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Center for Quality and Applied Statistics
Rochester Institute of Technology
98 Lomb Memorial Drive
Rochester, NY 14623
ernest.fokoue@gmail.com

Hao Helen Zhang
Department of Statistics
North Carolina State University

Genetics
P.O.Box 8203
Raleigh, NC 27695-8203
USA
hzhang2@stat.ncsu.edu

ISSN 0172-7397
ISBN 978-0-387-98134-5 e-ISBN 978-0-387-98135-2
DOI 10.1007/978-0-387-98135-2
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009930499

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The idea for this book came from the time the authors spent at the Statistics and
Applied Mathematical Sciences Institute (SAMSI) in Research Triangle Park in North
Carolina starting in fall 2003. The first author was there for a total of two years, the
first year as a Duke/SAMSI Research Fellow. The second author was there for a year
as a Post-Doctoral Scholar. The third author has the great fortune to be in RTP per-
manently. SAMSI was – and remains – an incredibly rich intellectual environment
with a general atmosphere of free-wheeling inquiry that cuts across established fields.
SAMSI encourages creativity: It is the kind of place where researchers can be found at
work in the small hours of the morning – computing, interpreting computations, and
developing methodology. Visiting SAMSI is a unique and wonderful experience.

The people most responsible for making SAMSI the great success it is include Jim
Berger, Alan Karr, and Steve Marron. We would also like to express our gratitude to
Dalene Stangl and all the others from Duke, UNC-Chapel Hill, and NC State, as well
as to the visitors (short and long term) who were involved in the SAMSI programs. It
was a magical time we remember with ongoing appreciation.

While we were there, we participated most in two groups: Data Mining and Machine
Learning, for which Clarke was the group leader, and a General Methods group run
by David Banks. We thank David for being a continual source of enthusiasm and
inspiration. The first chapter of this book is based on the outline of the first part of
his short course on Data Mining and Machine Learning. Moreover, David graciously
contributed many of his figures to us. Specifically, we gratefully acknowledge that
Figs. 1.1–6, Figs. 2.1,3,4,5,7, Fig. 4.2, Figs. 8.3,6, and Figs. 9.1,2 were either done by
him or prepared under his guidance.

On the other side of the pond, the Newton Institute at Cambridge University provided
invaluable support and stimulation to Clarke when he visited for three months in 2008.
While there, he completed the final versions of Chapters 8 and 9. Like SAMSI, the
Newton Institute was an amazing, wonderful, and intense experience.

This work was also partially supported by Clarke’s NSERC Operating Grant
2004–2008. In the USA, Zhang’s research has been supported over the years by two
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grants from the National Science Foundation. Some of the research those grants sup-
ported is in Chapter 10.

We hope that this book will be of value as a graduate text for a PhD-level course on data
mining and machine learning (DMML). However, we have tried to make it comprehen-
sive enough that it can be used as a reference or for independent reading. Our paradigm
reader is someone in statistics, computer science, or electrical or computer engineering
who has taken advanced calculus and linear algebra, a strong undergraduate probabil-
ity course, and basic undergraduate mathematical statistics. Someone whose expertise
in is one of the topics covered here will likely find that chapter routine, but hopefully
find the other chapters are at a comfortable level.

The book roughly separates into three parts. Part I consists of Chapters 1 through 4:
This is mostly a treatment of nonparametric regression, assuming a mastery of linear
regression. Part II consists of Chapters 5, 6, and 7: This is a mix of classification, recent
nonparametric methods, and computational comparisons. Part III consists of Chapters
8 through 11. These focus on high dimensional problems, including clustering, di-
mension reduction, variable selection, and multiple comparisons. We suggest that a
selection of topics from the first two parts would be a good one semester course and a
selection of topics from Part III would be a good follow-up course.

There are many topics left out: proper treatments of information theory, VC dimension,
PAC learning, Oracle inequalities, hidden Markov models, graphical models, frames,
and wavelets are the main absences. We regret this, but no book can be everything.

The main perspective undergirding this work is that DMML is a fusion of large sectors
of statistics, computer science, and electrical and computer engineering. The DMML
fusion rests on good prediction and a complete assessment of modeling uncertainty
as its main organizing principles. The assessment of modeling uncertainty ideally in-
cludes all of the contributing factors, including those commonly neglected, in order to
be valid. Given this, other aspects of inference – model identification, parameter esti-
mation, hypothesis testing, and so forth – can largely be regarded as a consequence of
good prediction. We suggest that the development and analysis of good predictors is
the paradigm problem for DMML.

Overall, for students and practitioners alike, DMML is an exciting context in which
whole new worlds of reasoning can be productively explored and applied to important
problems.

Bertrand Clarke
University of Miami, Miami, FL

Ernest Fokoué
Kettering University, Flint, MI

Hao Helen Zhang
North Carolina State University,
Raleigh, NC
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Chapter 1

Variability, Information, and Prediction

Introductory statistics courses often start with summary statistics, then develop a
notion of probability, and finally turn to parametric models – mostly the normal –
for inference. By the end of the course, the student has seen estimation and hypothesis
testing for means, proportions, ANOVA, and maybe linear regression. This is a good
approach for a first encounter with statistical thinking. The student who goes on takes
a familiar series of courses: survey sampling, regression, Bayesian inference, multi-
variate analysis, nonparametrics and so forth, up to the crowning glories of decision
theory, measure theory, and asymptotics. In aggregate, these courses develop a view of
statistics that continues to provide insights and challenges.

All of this was very tidy and cosy, but something changed. Maybe it was computing.
All of a sudden, quantities that could only be described could be computed readily
and explored. Maybe it was new data sets. Rather than facing small to moderate sam-
ple sizes with a reasonable number of parameters, there were 100 data points, 20,000
explanatory variables, and an array of related multitype variables in a time-dependent
data set. Maybe it was new applications: bioinformatics, E-commerce, Internet text
retrieval. Maybe it was new ideas that just didn’t quite fit the existing framework. In
a world where model uncertainty is often the limiting aspect of our inferential proce-
dures, the focus became prediction more than testing or estimation. Maybe it was new
techniques that were intellectually uncomfortable but extremely effective: What sense
can be made of a technique like random forests? It uses randomly generated ensembles
of trees for classification, performing better and better as more models are used.

All of this was very exciting. The result of these developments is called data mining
and machine earning (DMML).

Data mining refers to the search of large, high-dimensional, multitype data sets, espe-
cially those with elaborate dependence structures. These data sets are so unstructured
and varied, on the surface, that the search for structure in them is statistical. A famous
(possibly apocryphal) example is from department store sales data. Apparently a store
found there was an unusually high empirical correlation between diaper sales and beer
sales. Investigation revealed that when men buy diapers, they often treat themselves
to a six-pack. This might not have surprised the wives, but the marketers would have
taken note.

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 1
in Statistics, DOI 10.1007/978-0-387-98135-2 1, c© Springer Science+Business Media, LLC 2009



2 1 Variability, Information, and Prediction

Machine learning refers to the use of formal structures (machines) to do inference
(learning). This includes what empirical scientists mean by model building – proposing
mathematical expressions that encapsulate the mechanism by which a physical process
gives rise to observations – but much else besides. In particular, it includes many tech-
niques that do not correspond to physical modeling, provided they process data into
information. Here, information usually means anything that helps reduce uncertainty.
So, for instance, a posterior distribution represents “information” or is a “learner” be-
cause it reduces the uncertainty about a parameter.

The fusion of statistics, computer science, electrical engineering, and database man-
agement with new questions led to a new appreciation of sources of errors. In narrow
parametric settings, increasing the sample size gives smaller standard errors. However,
if the model is wrong (and they all are), there comes a point in data gathering where
it is better to use some of your data to choose a new model rather than just to con-
tinue refining an existing estimate. That is, once you admit model uncertainty, you can
have a smaller and smaller variance but your bias is constant. This is familiar from
decomposing a mean squared error into variance and bias components.

Extensions of this animate DMML. Shrinkage methods (not the classical shrinkage,
but the shrinking of parameters to zero as in, say, penalized methods) represent a trade-
off among variable selection, parameter estimation, and sample size. The ideas become
trickier when one must select a basis as well. Just as there are well-known sums of
squares in ANOVA for quantifying the variability explained by different aspects of
the model, so will there be an extra variability corresponding to basis selection. In
addition, if one averages models, as in stacking or Bayes model averaging, extra layers
of variability (from the model weights and model list) must be addressed. Clearly,
good inference requires trade-offs among the biases and variances from each level of
modeling. It may be better, for instance, to “stack” a small collection of shrinkage-
derived models than to estimate the parameters in a single huge model.

Among the sources of variability that must be balanced – random error, parameter
uncertainty and bias, model uncertainty or misspecification, model class uncertainty,
generalization error – there is one that stands out: model uncertainty. In the conven-
tional paradigm with fixed parametric models, there is no model uncertainty; only
parameter uncertainty remains. In conventional nonparametrics, there is only model
uncertainty; there is no parameter, and the model class is so large it is sure to con-
tain the true model. DMML is between these two extremes: The model class is rich
beyond parametrization, and may contain the true model in a limiting sense, but the
true model cannot be assumed to have the form the model class defines. Thus, there
are many parameters, leading to larger standard errors, but when these standard errors
are evaluated within the model, they are invalid: The adequacy of the model cannot be
assumed, so the standard error of a parameter is about a value that may not be mean-
ingful. It is in these high-variability settings in the mid-range of uncertainty (between
parametric and nonparametric) that dealing with model uncertainty carefully usually
becomes the dominant issue which can only be tested by predictive criteria.

There are other perspectives on DMML that exist, such as rule mining, fuzzy learning,
observational studies, and computational learning theory. To an extent, these can be
regarded as elaborations or variations of aspects of the perspective presented here,
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although advocates of those views might regard that as inadequate. However, no book
can cover everything and all perspectives. Details on alternative perspectives to the one
perspective presented here can be found in many good texts.

Before turning to an intuitive discussion of several major ideas that will recur through-
out this monograph, there is an apparent paradox to note: Despite the novelty ascribed
to DMML, many of the topics covered here have been studied for decades. Most of
the core ideas and techniques have precedents from before 1990. The slight paradox is
resolved by noting that what is at issue is the novel, unexpected way so many ideas,
new and old, have been recombined to provide a new, general perspective dramatically
extending the conventional framework epitomized by, say, Lehmann’s books.

1.0.1 The Curse of Dimensionality

Given that model uncertainty is the key issue, how can it be measured? One crude
way is through dimension. The problem is that high model uncertainty, especially of
the sort central to DMML, rarely corresponds to a model class that permits a finite-
dimensional parametrization. On the other hand, some model classes, such as neural
nets, can approximate sets of functions that have an interior in a limiting sense and
admit natural finite-dimensional subsets giving arbitrarily good approximations. This
is the intermediate tranche between finite-dimensional and genuinely nonparametric
models: The members of the model class can be represented as limiting forms of an
unusually flexible parametrized family, the elements of which give good, natural ap-
proximations. Often the class has a nonvoid interior.

In this context, the real dimension of a model is finite but the dimension of the model
space is not bounded. The situation is often summarized by the phrase the Curse of Di-
mensionality. This phrase was first used by Bellman (1961), in the context of approx-
imation theory, to signify the fact that estimation difficulty not only increases with
dimension – which is no surprise – but can increase superlinearly. The result is that
difficulty outstrips conventional data gathering even for what one would expect were
relatively benign dimensions. A heuristic way to look at this is to think of real functions
of x, of y, and of the pair (x,y). Real functions f , g of a single variable represent only
a vanishingly small fraction of the functions k of (x,y). Indeed, they can be embedded
by writing k(x,y) = f (x)+ g(y). Estimating an arbitrary function of two variables is
more than twice as hard as estimating two arbitrary functions of one variable.

An extreme case of the Curse of Dimensionality occurs in the “large p, small n”
problem in general regression contexts. Here, p customarily denotes the dimension
of the space of variables, and n denotes the sample size. A collection of such data is
(yyyi,xxx1,i, ...,xxxp,i) for i = 1, ...n. Gathering the explanatory variables, the xxxi, js, into an
n× p matrix X in which the ith row is (xxx1,i, ...,xxxp,i) means that X is short and fat when
p >> n. Conventionally, design matrices are tall and skinny, n >> p, so there is a rel-
atively high ratio n/p of data to the number of inferences. The short, fat data problem
occurs when n/p << 1, so that the parameters cannot be estimated directly at all, much
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less well. These problems need some kind of auxiliary principle, such as shrinkage or
other constraints, just to make solutions exist.

The finite-dimensional parametric case and the truly nonparametric case for regres-
sion are settings in which it is convenient to discuss some of the recurrent issues in
the treatments here. It will be seen that the Curse applies in regression, but the Curse
itself is more general, applying to classification, and to nearly all other aspects of mul-
tivariate inference. As noted, traditional analysis avoids the issue by making strong
model assumptions, such as linearity and normality, to get finite-dimensional behav-
ior or by using distribution-free procedures, and being fully nonparametric. However,
the set of practical problems for which these circumventions are appropriate is small,
and modern applied statisticians frequently use computer-intensive techniques on the
intermediate tranche that are designed to minimize the impact of the Curse.

1.0.2 The Two Extremes

Multiple linear regression starts with n observations of the form (Yi,XXXi) and then makes
the strong modeling assumption that the response Yi is related to the vector of explana-
tory variables XXXi = (X1,i, ...,Xp,i) by

Yi = βββT XXXi + εi = β0 +β1X1,i + . . .βpXp,i + εi,

where each random error εi is (usually) an independent draw from a normal distribu-
tion with mean zero and fixed but unknown variance. More generally, the εis are taken
as symmetric, unimodal, and independent. The XXXis can be random, or, more com-
monly, chosen by the experimenter and hence deterministic. In the chapters to follow,
instances of this setting will recur several times under various extra conditions.

In contrast, nonparametric regression assumes that the response variable is related to
the vector of explanatory variables by

Yi = f (XXXi)+ εi,

where f is some smooth function. The assumptions about the error may be the same
as for linear regression, but people tend to put less emphasis on the error structure
than on the uncertainty in estimates f̂ of f . This is reasonable because, outside of
large departures from independent, symmetric, unimodal εis, the dominant source of
uncertainty comes from estimating f . This setting will recur several times as well;
Chapter 2, for instance, is devoted to it.

Smoothness of f is central: For several nonparametric methods, it is the smoothness
assumptions that make theorems ensuring good behavior (consistency, for instance) of
regression estimators f̂ of f possible. For instance, kernel methods often assume f is
in a Sobolev space, meaning f and a fixed number, say s, of its derivatives lie in a
Hilbert space, say Lq(Ω), where the open set Ω ⊂ Rp is the domain of f .
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Other methods, like splines for instance, weaken these conditions by allowing f to be
piecewise continuous, so that it is differentiable between prespecified pairs of points,
called knots. A third approach penalizes the roughness of the fitted function, so that the
data help determine how wiggly the estimate of f should be. Most of these methods
include a “bandwidth” parameter, often estimated by cross-validation (to be discussed
shortly). The bandwidth parameter is like a resolution defining the scale on which
solutions should be valid. A finer-scale, smaller bandwidth suggests high concern with
very local behavior of f ; a large-scale, higher bandwidth suggests one will have to be
satisfied, usually grudgingly, with less information on the detailed behavior of f .

Between these two extremes lies the intermediate tranche, where most of the action in
DMML is. The intermediate tranche is where the finite-dimensional methods confront
the Curse of Dimensionality on their way to achieving good approximations to the
nonparametric setting.

1.1 Perspectives on the Curse

Since almost all finite-dimensional methods break down as the dimension p of XXXi

increases, it’s worth looking at several senses in which the breakdown occurs. This
will reveal impediments that methods must overcome. In the context of regression
analysis under the squared error loss, the formal statement of the Curse is:

• The mean integrated squared error of fits increases faster than linearly in p.

The central reason is that, as the dimension increases, the amount of extra room in the
higher-dimensional space and the flexibility of large function classes is dramatically
more than experience with linear models suggests.

For intuition, however, note that there are three nearly equivalent informal descriptions
of the Curse of Dimensionality:

• In high dimensions, all data sets are too sparse.

• In high dimensions, the number of possible models to consider increases superex-
ponentially in p.

• In high dimensions, all data sets show multicollinearity (or concurvity , which is
the generalization that arises in nonparametric regression).

In addition to these near equivalences, as p increases, the effect of error terms tends
to increase and the potential for spurious correlations among the explanatory variables
increases. This section discusses these issues in turn.

These issues may not sound very serious, but they are. In fact, scaling up most pro-
cedures highlights unforeseen weaknesses in them. To dramatize the effect of scaling
from two to three dimensions, recall the high school physics question: What’s the first
thing that would happen if a spider kept all its proportions the same but was sud-
denly 10 feet tall? Answer: Its legs would break. The increase in volume in its body
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(and hence weight) is much greater than the increase in cross-sectional area (and hence
strength) of its legs. That’s the Curse.

1.1.1 Sparsity

Nonparametric regression uses the data to fit local features of the function f in a flexi-
ble way. If there are not enough observations in a neighborhood of some point xxx, then
it is hard to decide what f (xxx) should be. It is possible that f has a bump at xxx, or a dip,
some kind of saddlepoint feature, or that f is just smoothly increasing or decreasing at
xxx. The difficulty is that, as p increases, the amount of local data goes to zero.

This is seen heuristically by noting that the volume of a p-dimensional ball of radius
r goes to zero as p increases. This means that the volume of the set centered at xxx in
which a data point xxxi must lie in order to provide information about f (xxx) has fewer and
fewer points per unit volume as p increases.

This slightly surprising fact follows from a Stirling’s approximation argument. Recall
the formula for the volume of a ball of radius r in p dimensions:

Vr(p) =
π p/2rp

Γ (p/2+1)
. (1.1.1)

When p is even, p = 2k for some k. So,

lnVr(p) = k ln(πr2)− ln(k!)

since Γ (k +1) = k!. Stirling’s formula gives k!≈
√

2πkk+1/2e−k. So, (1.1.1) becomes

lnVr(p) =−1
2

ln(2π)− 1
2

lnk + k[1+ ln(πr2)]− k lnk.

The last term dominates and goes to −∞ for fixed r. If p = 2k + 1, one again gets
Vr(p)→ 0. The argument can be extended by writing Γ (p/2+1) = Γ ((k +1)+1/2)
and using bounds to control the extra “1/2”. As p increases, the volume goes to zero
for any r. By contrast, the volume of a cuboid of side length r is rp, which goes to 0,
1, or ∞ depending on r < 1, r = 1, or r > 1. In addition, the ratio of the volume of the
p-dimensional ball of radius r to the volume of the cuboid of side length r typically
goes to zero as p gets large.

Therefore, if the xxx values are uniformly distributed on the unit hypercube, the expected
number of observations in any small ball goes to zero. If the data are not uniformly dis-
tributed, then the typical density will be even more sparse in most of the domain, if a
little less sparse on a specific region. Without extreme concentration in that specific
region – concentration on a finite-dimensional hypersurface for instance – the increase
in dimension will continue to overwhelm the data that accumulate there, too. Essen-
tially, outside of degenerate cases, for any fixed sample size n, there will be too few
data points in regions to allow accurate estimation of f .
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To illustrate the speed at which sparsity becomes a problem, consider the best-case
scenario for nonparametric regression, in which the xxx data are uniformly distributed in
the p-dimensional unit ball. Figure 1.1 plots rp on [0,1], the expected proportion of
the data contained in a centered ball of radius r for p = 1,2,8. As p increases, r must
grow large rapidly to include a reasonable fraction of the data.
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Fig. 1.1 This plots rp, the expected proportion of the data contained in a centered ball of radius r in
the unit ball for p = 1,2,8. Note that, for large p, the radius needed to capture a reasonable fraction
of the data is also large.

To relate this to local estimation of f , suppose one thousand values of are uniformly
distributed in the unit ball in IRp. To ensure that at least 10 observations are near xxx
for estimating f near xxx, (1.1.1) implies the expected radius of the requisite ball is
r = p

√
.01. For p = 10, r = 0.63 and the value of r grows rapidly to 1 with increasing p.

This determines the size of the neighborhood on which the analyst can hope to estimate
local features of f . Clearly, the neighborhood size increases with dimension, imply-
ing that estimation necessarily gets coarser and coarser. The smoothness assumptions
mentioned before – choice of bandwidth, number and size of derivatives – govern how
big the class of functions is and so help control how big the neighborhood must be to
ensure enough data points are near an xxx value to permit decent estimation.
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Classical linear regression avoids the sparsity issue in the Curse by using the linearity
assumption. Linearity ensures that all the points contribute to fitting the estimated sur-
face (i.e., the hyperplane) everywhere on the XXX-space. In other words, linearity permits
the estimation of f at any xxx to borrow strength from all of the xxxis, not just the xxxis in a
small neighborhood of xxx.

More generally, nonlinear models may avoid the Curse when the parametrization does
not “pick off” local features. To see the issue, consider the nonlinear model:

f (xxx) =
{

17 if xxx ∈ Br = {xxx : ‖xxx− xxx0‖ ≤ r}
β0 +∑p

j=1 β jx j if xxx ∈ Bc
r .

The ball Br is a local feature. This nonlinear model borrows strength from the data
over most of the space, but even with a large sample it is unlikely that an analyst
can estimate f near xxx0 and the radius r that defines the nonlinear feature. Such cases
are not pathological – most nonlinear models have difficulty in some regions; e.g.,
logistic regression can perform poorly unless observations are concentrated where the
sigmoidal function is steep.

1.1.2 Exploding Numbers of Models

The second description of the Curse is that the number of possible models increases
superexponentially in dimension. To illustrate the problem, consider a very simple
case: polynomial regression with terms of degree 2 or less. Now, count the number of
models for different values of p.

For p = 1, the seven possible models are:

E(Y ) = β0, E(Y ) = β1x1, E(Y ) = β2x2
1,

E(Y ) = β0 +β1x1, E(Y ) = β0 +β2x2
1, E(Y ) = β1x1 +β2x2

1,
E(Y ) = β0 +β1x1 +β2x2

1.

For p = 2, the set of models expands to include terms in x2 having the form x2, x2
2 and

x1x2. There are 63 such models. In general, the number of polynomial models of order
at most 2 in p variables is 2a−1, where a = 1+2p+ p(p−1)/2. (The constant term,
which may be included or not, gives 21 cases. There are p possible first order terms,
and the cardinality of all subsets of p terms is 2p. There are p second-order terms of the
form xxx2

i , and the cardinality of all subsets is again 2p. There are C(p,2) = p(p−1)/2
distinct subsets of size 2 among p objects. This counts the number of terms of the
form xxxixxx j for i 	= j and gives 2p(p−1)/2 terms. Multiplying and subtracting 1 for the
disallowed model with no terms gives the result.)

Clearly, the problem worsens if one includes models with more terms, for instance
higher powers. The problem remains if polynomial expansions are replaced by more
general basis expansions. It may worsen if more basis elements are needed for good
approximation or, in the fortunate case, the rate of explosion may decrease somewhat
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if the basis can express the functions of interest parsimoniously. However, the point
remains that an astronomical number of observations are needed to select the best
model among so many candidates, even for low-degree polynomial regression.

In addition to fit, consider testing in classical linear regression. Once p is moderately
large, one must make a very large number of significance tests, and the family-wise
error rate for the collection of inferences will be large or the tests themselves will
be conservative to the point of near uselessness. These issues will be examined in
detail in Chapter 10, where some resolutions will be presented. However, the practical
impossibility of correctly identifying the best model, or even a good one, is a key
motivation behind ensemble methods, discussed later.

In DMML, the sheer volume of data and concomitant necessity for flexible regression
models forces much harder problems of model selection than arise with low-degree
polynomials. As a consequence, the accuracy and precision of inferences for conven-
tional methods in DMML contexts decreases dramatically, which is the Curse.

1.1.3 Multicollinearity and Concurvity

The third description of the Curse relates to instability of fit and was pointed out by
Scott and Wand (1991). This complements the two previous descriptions, which focus
on sample size and model list complexity. However, all three are different facets of the
same issue.

Recall that, in linear regression, multicollinearity occurs when two or more of the
explanatory variables are highly correlated. Geometrically, this means that all of the
observations lie close to an affine subspace. (An affine subspace is obtained from a
linear subspace by adding a constant; it need not contain 000.)

Suppose one has response values Yi associated with observed vectors XXXi and does a
standard multiple regression analysis. The fitted hyperplane will be very stable in the
region where the observations lie, and predictions for similar vectors of explanatory
variables will have small variances. But as one moves away from the observed data,
the hyperplane fit is unstable and the prediction variance is large. For instance, if the
data cluster about a straight line in three dimensions and a plane is fit, then the plane
can be rotated about the line without affecting the fit very much. More formally, if the
data concentrate close to an affine subspace of the fitted hyperplane, then, essentially,
any rotation of the fitted hyperplane around the projection of the affine subspace onto
the hyperplane will fit about as well. Informally, one can spin the fitted plane around
the affine projection without harming the fit much.

In p-dimensions, there will be p elements in a basis. So, the number of proper sub-
spaces generated by the basis is 2p−2 if IRp and 000 are excluded. So, as p grows, there
is an exponential increase in the number of possible affine subspaces. Traditional mul-
ticollinearity can occur when, for a finite sample, the explanatory variables concentrate
on one of them. This is usually expressed in terms of the design matrix XXX as detXXX ′XXX
near zero; i.e., nearly singular. Note that XXX denotes either a matrix or a vector-valued
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outcome, the meaning being clear from the context. If needed, a subscript i, as in
XXXi, will indicate the vector case. The chance of multicollinearity happening purely by
chance increases with p. That is, as p increases, it is ever more likely that the variables
included will be correlated, or seem to be, just by chance. So, reductions to affine
subspaces will occur more frequently, decreasing |detXXX ′XXX |, inflating variances, and
giving worse mean squared errors and predictions.

But the problem gets worse. Nonparametric regression fits smooth curves to the data. In
analogy with multicollinearity, if the explanatory variables tend to concentrate along
a smooth curve that is in the family used for fitting, then the prediction and fit will
be good near the projected curve but poor in other regions. This situation is called
concurvity . Roughly, it arises when the true curve is not uniquely identifiable, or
nearly so. Concurvity is the nonparametric analog of multicollinearity and leads to
inflated variances. A more technical discussion will be given in Chapter 4.

1.1.4 The Effect of Noise

The three versions of the Curse so far have been in terms of the model. However, as
the number of explanatory variables increases, the error component typically has an
ever-larger effect as well.

Suppose one is doing multiple linear regression with YYY = XXXβββ+εεε , where εεε ∼N(000,σ2III);
i.e., all convenient assumptions hold. Then, from standard linear model theory, the
variance in the prediction at a point xxx given a sample of size n is

Var[Ŷ |xxx] = σ2(1+ xxxT (XXXT XXX)−1xxx), (1.1.2)

assuming (XXXT XXX) is nonsingular so its inverse exists. As (XXXT XXX) gets closer to singu-
larity, typically one or more eigenvalues go to 0, so the inverse (roughly speaking)
has eigenvalues that go to ∞, inflating the variance. When p � n, (XXXT XXX) is singu-
lar, indicating there are directions along which (XXXT XXX) cannot be inverted because of
zero eigenvalues. If a generalized inverse, such as the Moore-Penrose matrix, is used
when (XXXT XXX) is singular, a similar formula can be derived (with a limited domain of
applicability).

However, consider the case in which the eigenvalues decrease to zero as more and more
explanatory variables are included, i.e., as p increases. Then, (XXXT XXX) gets ever closer
to singularity and so its inverse becomes unbounded in the sense that one or more
(usually many) of its eigenvalues go to infinity. Since xxxT (XXXT XXX)−1xxx is the norm of xxx
with respect to the inner product defined by (XXXT XXX)−1, it will usually tend to infinity
(as long as the sequence of xxxs used doesn’t go to zero). That is, typically, Var[Ŷ |xxx]
tends to infinity as more and more explanatory variables are included. This means the
Curse also implies that, for typically occurring values of p and n, the instability of
estimates is enormous.



1.2 Coping with the Curse 11

1.2 Coping with the Curse

Data mining, in part, seeks to assess and minimize the effects of model uncertainty to
help find useful models and good prediction schemes. Part of this necessitates dealing
with the Curse.

In Chapter 4, it will be seen that there is a technical sense in which neural networks
can provably avoid the Curse in some cases. There is also evidence (not as clear) that
projection pursuit regression can avoid the Curse in some cases. Despite being remark-
able intellectual achievements, it is unclear how generally applicable these results are.
More typically, other methods rest on other flexible parametric families, nonparamet-
ric techniques, or model averaging and so must confront the Curse and other model
uncertainty issues directly. In these cases, analysts reduce the impact of the Curse by
designing experiments well, extracting low-dimensional features, imposing parsimony,
or aggressive variable search and selection.

1.2.1 Selecting Design Points

In some cases (e.g., computer experiments), it is possible to use experimental design
principles to minimize the Curse. One selects the xxxs at which responses are to be mea-
sured in a smart way. Either one chooses them to be spread as uniformly as possible,
to minimize sparsity problems, or one selects them sequentially, to gather information
where it is most needed for model selection or to prevent multicollinearity.

There are numerous design criteria that have been extensively studied in a variety of
contexts. Mostly, they are criteria on XXXT XXX from (1.1.2). D-optimality, for instance,
tries to maximize detXXXT XXX . This is an effort to minimize the variance of the parameter
estimates, β̂i. A-optimality tries to minimize trace(XXXT XXX)−1. This is an effort to mini-
mize the average variance of the parameter estimates. G-optimality tries to minimize
the maximum prediction variance; i.e., minimize the maximum of xxxT (XXXT XXX)−1xxx from
(1.1.2) over a fixed range of xxx. In these and many other criteria, the major downside
is that the optimality criterion depends on the model chosen. So, the optimum is only
optimal for the model and sample size the experimenter specifies. In other words, the
uncertainty remaining is conditional on n and the given model. In a fundamental sense,
uncertainty in the model and sampling procedure is assumed not to exist.

A fundamental result in this area is the Kiefer and Wolfowitz (1960) equivalence the-
orem. It states conditions under which D-optimality and G-optimality are the same;
see Chernoff (1999) for an easy, more recent introduction. Over the last 50 years, the
literature in this general area has become vast. The reader is advised to consult the
classic texts of Box et al. (1978), Dodge et al. (1988), or Pukelsheim (1993).

Selection of design points can also be done sequentially; this is very difficult but poten-
tially avoids the model and sample-size dependence of fixed design-point criteria. The
full solution uses dynamic programming and a cost function to select the explanatory
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values for the next response measurement, given all the measurements previously
obtained. The cost function penalizes uncertainty in the model fit, especially in regions
of particular interest, and perhaps also includes information about different prices for
observations at different locations. In general, the solution is intractable, although
some approximations (e.g., greedy selection) may be feasible. Unfortunately, many
large data sets cannot be collected sequentially.

A separate but related class of design problems is to select points in the domain of
integration so that integrals can be evaluated by deterministic algorithms. Traditional
Monte Carlo evaluation is based on a Riemann sum approximation,

∫
S

f (xxx)dxxx≈
n

∑
i=1

f (XXXi)Δ(Si),

where the Si form a partition of S ⊂ IRp, Δ(Si) is the volume of Si, and the evaluation
point XXXi is uniformly distributed in Si. The procedure is often easy to implement, and
randomness allows one to make uncertainty statements about the value of the integral.
But the procedure suffers from the Curse; error grows faster than linearly in p.

One can sometimes improve the accuracy of the approximation by using nonrandom
evaluation points xxxi. Such sets of points are called quasi-random sequences or low-
discrepancy sequences. They are chosen to fill out the region S as evenly as possi-
ble and do not depend on f . There are many approaches to choosing quasi-random
sequences. The Hammersley points discussed in Note 1.1 were first, but the Halton
sequences are also popular (see Niederreiter (1992a)). In general, the grid of points
must be fine enough that f looks locally smooth, so a procedure must be capable of
generating points at any scale, however fine, and must, in the limit of ever finer scales,
reproduce the value of the integral exactly.

1.2.2 Local Dimension

Nearly all DMML methods try to fit the local structure of a function. The problem is
that when behavior is local it can change from neighborhood to neighborhood. In par-
ticular, an unknown function on a domain may have different low-dimensional func-
tional forms on different regions within its domain. Thus, even though the local low-
dimensional expression of a function is easier to uncover, the region on which that
form is valid may be difficult to identify.

For the sake of exactitude, define f : IRp → IR to have locally low dimension if there
exist regions R1,R2, . . . and a set of functions g1,g2, . . . such that

⋃
Ri ≈ IRp and for

xxx∈Ri, f (xxx)≈ gi(xxx), where gi depends only on q components of xxx for q
 p. The sense
of approximation and meaning of 
 is vague, but the point is not to make it precise
(which can be done easily) so much as to examine the local behavior of functions from
a dimensional standpoint.
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As examples,

f (xxx) =

⎧⎨
⎩

3x1 if x1 + x2 < 7
x2

2 if x1 + x2 > 7
x1 + x2 if x1 = x2,

and f (xxx) =
m

∑
k=1

αkIRk(xxx)

are locally low-dimensional because they reduce to functions of relatively few vari-
ables on regions. By contrast,

f (xxx) = β0 +
p

∑
j=1

β jx j for β j 	= 0 and f (xxx) =
p

∏
j=1

x j

have high local dimension because they do not reduce anywhere on their domain to
functions of fewer than p variables.

Fig. 1.2 A plot of 200 points uniformly distributed on the 1-cube in IR3, where the plot is tilted 10
degrees from each of the natural axes (otherwise, the image would look like points on the perimeter
of a square).

As a pragmatic point, outside of a handful of particularly well-behaved settings, suc-
cess in multivariate nonparametric regression requires either nonlocal model assump-
tions or that the regression function have locally low dimension on regions that are not
too hard to identify.

Since most DMML methods use local fits (otherwise, they must make global model
assumptions), and local fitting succeeds best when the data have locally low dimension,
the difficulty is knowing in advance whether the data have simple, low-dimensional
structure. There is no standard estimator of average local dimension, and visualization
methods are often difficult, especially for large p.
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To see how hidden structure, for instance a low-dimensional form, can lurk unsus-
pected in a scatterplot, consider q-cubes in IRp. These are the q-dimensional bound-
aries of a p-dimensional cube: A 1-cube in IR2 is the perimeter of a square; a 2-cube
in IR3 consists of the faces of a cube; a 3-cube in IR3 is the entire cube. These have
simple structure, but it is hard to discern for large p.

Figure 1.2 shows a 1-cube in IR3, tilted 10 degrees from the natural axes in each coor-
dinate. Since p = 3 is small, the structure is clear.
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Fig. 1.3 A plot of 200 points uniformly distributed on the 1-cube in IR10, where the plot is tilted 10
degrees from each of the natural axes (otherwise, the image would look like points on the perimeter
of a square).

In contrast, Fig. 1.3 is a projection of a 1-cube in IR10, tilted 10 degrees from the natural
axes in each coordinate. This is a visual demonstration that in high dimensions, nearly
all projections look Gaussian, see Diaconis and Freedman (1984). This shows that even
simple structure can be hard to see in high dimensions.

Although there is no routine estimator for average local dimension and no standard
technique for uncovering hidden low-dimensional structures, some template methods
are available. A template method is one that links together a sequence of steps but
many of the steps could be accomplished by any of a variety of broadly equivalent
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techniques. For instance, one step in a regression method may involve variable se-
lection and one may use standard testing on the parameters. However, normal-based
testing is only one way to do variable selection and one could, in principle, use any
other technique that accomplished the same task.

One way to proceed in the search for low local dimension structures is to start by
checking if the average local dimension is less than the putative dimension p and, if it
is, “grow” sets of data that can be described by low-dimensional models.

To check if the local dimension is lower than the putative dimension, one needs to have
a way to decide if data can locally be fit by a lower-dimensional surface. In a perfect
mathematical sense, the answer is almost always no, but the dispersal of a portion
of a data set in a region may be tight enough about a lower-dimensional surface to
justify the approximation. In principle, therefore, one wants to choose a number of
points at least as great as p and find that the convex hull it forms really only has q < p
dimensions; i.e., in the leftover p− q dimensions, the convex hull is so thin it can
be approximated to thickness zero. This means that the solid the data forms can be
described by q directions. The question is how to choose q.

Banks and Olszewski (2004) proposed estimating average local dimension in structure
discovery problems by obtaining M estimates of the number of vectors required to
describe a solid formed by subsets of the data and then averaging the estimates. The
subsets are formed by enlarging a randomly chosen sphere to include a certain number
of data points, describing them by some dimension reduction technique. We specify
principal components, PCs, even though PCs will only be described in detail in Chapter
8, because it is popular. The central idea of PCs needed here is that it is a method that
produces vectors from explanatory variable inputs in order of decreasing ability to
explain observed variability. Thus, the earlier PCs are more important than later PCs.
The parallel is to a factor in an ANOVA: One keeps the factors that explain the biggest
portions of the sum of squared errors, and may want to ignore other factors.

The template is as follows.

Let {XXXi} denote n data points in IRp.

� Select a random point xxx∗m in or near the convex hull of XXX1, . . . ,XXXn for m =
1, . . . ,M.

� Find a ball centered at xxx∗m that contains exactly k points. One must choose k > p;
k = 4p is one recommended choice.

� Perform a principal components regression on the k points within the ball.

� Let cm be the number of principal components needed to explain a fixed percent-
age of the variance in the Yi values; 80% is one recommended choice.

The average ĉ = (1/M)∑M
m=1 cm estimates the average local dimension of f . (This

assumes a locally linear functional relationship for points within the ball.) If ĉ is large
relative to p, then the regression relationship is highly multivariate in most of the space;
no method has much chance of good prediction. However, if ĉ is small, one infers there



16 1 Variability, Information, and Prediction

are substantial regions where the data can be described by lower-dimensional surfaces.
It’s just a matter of finding them.

Note that this really is a template because one can use any variable reduction technique
in place of principal components. In Chapter 4, sliced inverse regression will be intro-
duced and in Chapter 9 partial least squares will be explained, for instance. However,
one needn’t be so fancy. Throwing out variables with coefficients too close to zero
from goodness-of-fit testing is an easily implemented alternative. It is unclear, a priori,
which dimension reduction technique is best in a particular setting.

To test the PC-based procedure, Banks and Olszewski (2004) generated 10∗2q points

at random on each of the 2p−q

(
p
q

)
sides of a q-cube in IRp. Then independent

N(000, .25III) noise was added to each observation. Table 1.1 shows the resulting esti-
mates of the local dimension for given putative dimension p and true lower-dimensional
structure dimension q. The estimates are biased down because the principal compo-
nents regression only uses the number of directions, or linear combinations, required
to explain only 80% of the variance. Had 90% been used, the degree of underestima-
tion would have been less.

q
7 5.03
6 4.25 4.23
5 3.49 3.55 3.69
4 2.75 2.90 3.05 3.18
3 2.04 2.24 2.37 2.50 2.58
2 1.43 1.58 1.71 1.80 1.83 1.87
1 .80 .88 .92 .96 .95 .95 .98

p=1 2 3 4 5 6 7

Table 1.1 Estimates of the local dimension of q-cubes in IRp based on the average of 20 replications
per entry. The estimates tend to increase up to the true q as p increases.

Given that one is satisfied that there is a locally low-dimensional structure in the data,
one wants to find the regions in terms of the data. However, a locally valid lower-
dimensional structure in one region will typically not extend to another. So, the points
in a region where a low-dimensional form is valid will fit well (i.e., be good relative
to the model), but data outside that region will typically appear to be outliers (i.e., bad
relative to the model).

One approach to finding subsamples is as follows. Prespecify the proportion of a sam-
ple to be described by a linear model, say 80%. The task is to search for subsets of size
.8n of the n data points to find one that fits a prechosen linear model. To begin, select k,
the number of subsamples to be constructed, hoping at least one of them matches 80%
of the data. (This k can be found as in House and Banks (2004) where this method is
described.) So, start with k sets of data, each with q+2 data points randomly assigned
to them with replacement. This is just enough to permit estimation of q coefficients
and assessment of goodness of fit for a model. The q can be chosen near ĉ and then
nearby values of q tested in refinements. Each of the initial samples can be augmented


