR package). For both (a) and (b), the size of symbols are
proportional to the value of Xs.
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Fig. 0.2 (a) Percentage of people with blood group A in the 26 counties of Ireland (eire dataset
from the spdep package); (b) Image of John Lennon (256×256 pixels in a 193-level grayscale,
lennon dataset from the fields package).

given adjacency graph G (cf. the 26 counties of Ireland, Fig. 0.2-a) and Xs some
value of interest measured at s. The state space E may or may not be real-valued. In
image analysis, S is a regularly spaced set of pixels (cf. Fig. 0.2-b). Goals for these
types of data include constructing and analyzing explicative models, quantifying
spatial correlations, prediction and image restoration.
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Point data

Figure 0.3-a shows the location of cell centers in a histological section seen under
a microscope and Figure 0.3-b the location and size of pine trees in a forest. Here,
the set of observation sites x = {x1,x2, . . . ,xn}, xi ∈ S ⊂ R

d is random, along with
the number n = n(x) of observation sites; x is the outcome of a spatial point process
(PP) observed in window S. The process X is said to be marked if at each xi we
record a value, for example the diameter of the pine trees found at xi. A central
question in the statistical analysis of PPs is to know if the distribution of points is
essentially regular (Figure 0.3-a), completely random (Poisson PP) or aggregated
(Figure 0.3-b).
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Fig. 0.3 (a) 42 cell centers of a histological section seen under a microscope (cells dataset from
the spatstat package); (b) Position and diameter of 584 pine trees in a forest (longleaf
dataset from the spatstat package).

As is the case for time series, spatial statistics differ from classical statistics due
to non-independence of observations; throughout this book, we will generally call
X a spatial process or random field.

This dependency structure means there is redundancy in available information
that can be exploited when making predictions, though it also modifies statistical
behavior. Unbiasedness, consistency, efficiency and convergence in distribution of
estimators all have to be reexamined in this context. The originality of spatial statis-
tics is to make use of non-causal modeling; in this sense, spatial statistics is radically
different to time series statistics where causal models use the passage of time and a
notion of the “past” (modeling river flows, stock prices, evolution of unemployment
rates, etc.). Markov spatial modeling works with the idea of the spatial neighbor-
hood of site s “in all directions.” This includes dimension d = 1: for example, if
S ⊆ Z

1 and Xs is the quantity of corn harvested from each corn stalk along a row, a
reasonable model would compare Xs with its two neighbors, the stalks to the “left”
Xs−1 and “right” Xs+1. We see that causal autoregressive modeling of Xs based on
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Xs−1 has no obvious meaning. If the crop is in a field, we could let the harvested
quantity Xs,t at site (s, t) depend on that of its 4 nearest neighbors Xs−1,t , Xs+1,t ,
Xs,t−1 and Xs,t+1, or even perhaps its 8 nearest neighbors.

These three types of spatial structure (cf. Cressie, (48)) provide the framework
to this book. The first three chapters are devoted to modeling each in turn (Chapter
1: Second-order models, geostatistics, intrinsic models and autoregressive models;
Chapter 2: Gibbs-Markov random fields over networks; Chapter 3: Spatial point pro-
cesses). Due to the importance of simulation in spatial statistics, Chapter 4 presents
Monte Carlo Markov Chain (MCMC) methods for spatial statistics. Chapter 5 then
brings together the most important statistical methods for the various models and
data types and investigates their properties. Four appendices round things off with a
presentation of the most useful probabilistic and statistical tools in spatial statistics
(simulation, limit theorems and minimum contrast estimation) as well as software
packages for performing analyses presented in the book.

Numerous examples, most of them treated with the R software package (178),
shed light on the topics being examined. When the data being studied are not directly
available in R or from some other specified location, descriptions, relevant program
scripts and links can be found at the website of the book:

www.dst.unive.it/∼gaetan/ModStatSpat .

Each chapter ends with a set of exercises.
The bibliography gives the reader the chance to enrich their knowledge of no-

tions only briefly presented here as well as several technical results whose proofs
have been omitted. We also list reference books that fill gaps remaining after our
intentionally reduced and non-exhaustive treatment of this multi-faceted subject un-
dergoing great development (69).

Our thanks go to all our colleagues who have given us a taste for spatial anal-
ysis, for their ideas, remarks, contributions and those who have allowed us to use
data collected from their own work. We would equally like to thank the R Develop-
ment Core Team and authors of spatial packages for R (178) who have made their
powerful and efficient software freely available to the public, indispensable when
working with methods and tools described here. We thank reviewers for their care-
ful rereading of the first draft; their remarks have helped to significantly improve the
present version. Thanks to Bernard Ycart for encouraging us to expand an initially
more modest project. Of course, we could never have undertaken this work without
the patience and support of our families and the backing of our respective research
teams, Dipartimento di Statistica - Università Ca’ Foscari Venezia and Laboratoire
SAMOS - Université Paris 1. Lastly, many thanks to Kevin Bleakley for the transla-
tion and English adaptation, done with much competence. Any remaining errors are
ours.

Venice and Paris, Carlo Gaetan
August 2009 Xavier Guyon
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Chapter 1
Second-order spatial models and geostatistics

Suppose S ⊆ R
d is a spatial set. A random field X on S taking values in a state space

E means a collection X = {Xs, s ∈ S} of random variables (r.v.) indexed by S taking
values in E. This chapter is devoted to the study of second-order random fields,
i.e., real-valued random fields where each Xs has finite variance. We also study the
broader class of intrinsic random fields, that is, random fields with increments of
finite variance. We consider two approaches.

In the geostatistics approach, S is a continuous subset of R
d and we model X in a

“second-order” way with its covariance function or its variogram. For example, for
d = 2, s = (x,y) ∈ S is characterized by fixed geographic coordinates and if d = 3,
we add altitude (or depth) z. Spatio-temporal evolution in space can also be modeled
at space-time “sites” (s, t) ∈ R

3 ×R
+, where s represents space and t time. Initially

developed for predicting mineral reserves in an exploration zone S ⊆ R
3, geostatis-

tics is today used in a variety of domains (cf. Chilès and Delfiner (43); Diggle and
Ribeiro (63)). These include, among others, earth science and mining exploration
(134; 152), epidemiology, agronomy and design of numerical experiments (193). A
central goal of geostatistics is to predict X by kriging over all of S using only a finite
number of observations.

The second approach involves autoregressive (AR) models, used when S is a
discrete network of sites (we will also use the word “lattice”). S may have a regu-
lar form, for example S ⊂ Z

d (images, satellite data, radiography; (42), (224)) or it
may not (econometrics, epidemiology; (45), (7), (105)). Here, the spatial correlation
structure is induced by the AR model chosen. Such models are well adapted to sit-
uations where measurements have been aggregated over spatial zones: for example,
in econometrics this might be the percentages of categories of a certain variable in
an administrative unit, in epidemiology, the number of cases of an illness per district
s and in agronomy, the total production in each parcel of land s.

C. Gaetan, X. Guyon, Spatial Statistics and Modeling, Springer Series in Statistics, 1
DOI 10.1007/978-0-387-92257-7_1, c© Springer Science+Business Media, LLC 2010
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1.1 Some background in stochastic processes

Let (Ω ,F ,P) be a probability space, S a set of sites and (E,E ) a measurable state
space.

Definition 1.1. Stochastic process
A stochastic process (or process or random field) taking values in E is a family

X = {Xs, s ∈ S} of random variables defined on (Ω ,F ,P) and taking values in
(E,E ). (E,E ) is called the state space of the process and S the (spatial) set of sites
at which the process is defined.

For any integer n ≥ 1 and n-tuple (s1,s2, . . . ,sn) ∈ Sn, the distribu-
tion of (Xs1 ,Xs2 , . . . ,Xsn) is the image of P under the mapping ω −→
(Xs1(ω),Xs2(ω), . . . ,Xsn(ω)): that is, for Ai ∈ E , i = 1, . . . ,n,

PX (A1,A2, . . . ,An) = P(Xs1 ∈ A1,Xs2 ∈ A2, . . . ,Xsn ∈ An).

The event (Xs1 ∈ A1,Xs2 ∈ A2, . . . ,Xsn ∈ An) of E is a cylinder associated with the
n-tuple (s1,s2, . . . ,sn) and events Ai, i = 1, . . . ,n belonging to F . The family of all
finite-dimensional distributions of X is called the spatial distribution of the process;
if S ⊆ R, we say time distribution. More generally, the distribution of the process
is uniquely defined as the extension of the spatial distribution to the sub-σ -algebra
A ⊆ F generated by the set of cylinders of E (32, Ch. 12), (180, Ch. 6).

For the rest of the chapter, we will be considering real-valued processes, E ⊆ R

endowed with a Borel σ -field E = B(E).

Definition 1.2. Second-order process
X is a second-order process (random field) if for all s ∈ S, E(X2

s ) <∞. The mean
of X (which necessarily exists) is the function m : S → R defined by m(s) = E(Xs).
The covariance of X is the function c : S× S → R defined for all s, t by c(s, t) =
Cov(Xs,Xt).

With L2 = L2(Ω ,F ,P) representing the set of real-valued and square integrable
random variables on (Ω ,F ), X ∈ L2 means that X is a second-order process. A
process X is said to be centered if for all s, m(s) = 0.

Covariances are characterized by the positive semidefinite (p.s.d.) property:

∀m ≥ 1, ∀a ∈ R
m and ∀(s1,s2, . . . ,sm) ∈ Sm :

m

∑
i=1

m

∑
j=1

aia jc(si,s j) ≥ 0.

This property is a consequence of non-negativity of the variance of linear combina-
tions:

Var

(
m

∑
i=1

aiXsi

)
=

m

∑
i=1

m

∑
j=1

aia jc(si,s j) ≥ 0.

We say that the covariance is positive definite (p.d.) if furthermore, for every m-tuple
of distinct sites, ∑m

i=1∑
m
j=1 aia jc(si,s j) > 0 whenever a �= 0. Gaussian processes are

an important class of L2 processes.
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Definition 1.3. Gaussian process
X is a Gaussian process on S if for every finite subset Λ ⊂ S and real-valued

sequence a = (as, s ∈Λ), ∑s∈Λ asXs is a Gaussian random variable.

If mΛ = E(XΛ ) is the mean of XΛ = (Xs, s ∈Λ) and ΣΛ its covariance, then if ΣΛ
is invertible, the density (or likelihood) of XΛ with respect to the Lebesgue measure
on R

�Λ is

fΛ (xΛ ) = (2π)−�Λ/2(detΣΛ )−1/2 exp

{
−1

2
t(xΛ −mΛ )Σ−1

Λ (xΛ −mΛ )
}

,

where �U is the cardinality of U and xΛ possible values of XΛ . Such densities
are well-defined and Kolmogorov’s theorem ensures that for any mean function
m and p.d. covariance c there exists a (Gaussian) random field with mean m and
covariance c.

Example 1.1. Brownian motion on R
+ and Brownian sheet on (R+)2

X is a Brownian motion (180) on S = R
+ if X0 = 0, if for all s > 0, Xs follows a

N (0,s) (Xs ∼N (0,s)) and if increments X(]s, t]) = Xt −Xs, t > s ≥ 0 are indepen-
dent for disjoint intervals. The covariance of Brownian motion is c(s, t) = min{s, t}
and the increment process ΔXt = Xt+Δ −Xt , t ≥ 0 is stationary (cf. Ch. 1.2) with
marginal distribution N (0,Δ).

This definition can be extended to the Brownian sheet (37) on the first quadrant
S = (R+)2 with: Xu,v = 0 if u× v = 0, Xu,v ∼ N (0,u× v) for all (u,v) ∈ S and
independence of increments for disjoint rectangles; the increment on rectangle ]s, t],
s = (s1,s2), t = (t1, t2), s1 < t1, s2 < t2 is given by

X(]s, t]) = Xt1,t2 −Xt1s2 −Xs1t2 +Xs1s2 .

Brownian sheets are centered Gaussian processes with covariance c(s, t) =
min{s1,s2} ×min{t1, t2}.

1.2 Stationary processes

In this section, we suppose that X is a second-order random field on S = R
d or Z

d

with mean m and covariance c. The notion of stationarity of X can be more generally
defined when S is an additive subgroup of R

d : for example, S could be the triangular
lattice of R

2, S = {ne1 +me2, n and m ∈ Z} with e1 = (1,0) and e2 = (1/2,
√

3/2);
another example is the finite d-dimensional torus with pd points, S = (Z/pZ)d .

1.2.1 Definitions and examples

Definition 1.4. Second-order stationary process
X is a second-order stationary process on S if it has constant mean and translation-

invariant covariance c:
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∀s, t ∈ S: E(Xs) = m and c(s, t) = Cov(Xs,Xt) = C(t − s).

C : S → R is the stationary covariance function of X . Translation-invariance of c
means:

∀s, t,h ∈ S: c(s+h, t +h) = Cov(Xs+h,Xt+h) = C(s− t).

The correlation function of X is the function h → ρ(h) = C(h)/C(0). The following
properties hold:

Proposition 1.1. Let X be a second-order stationary process with stationary covari-
ance C. Then:

1. ∀h ∈ S, |C(h)| ≤C(0) = Var(Xs).
2. ∀m ≥ 1, a ∈ R

m and {t1, t2, . . . , tm} ⊆ S: ∑m
i=1∑

m
j=1 aia jC(ti − t j) ≥ 0.

3. If A : R
d −→ R

d is linear, the process XA = {XAs, s ∈ S} is stationary with
covariance CA(s) = C(As). CA is p.d. if C itself is and if A has full rank.

4. If C is continuous at the origin, then C is everywhere uniformly continuous.
5. If C1, C2, . . . are stationary covariances, the following functions are as well:

a. C(h) = a1C1(h)+a2C2(h) if a1 and a2 ≥ 0.
b. More generally, if C(·;u), u ∈ U ⊆ R

k is a stationary covariance for each u
and if μ is a positive measure on R

k such that Cμ(h) =
∫

U C(h;u)μ(du) exists
for all h, then Cμ is a stationary covariance.

c. C(h) = C1(h)C2(h).
d. C(h) = limn→∞Cn(h), provided that the limit exists for all h.

Proof. Without loss of generality, suppose that X is centered.
(1) is a consequence of the Cauchy-Schwarz inequality:

C(h)2 = {E(XhX0)}2 ≤ {E(X2
0 )E(X2

h )} = E(X2
0 )2.

(2) follows from the fact that covariances are p.s.d. (3) can be shown directly. (4) can
be inferred from the fact that C(s + h)−C(s) = E[X0(Xs+h −Xs)] and the Cauchy-
Schwarz inequality,

|C(s+h)−C(s)| ≤
√

C(0)
√

2[C(0)−C(h)].

(5) It is easy to show that the functions C defined by (a), (b) and (d) are p.s.d. Then,
if X1 and X2 are stationary and independent with covariances C1 and C2, covariance
C given in (5-a) (resp. (5-b)) is that of Xt =

√
a1X1,t +

√
a2X2,t (resp. Xt = X1tX2t).

��
The notion of stationarity can defined in two ways in L2. The first, weaker, is that
of stationary increment processes or intrinsic processes and is presented in Section
1.3. The second, stronger, is known as strict stationarity. We say that X is strictly
stationary if for all k ∈N, all k-tuples (t1, t2, . . . , tk)∈ Sk and all h∈ S, the distribution
of (Xt1+h, Xt2+h, . . ., Xtk+h) is independent of h. In a sense, X is strictly stationary if
the spatial distribution of the process is translation-invariant.
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If X is strictly stationary and if X ∈ L2, then X is stationary in L2. The converse
is generally not true but both notions represent the same thing if X is a Gaussian
process.

Example 1.2. Strong White Noise (SWN) and Weak White Noise (WWN)

X is a Strong White Noise if the variables {Xs, s ∈ S} are centered, independent
and identically distributed (i.i.d.). X is a Weak White Noise if the variables {Xs, s ∈
S} are centered and uncorrelated with finite constant variance: if s �= t, Cov(Xs,Xt) =
0 and Var(Xs) = σ2 < ∞. A SWN on S is strictly stationary; a WWN on S is a
stationary process in L2.

We denote ‖·‖ the Euclidean norm in R
d : ‖x‖ = ‖x‖2 =

√
∑d

i=1 x2
i , x =

(x1,x2, . . . ,xd).

Definition 1.5. Isotropic covariance
X has isotropic covariance if for each s, t ∈ S, Cov(Xs,Xt) depends only on

‖s− t‖:

∃C0 : R
+→ R s.t.: ∀t,s ∈ S, c(s, t) = C0(‖s− t‖) = C(s− t).

Isotropic covariances are therefore stationary but isotropy imposes restrictions on
the covariance. For example, if X is isotropic and centered in R

d and if we consider
d +1 points mutually separated by distance ‖h‖,

E{
d+1

∑
i=1

Xsi}2 = (d +1)C0(‖h‖)(1+dρ0(‖h‖) ≥ 0 ,

where ρ0 : R
+ → [−1,1] is the isotropic correlation function. Therefore, for all h,

this correlation satisfies
ρ0(‖h‖) ≥−1/d. (1.1)

1.2.2 Spectral representation of covariances

Fourier theory and Bochner’s theorem (29; 43) together imply a bijection between
stationary covariances C on S and their spectral measure F . It is thus equivalent to
characterize a stationary model in L2 by its stationary covariance C or its spectral
measure F .

The S = R
d case

We associate with C a symmetric measure F ≥ 0 bounded on the Borel sets B(Rd)
such that:

C(h) =
∫

Rd
eit huF(du), (1.2)
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where thu = ∑d
i=1 hiui. If C is integrable, F is absolutely continuous with density f

(with respect to the Lebesgue measure ν on R
d). f is called the spectral density of

X . The inverse Fourier transform lets us express f in terms of C:

f (u) = (2π)−d
∫

Rd
e−i t huC(h)dh.

If X has isotropic covariance C, its spectral density f does too and vice versa. Denote
r = ‖h‖, h = (r,θ) where θ = h‖h‖−1 ∈ Sd gives the direction of h in the unitary
sphere Sd in R

d centered at 0, ρ = ‖u‖ and u = (ρ,α), with α = u‖u‖−1 ∈ Sd . For
the polar coordinates h = (r,θ) and u = (ρ,α) of h and u, note cd(r) = C(h) and
fd(ρ) = f (u) the covariance and isotropic spectral density. Integrating (1.2) over Sd

with surface measure dσ , then over ρ ∈ [0,∞[, we get:

C(h) = cd(r) =
∫

[0,∞[

[∫
Sd

cos(rρ tθα)dσ(α)
]
ρd−1 fd(ρ)dρ

=
∫

[0,∞[
Λd(rρ)ρd−1 fd(ρ)dρ. (1.3)

The Hankel transform fd → cd , analogous to a Fourier transform when deal-
ing with isotropy shows that the variety of isotropic covariances is the same
as that of the bounded positive measures on [0,∞[. Furthermore (227), Λd(v) =
Γ (d/2)(ν/2)−(d−2)/2J(d−2)/2(v), where Jκ is the Bessel function of the first kind
of order κ (2). For n = 1, 2 and 3, we have:

c1(r) = 2
∫

[0,∞[
cos(ρr) f1(ρ)dρ ,

c2(r) = 2π
∫

[0,∞[
ρJ0(ρr) f2(ρ)dρ ,

c3(r) =
2
r

∫

[0,∞[
ρ sin(ρr) f3(ρ)dρ .

Using (1.3), we obtain lower bounds:

C(h) ≥ inf
v≥0
Λd(v)

∫

]0,∞[
ρd−1 fd(ρ)dρ = inf

v≥0
Λd(v)C(0).

In particular, we get the lower bounds (227; 184), tighter than those in (1.1):
ρ0(‖h‖) ≥ −0.403 in R

2, ρ0(‖h‖) ≥ −0.218 in R
3, ρ0(‖h‖) ≥ −0.113 in R

4 and
ρ0(‖h‖) ≥ 0 in R

N.

Example 1.3. Exponential covariances in R
d

For t ∈ R, α,b > 0, C0(t) = bexp(−α |t|) has the Fourier transform:
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f (u) =
1

2π

∫

]−∞,∞[
be−α|t|−iutdt =

αb
π(α2 +u2)

.

As f ≥ 0 is integrable over R, it is a spectral density and C0 therefore a covariance
on R. Also, as

∫

]0,∞[
e−αxJκ(ux)xκ+1dx =

2α(2u)κΓ (κ+3/2)
π1/2(α2 +u2)κ+3/2

,

we see that

φ(u) =
αbΓ [(d +1)/2]

[π(α2 +u2)](d+1)/2

is an isotropic spectral density of a process on R
d with covariance

C(h) = C0(‖h‖) = bexp(−α ‖h‖).

For any dimension d, C is therefore a covariance function, given the name exponen-
tial, with parameter b for the variance of X and a = α−1 the range.

The S = Z
d case

Note T
d = [0,2π[d the d-dimensional torus. According to Bochner’s theorem, any

stationary covariance C on Z
d is associated with a measure F ≥ 0 bounded on the

Borel sets B(Td) such that:

C(h) =
∫

Td
eit uhF(du).

If C is square summable (∑h∈Zd C(h)2 < ∞), the spectral measure F is absolutely
continuous with density f (w.r.t. the Lebesgue measure) in L2(Td):

f (u) = (2π)−d ∑
h∈Zd

C(h)e−i t uh. (1.4)

Furthermore, if ∑h∈Zd |C(h)| < ∞, we have uniform convergence and f is continu-
ous. Also, the greater the differentiability of f , the faster the convergence of C to
0 in the limit and vice versa: for example, if f ∈ C k(Td) where k = (k1, . . . ,kd)
∈ N

d ,

lim sup
h−→∞

hk |C(h)| < ∞,

where h = (h1,h2, . . . ,hd) −→ ∞ means at least one coordinate hi → ∞ and hk =
hk1

1 × . . .× hkd
d . In particular, if f is infinitely differentiable, C goes to zero faster

than any power function. This is the case for ARMA models (cf. §1.7.1) which have
rational spectral density f .
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1.3 Intrinsic processes and variograms

1.3.1 Definitions, examples and properties

The stationarity property in L2 may not be satisfied for various reasons: for example
when Xs = Ys + Z, where Y is stationary in L2 but Z /∈ L2, or equally when X is in
L2 but not stationary, whether that be second-order (Brownian motion) or first-order
(Xs = a + bs + εs for a stationary centered residual process ε). A way to weaken

the L2 stationarity hypothesis is to consider the increment process {ΔX (h)
s = Xs+h −

Xs, s ∈ S} of X , which may be stationary in L2 even when X is not stationary or not
in L2.

Definition 1.6. Intrinsic process
X is an intrinsically stationary process (or intrinsic process) if for each h ∈ S,

the process ΔX (h) = {ΔX (h)
s = Xs+h −Xs : s ∈ S} is second-order stationary. The

semi-variogram of X is the function γ : S → R defined by:

2γ(h) = Var(Xs+h −Xs).

Every stationary process in L2 with covariance C is clearly an intrinsic process
with variogram 2γ(h) = 2(C(0)−C(h)). However, the converse is not true: Brow-
nian motion in R, with variogram |h|, is intrinsic but not stationary. Furthermore,
processes with affine means and stationary residuals are intrinsic, differentiation
having the effect (as for time series) of absorbing affine trends and rendering the
process first-order stationary. If we differentiate k times, polynomial trends of de-
gree k can be removed, the process X being called k-intrinsic if Δ kX (h) is stationary
(cf. (43); in Z, so-called ARIMA models are a generalization of ARMA). For in-
stance, the Brownian sheet on (R+)2 is not intrinsic as it can be easily verified that
Var(X(u,v)+(1,1)−X(u,v)) = u+ v+1 depends on h = (u,v).

If X is an intrinsic process and if the function m(h) = E(Xs+h−Xs) is continuous
at 0, then m(·) is linear: ∃a ∈ R

d s.t. m(h) = 〈a,h〉. In effect, m is additive, m(h)+
m(h′) = E{(Xs+h+h′ −Xs+h′)+(Xs+h′ −Xs)} = m(h+h′) and continuity of m at 0
implies linearity.

From now on, we will concentrate on intrinsic processes with centered incre-
ments: ∀h, m(h) = 0.

Proposition 1.2. Properties of variograms

1. γ(h) = γ(−h), γ(h) ≥ 0 and γ(0) = 0.
2. Variograms are conditionally negative definite (c.n.d.): ∀a ∈ R

n s.t. ∑n
i=1 ai = 0,

∀{s1, . . . ,sn} ⊆ S, we have:

n

∑
i=1

n

∑
j=1

aia jγ(si − s j) ≤ 0.

3. If A is a linear transformation in R
d and γ a variogram, then h → γ(Ah) is too.
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4. Properties 5-(a,b,d) of covariances (cf. Prop. 1.1) remain true for variograms.
5. If γ is continuous at 0, then γ is continuous at every site s where γ is locally

bounded.
6. If γ is bounded in a neighborhood of 0, ∃a and b ≥ 0 such that for any x, γ(x) ≤

a‖x‖2 +b.

Proof. (1) is obvious. To prove (2), set Ys = (Xs −X0). Y is stationary in L2 with
covariance CY (s, t) = γ(s)+γ(t)−γ(s−t). Then, if ∑n

i=1 ai = 0, we get ∑n
i=1 aiXsi =

∑n
i=1 aiYsi and

Var

(
n

∑
i=1

aiXsi

)
=

n

∑
i=1

n

∑
j=1

aia jCY (si,s j) = −
n

∑
i=1

n

∑
j=1

aia jγ(si − s j) ≥ 0.

(3) If X is an intrinsic process with variogram 2γ , then Y = {Ys = XAs} is intrinsic
with variogram:

2γY (h) = Var(XA(s+h) −XAs) = 2γ(Ah).

(4) The proof is similar to that of Prop. 1.1. (5) 2{γ(s + h)− γ(s)} = E(A) where
A = (Xs+h −X0)2 − (Xs −X0)2. It is easy to show that A = B+C where B = (Xs+h −
Xs)(Xs+h −X0) and C = (Xs+h −Xs)(Xs −X0). Applying the Cauchy-Schwarz in-
equality to each of the products B and C, the result follows from the upper bound:

|γ(s+h)− γ(s)| ≤
√
γ(h)[

√
γ(s)+

√
γ(s+h)].

Also, γ is uniformly continuous on any set over which γ is bounded. (6) We prove
by induction that for each n ∈ N and h ∈ R

d , γ(nh) ≤ n2γ(h). This is true for n = 1;
then, since

2γ((n+1)h) = E{(Xs+(n+1)h −Xs+h)+(Xs+h −Xs)}2 ,

the Cauchy-Schwarz inequality gives

γ((n+1)h) ≤ γ(nh)+ γ(h)+2
√
γ(nh)γ(h) ≤ γ(h){n2 +1+2n} = (n+1)2γ(h).

Suppose next that δ > 0 satisfies sup‖u‖≤δ γ(u) = C < ∞ and x ∈ R
d satisfies nδ ≤

‖x‖ ≤ (n + 1)δ , n ≥ 1. Setting x̃ = δ ‖x‖−1, the decomposition x = nx̃ + τ defines
some τ satisfying ‖τ‖ ≤ δ . We conclude by remarking that

γ(x) = γ(nx̃+ τ) ≤ γ(nx̃)+ γ(τ)+2
√
γ(nx̃)γ(τ)

≤Cn2 +C +2Cn = C(n+1)2 ≤C

(‖x‖
δ

+1

)2

. ��

Unlike covariances, variograms are not necessarily bounded (for example, the
variogram γ(h) = |h| for Brownian motion). However, the previous proposition
shows that variograms tend to infinity at a rate of at most ‖h‖2. One such example
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of quadratic growth γ(t) = σ2
1 t2 is that of the variogram of Xt = Z0 + tZ1, t ∈ R,

where Z0 and Z1 are centered and independent and Var(Z1) = σ2
1 > 0.

Characterizations exist to ensure a function γ is a variogram, one of them being
the following (43): if γ is continuous and if γ(0) = 0, then γ is a variogram if and
only if, for every u > 0, t → exp{−uγ(t)} is a covariance. For example, as t →
exp{−u‖t‖2} is a covariance on R

d for each u > 0 and dimension d, γ(t) = ‖t‖2 is
a variogram on R

d that goes to infinity at a quadratic rate.

1.3.2 Variograms for stationary processes

If X is stationary with covariance C, then X is intrinsic with variogram

2γ(h) = 2(C(0)−C(h)). (1.5)

In particular, variograms of stationary processes are bounded. Matheron (153) par-
tially proved the converse, that is, if the variogram of intrinsic process X is bounded,
then Xt = Zt +Y where Z is a stationary process of L2 and Y some general real ran-
dom variable.

If C(h)→ 0 as ‖h‖→∞, then γ(h)→C(0) as ‖h‖→∞. The variogram therefore
has a sill at height C(0) =Var(X) as ‖h‖→∞. The range (resp. the practical range)
is the distance at which the variogram reaches its sill (resp. 95% the value of the sill),
cf. Fig. 1.1.

h
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Fig. 1.1 (a) Semivariogram of a stationary model with a nugget effect component; (b) variogram
models that have the same range.

Statistical methods for second-order stationary processes can be considered in
terms of covariances or in terms of variograms. Statisticians prefer the first way,
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geostatisticians the second. We note that the advantage of working with variograms
is that, unlike covariances, the mean does not have to be pre-estimated (cf. §5.1.4).

1.3.3 Examples of covariances and variograms

Isotropic variograms

The following examples are isotropic variograms on R
d traditionally used in geo-

statistics. Other models are presented in Yaglom (227), Chilès and Delfiner (43),
Wackernagel (221) and the review article (195). The first five variograms, associated
with stationary covariances C(h) = C(0)− γ(h) are bounded with range parameter
a > 0 and sill σ2. Remember that ‖·‖ is the Euclidean norm on R

d .

-Nugget effect: γ(h;σ2) = σ2 when h > 0, γ(0) = 0, associated with WWNs.
-Exponential: γ(h;a,σ2) = σ2{1− exp(−‖h‖/a)}.
-Spherical (d ≤ 3):

γ(h;a,σ2) =
{
σ2
{

1.5‖h‖/a−0.5(‖h‖/a)3
}

if ‖h‖ ≤ a
σ2 if ‖h‖ > a

.

-Generalized exponential, Gaussian : γ(h;a,σ2,α) = σ2(1−exp(−(‖h‖/a)α) if
0 < α ≤ 2; α = 2 represents the Gaussian model.

-Matérn:

γ(h;a,σ2,ν) = σ2{1− 21−ν

Γ (ν)
(‖h‖/a)νKν(‖h‖/a)},

where Kν(·) is the modified Bessel function of the second kind with parameter
ν > −1 (2; 227; 200).

-Power: γ(h;b,c) = b‖h‖c, 0 < c ≤ 2.

The variogram shown in Figure 1.1-(a) can be interpreted as being from a process
Ys = Xs + εs where ε is a white noise in L2 (nugget effect at the origin) uncorrelated
with X whose variogram is continuous and with sill

2γY (h) = 2σ2
ε (1−δ0(h))+2γX (h).

Comments

1. Spherical covariance can be interpreted in the following way: the volume V (a,r)
of the intersection of two spheres in R

3 having the same diameter a and centers
at a distance r apart is:
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Fig. 1.2 Graph showing triangular, spherical and circular covariances with σ2 = 1 and a = 0.8.

V (a,r) =
{
ν(Sa)

{
1−1.5(r/a)+0.5(r/a)3

}
if r ≤ a

0 if r > a
,

where ν(Sa) is the volume of a sphere of radius a. An example of a process lead-
ing to a spherical covariance is the process Xs = N(Sa(s)) counting the number
of points of a homogeneous Poisson point process with intensity σ2/ν(Sa) in the
sphere Sa(s) of diameter a centered at s ∈ R

3 (cf. Ch. 3, §3.2).
2. The circular covariance Ccirc on R

2 is obtained in the same way by replacing
spheres in R

3 by disks in R
2:

Ccirc(h;a,σ2) =

⎧⎪⎨
⎪⎩

2σ2

π

(
arccos ‖h‖

a − ‖h‖
a

√
1−
( ‖h‖

a

)2
)

if ‖h‖ ≤ a

0 otherwise

. (1.6)

Similarly, the triangular covariance Ctri on R
1 can be obtained by simply replac-

ing spheres in R
3 by intervals [−a,+a] in R

1:

Ctri(h;a,σ2) =

{
σ2
(

1− |h|
a

)
if |h| ≤ a

0 otherwise
.

Triangular, spherical and circular covariances are shown in Fig. 1.2.
3. As covariances on R

d remain positive semidefinite on any vectorial subspace, the
restriction of a covariance to any subspace is still a covariance. In particular, the
restriction of a spherical covariance to R

d′ , d′ ≤ 3, is still a covariance. However,
extending an isotropic covariance from R

d to R
d′ for d′ > d does not gener-

ally give a covariance. Exercise 1.5 gives an example of this with respect to the
triangular covariance.
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Fig. 1.3 Matérn semivariograms with the same range but different ν .

4. Our interest in Matérn covariance is due to its parameter ν which controls the var-
iogram’s regularity at 0 (cf. Fig. 1.3), which in turn controls the quadratic mean
(q.m.) regularity of the process X (cf. §1.4) and its prediction X̂ using kriging (cf.
§1.9): increasing ν increases regularity of γ at 0 and regularity of the process X
(the kriging surface X̂). Taking ν = 1/2 gives an exponential variogram which is
continuous but not differentiable at 0, the associated process X being continuous
but not differentiable in q.m.; ν = ∞ corresponds to the infinitely differentiable
Gaussian variogram associated with an infinitely differentiable process X . For
integer m ≥ 1 and taking ν > m, the covariance is differentiable 2m times at 0
and X is differentiable m times in q.m. For example, if ν = 3/2 and r = ‖h‖,
C(h) = C(r) = σ2(1+(r/a))exp−(r/a) is twice differentiable at r = 0 and the
associated random field differentiable in q.m.

5. The power model is self-similar, i.e., scale invariant: ∀s > 0, γ(sh) = sαγ(h). It is
therefore naturally associated with scale-free spatial phenomena and is the only
model among those presented that has this property.

6. The generalized exponential model is identical to the exponential model when
α = 1 and the Gaussian model when α = 2. Regularity of this type of vari-
ogram increases with α but the associated random field is only differentiable in
quadratic mean when α = 2.

7. Each of the previous models can be extended by taking positive linear combina-
tions (or by integrating with respect to positive measures), in particular by adding
a nugget effect variogram to any other variogram.

If X is a sum of K uncorrelated intrinsic processes (resp. stationary processes in
L2), it has the nested variogram (resp. covariance):
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2γ(h) =
K

∑
j=1

2γ j(h) (resp. C(h) =
K

∑
j=1

Cj(h)).

This model can be interpreted as having independent spatial components acting on
different scales with different sills. Statistically speaking, small-scale components
can only be identified if the sampling grid is fairly dense and large-scale components
only if the diameter of the sampling domain in S is relatively large.

1.3.4 Anisotropy

For a direction −→e in R
d such that ‖−→e ‖= 1, the directional variogram of an intrinsic

random field in direction −→e is defined as

2γ(h) = Var(Xs+h−→e −Xs) for h ∈ R.

We say that a variogram is anisotropic if at least two directional variograms
differ.

We distinguish essentially two types of anisotropy: the first, geometric anisotropy
is associated with a linear deformation of an isotropic model; the second corre-
sponds to a nested variogram model over many subspaces of R

d (43; 77; 194).

Geometric anisotropy

The variogram 2γ on R
d exhibits geometric anisotropy if it results from an A-linear

deformation of an isotropic variogram 2γ0:

γ(h) = γ0(‖Ah‖),

i.e., if γ(h) = γ0(
√

thQh), where Q = tAA. Such variograms have the same sill in
all directions (cf. Fig. 1.4-a) but with ranges that vary depending on the direction.
In the orthonormal basis of eigenvectors of Q associated with eigenvalues (λk, k =
1, . . . ,d), γ(h̃) = γ0(∑d

k=1λkh̃k) in these new coordinates h̃.
For example, if A is a rotation of angle φ around the origin in R

2 followed by
dilation by factor 0 ≤ e ≤ 1 with respect to the new y axis, the set of ranges forms
an ellipse with eccentricity e in this new basis. Figure 1.4-a gives an example of
geometric anisotropy in R

2 when γ0 is an exponential model with parameters a = 0.5
and σ2 = 1, with deformation A the parameters φ = 450 and e = 0.7.

We note that Sampson and Guttorp (192) propose a non-stationary model

Var(Xs −Xs′) = 2γ0(g(s)−g(s′)),

where g is a bijective (or anamorphic) deformation of the space S (cf. (170; 171) for
examples of such deformations).
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Fig. 1.4 (a) Geometric anisotropy and (b) zonal (or stratified) anisotropy.

Stratified anisotropy

We talk of support anisotropy if variogram h → 2γ(h), possibly after a change of
coordinates, depends only on certain coordinates of h: for example, if R

d = E1⊕E2,
where dim(E1) = d1 and if 2γ0 is an isotropic variogram on R

d1 , γ(h) = γ0(h1) for
h = h1 + h2, h1 ∈ E1, h2 ∈ E2. The sill (and possibly the range) of γ will thus be
direction-dependent (cf. Fig. 1.4-b). We say we have zonal anisotropy or stratified
anisotropy if γ is the sum of several components, each with support anisotropy. For
example,

γ(h) = γ1
(√

h2
1 +h2

2

)
+ γ2(|h2|)

has a sill of height σ2
1 +σ2

2 in the (0,1) direction and σ2
1 in the (1,0) direction,

where σ2
i are the sills of γi, i = 1,2.

Chilès and Delfiner (43) suggest to avoid using separable models like γ(h) =
γ1(h1)+ γ1(h2) in R

2 or γ(h) = γ1(h1,h2)+ γ2(h3) in R
3 as certain linear combi-

nations of X can end up with zero variance: for example, if Xs = X1
x + X2

y , with
Cov(X1

x ,X2
y ) = 0 and s = t(x,y), then γ(h) = γ1(h1)+ γ1(h2) and for hx = t(dx,0),

hy = t(0,dy), Xs −Xs+hx −Xs+hy +Xs+hx+hy ≡ 0.

More generally, anisotropy can be obtained by combining other anisotropies.
Figure 1.4-b gives an example where γ1 is the exponential model with geometric
anisotropy and parameters a1 = 0.5, σ2

1 = 0.7, φ = 450, e = 0.7 and γ2 a different
exponential model with parameters a2 = 0.05, σ2

2 = 0.3.

1.4 Geometric properties: continuity, differentiability

Let us now associate the set of L2 processes with the following notion of mean
square convergence:
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Definition 1.7. Quadratic mean (q.m.) continuity
We say that a second-order process X = {Xs, s ∈ S} on S ⊆ R

d is quadratic mean
continuous at s ∈ S if for any converging sequence sn −→ s in S, E(Xsn −Xs)2 → 0.

The following proposition characterizes q.m. continuity.

Proposition 1.3. Let X be a centered L2 process with covariance C(s, t) =
Cov(Xs,Xt). Then X is everywhere q.m. continuous iff its covariance is continuous
on the diagonal of S×S.

Proof. If C(s, t) is continuous at s = t = s0, then E(Xs0+h −Xs0)
2 → 0 as h → 0. In

effect:

E(Xs0+h −Xs0)
2 = C(s0 +h,s0 +h)−2C(s0 +h,s0)+C(s0,s0).

To show the converse, we write:

Δ = C(s0 +h,s0 + k)−C(s0,s0) = e1 + e2 + e3,

with e1 = E[(Xs0+h −Xs0)(Xs0+k −Xs0)], e2 = E[(Xs0+h −Xs0)Xs0 ] and e3 = E[Xs0

(Xs0+k −Xs0)]. If X is q.m. continuous, then e1, e2 and e3 → 0 if h and k → 0 and C
is continuous on the diagonal. ��

Almost sure (a.s.) continuity of trajectories is a result of a different nature and
much harder to obtain. We have for example the following result (3): if X is a cen-
tered Gaussian process with continuous covariance, a.s. continuity of trajectories
on S ⊆ R

d is assured if

∃c < ∞ and ε > 0 s.t. ∀s, t ∈ S: E(Xs −Xt)2 ≤ c |log‖s− t‖|−(1+ε) .

When X is an intrinsic Gaussian process, this continuity holds if γ(h) ≤
c |log‖h‖|−(1+ε) in a neighborhood of the origin. Apart from the nugget effect
model, all variograms presented in §1.3.3 satisfy this property and the associated
(Gaussian) models therefore have a.s. continuous trajectories.

We now examine differentiability in L2 in given directions, or, equivalently, dif-
ferentiability of processes in R

1.

Definition 1.8. Quadratic mean differentiability
We say the process X on S ⊂ R

1 is q.m. differentiable at s if there exists a real

random variable (r.r.v.)
·
Xs such that

lim
h→0

Xs+h −Xs

h
=

·
Xs in L2.

We note that all trajectories of a process X might be extremely regular without X
being q.m. differentiable (cf. Ex. 1.11).

Proposition 1.4. Let X be a centered L2 process with (not necessarily stationary)

covariance C(s, t) = Cov(Xs,Xt). If
∂ 2

∂ s∂ t
C(s, t) exists and is finite on the diagonal


