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Preface

Preface to the First Edition
A reader who achieves a substantial command of the material con-

tained in this book should be able to read with understanding most of
the literature in the field. Possible exceptions may be certain special as-
pects of the subject such as the aeroelasticity of plates and shells or the
use of electronic feedback control to modify aeroelastic behavior. The
first author has considered the former topic in a separate volume. The
latter topic is also deserving of a separate volume.

In the first portion of the book the basic physical phenomena of diver-
gence, control surface effectiveness, flutter and gust response of aeronau-
tical vehicles are treated. As an indication of the expanding scope of the
field, representative examples are also drawn from the non-aeronautical
literature. To aid the student who is encountering these phenomena
for the first time, each is introduced in the context of a simple physical
model and then reconsidered systematically in more complicated models
using more sophisticated mathematics.

Beyond the introductory portion of the book, there are several special
features of the text. One is the treatment of unsteady aerodynamics.
This crucial part of aeroelasticity is usually the most difficult for the
experienced practitioner as well as the student. The discussion is devel-
oped from the fundamental theory underlying numerical lifting surface
analysis. Not only the well known results for subsonic and supersonic
flow are covered; but also some of the recent developments for transonic
flow, which hold promise of bringing effective solution techniques to this
important regime.

Professor Sisto’s chapter on Stall Flutter is an authoritative account
of this important topic. A difficult and still incompletely understood
phenomenon, stall flutter is discussed in terms of its fundamental aspects

xvii
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as well as its significance in applications. The reader will find this chapter
particularly helpful as an introduction to this complex subject.

Another special feature is a series of chapters on three areas of ad-
vanced application of the fundamentals of aeroelasticity. The first of
these is a discussion of Aeroelastic Problems of Civil Engineering Struc-
tures by Professor Scanlan. The next is a discussion on Aeroelasticity
of Helicopters and V/STOL aircraft by Professor Curtiss. The final
chapter in this series treats Aeroelasticity in Turbomachines and is by
Professor Sisto. This series of chapters is unique in the aeroelasticity
literature and the first author feels particularly fortunate to have the
contributions of these eminent experts.

The emphasis in this book in on fundamentals because no single vol-
ume can hope to be comprehensive in terms of applications. However,
the above three chapters should give the reader an appreciation for the
relationship between theory and practice. One of the continual fascina-
tions of aeroelasticity is this close interplay between fundamentals and
applications. If one is to deal successfully with applications, a solid
grounding in the fundamentals is essential.

For the beginning student, a first course in aeroelasticity could cover
Chapters 1-3 and selected portions of 4. For a second course and the
advanced student or research worker, the remaining Chapters would be
appropriate. In the latter portions of the book, more comprehensive
literature citations are given to permit ready access to the current liter-
ature.

The reader familiar with the standard texts by Scanlan and Rosen-
baum, Fung, Bisplinghoff, Ashley and Halfman and Bisplinghoff and
Ashley will appreciate readily the debt the authors owe to them. Re-
cent books by Petre∗ and Forsching† should also be mentioned though
these are less accessible to an English speaking audience. It is hoped the
reader will find this volume a worthy successor.

∗Petre, A., Theory of Aeroelasticity. Vol. I Statics, Vol. II Dynamics. In Romanian
Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, 1966.
†Forsching, H. W., Fundamentals of Aeroelasticity. In German. Springer-Verlag, Berlin,
1974.



PREFACE xix

Preface to the Second Edition
The authors would like to thank all those readers who have written

with comments and errata for the First Edition. Many of these have
been incorporated into the Second Edition. They would like to thank
Professor Holt Ashley of Stanford University who has been most helpful
in identifying and correcting various errata.

Also the opportunity has been taken in the Second Edition to bring
up-to-date several of the chapters as well as add a chapter on unsteady
transonic aerodynamics and aeroelasticity. Chapters 2,5,6 and 8 have
been substantially revised. These cover the topics of Static Aeroelas-
ticity, Stall Flutter, Aeroelastic Problems of Civil Engineering Struc-
tures and Aeroelasticity in Turbomachines, respectively. Chapter 9,
Unsteady Transonic Aerodynamics and Aeroelasticity, is new and cov-
ers this rapidly developing subject in more breadth and depth than the
First Edition. Again, the emphasis is on fundamental concepts rather
than, for example, computer code development per se. Unfortunately
due to the press of other commitments, it has not been possible to re-
vise Chapter 7, Aeroelastic Problems of Rotorcraft. However, the Short
Bibliography has been expanded for this subject as well as for others. It
is hoped that the readers of the First Edition and also new readers will
find the Second Edition worthy of their study.
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Preface to the Third Edition
The authors would like to thank all those readers of the first and sec-

ond editions who have written with comments and suggestion. In the
third edition the opportunity has been taken to revise and update Chap-
ters 1 through 9. Also three new chapters have been added, i.e., Chapter
10, Experimental Aeroelasticity, Chapter 11, Nonlinear Aeroelasticity;
and Chapter 12, Aeroelastic Control. Chapter 10 is a brief introduction
to a vast subject: Chapter 11 is an overview of a frontier of research;
and Chapter 12 is the first connected, authoritative account of the feed-
back control of aeroelastic systems. Chapter 12 meets a significant need
in the literature. The authors of the first and second editions welcome
two new authors, David Peters who has provided a valuable revision of
Chapter 7 on rotorcraft, and Edward Crawley who has provided Chap-
ter 12 on aeroelastic control. It is a privilege and a pleasure to have
them as members of the team. The author of Chapter 10 would also
like to acknowledge the great help he has received over the year from
his distinguished colleague, Wilmer H. “Bill” Reed, III, in the study of
experimental aeroelasticity. Mr. Reed kindly provided the figures for
Chapter 10. The author of Chapter 12 would like to acknowledge the
significant scholarly contribution of Charrissa Lin and Ken Kazarus in
preparing the chapter on aeroelastic control. Finally the readers of the
first and second editions will note that the authors and subject indices
have been omitted from this edition. If any reader finds this an incon-
venience, please contact the editor and we will reconsider the matter for
the next edition.
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Preface to the Fourth Edition
In this edition several new chapters have been added and others sub-

stantially revised and edited. Chapter 6 on Aeroelasticity in Civil En-
gineering originally authored by Robert Scanlan has been substantially
revised by his close colleague, Emil Simiu. Chapter 9 on Modeling of
Fluid-Structure Interaction by Earl Dowell and Kenneth Hall is entirely
new and discusses modern methods for treating linear and nonlinear
unsteady aerodynamics based upon computational fluid dynamics mod-
els and their solution. Chapter 11 by Earl Dowell, John Edwards and
Thomas Strganac on Noninearity Aeroelasticity is also new and provides
a review of recent results. Chapter 12 by Robert Clark and David Cox
on Aeroelastic Control is also new and provides an authoritative account
of recent developments. Finally Chapter 13 by Kenneth Hall on Modern
Analysis for Complex and Nonlinear Unsteady Flows in Turbomachinery
is also new and provides an insightful and unique account of this impor-
tant topic. Many other chapters have been edited for greater clarity as
well and author and subject indices are also provided.

Dr. Deman Tang has provided invaluable contributions to the pro-
duction of the text and all of the authors would like to acknowledge his
efforts with great appreciation.

Useful comments on Chapter 6 by Professor Nocholas P. Jones of the
Whiting School of Engineering, John Hopkins University, are gratefully
acknowledged.

Figures 6.4, 6.24, 6.28, 6.33, 6.34, 6.35, 6.36, and 6.37 are reprinted
with permission from Elsevier.

EARL H. DOWELL
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The impact of aeroelasticity on design is not discussed in any detail in
this book. For insight into this important area the reader may consult
the following volumes prepared by the National Aeronautics and Space
Administration in its series on SPACE VEHICLE DESIGN CRITERIA.
Although these documents focus on space vehicle application, much of
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the material is relevant to aircraft as well. The depth and breadth
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contains at least a brief State-of-the-Art review of its topics as well as a
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topics are included which have not been treated at all in the present
book. These include, as already mentioned in the Preface.
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It was intended to revise these volumes periodically to keep them
up-to-date. Unfortunately this has not yet been done.

1 NASA SP-8001 1970
Buffeting During Atmospheric Ascent

2 NASA SP-8002 1964
Flight Loads Measurements During Launch and Exit

3 NASA SP-8003 1964
Flutter,Buzz and Divergence

4 NASA SP-8004 1972
Panel Flutter

5 NASA SP-8006 1965
Local Steady Aerodynamic Loads During Launch and Exit

6 NASA SP-8008 1965
Prelaunch Ground Wind Loads

7 NASA SP-8012 1968
Natural Vibration Wind Analysis

8 NASA SP-8016 1969
Effect of Structural Flexibility on Spacecraft Control System

9 NASA SP-8009 1968
Propellant Slosh Loads

10 NASA SP-8031 1969
Slosh Suppression
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11 NASA SP-8035 1970
Wind Loads During Ascent

12 NASA SP-8036 1970
Effect of Structural Flexibility on Launch Vehicle Control System

13 NASA SP-8050 1970
Structural Vibration Prediction

14 NASA SP-8055 1970
Prevention of Coupled Structure - Propulsion Instability (POGO)

15 NASA SP-8079 1971
Structural Interaction with Control Systems.



Chapter 1

INTRODUCTION

Several years ago, Collar suggested that aeroelasticity could be use-
fully visualized as forming a triangle of disciplines, dynamics, solid me-
chanics and (unsteady) aerodynamics.

Aeroelasticity is concerned with those physical phenomena which in-
volve significant mutual interaction among inertial, elastic and aero-
dynamic forces. Other important technical fields can be identified by
pairing the several points of the triangle. For example,

Stability and control (flight mechanics) = dynamics + aerodynamics

Structural vibrations = dynamics + solid mechanics

Static aeroelasticity = steady flow aerodynamics + solid mechanics

Conceptually, each of these technical fields may be thought of as a
special aspect of aeroelasticity. For historical reasons only the last topic,

(DYNAMICS)
INERTIAL  FORCES

AERODYNAMIC  FORCES
(FLUID)

ELASTIC  FORCES
(SOLID  MECHANICS)

Figure 1.1. Collar diagram.
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2 A MODERN COURSE IN AEROELASTICITY

static aeroelasticity, is normally so considered. However, the impact of
aeroelasticity on stability and control (flight mechanics) has increased
substantially in recent years.

In modern aerospace vehicles, the relevant physical phenomena may
be even more complicated. For example, stresses induced by high tem-
perature environments can be important in aeroelastic problems, hence
the term

‘aerothermoelasticity’

In other applications, the dynamics of the guidance and control system
may significantly affect aeroelastic problems, or vice versa, hence the
term

‘aeroservoelasticity’

For a historical discussion of aeroelasticity including its impact on
aerospace vehicle design, consult Chapter 1 of Bisplinghoff and Ashley
[2] and AGARD CP No.46, “Aeroelastic Effects from a Flight Mechanics
Standpoint” [6].

We shall first concentrate on the dynamics and solid mechanics as-
pects of aeroelasticity with the aerodynamic forces taken as given. Sub-
sequently, the aerodynamic aspects of aeroelasticity shall be treated from
first principles. Theoretical methods will be emphasized, although these
will be related to experimental methods and results where this will add
to our understanding of the theory and its limitations. For simplicity,
we shall begin with the special case of static aeroelasticity.

Although the technological cutting edge of the field of aeroelasticity
has centered in the past on aeronautical applications, applications are
found at an increasing rate in civil engineering, e.g., flows about bridges
and tall buildings; mechanical engineering, e.g., flows around turboma-
chinery blades and fluid flows in flexible pipes; and nuclear engineering;
e.g., flows about fuel elements and heat exchanger vanes. It may well be
that such applications will increase in both absolute and relative number
as the technology in these areas demands lighter weight structures under
more severe flow conditions. Much of the fundamental theoretical and
experimental developments can be applied to these areas as well and
indeed it is hoped that a common language can be used in these several
areas of technology. To further this hope we shall discuss subsequently
in some detail several examples in these other fields, even though our
principal focus shall be on aeronautical problems. Separate chapters on
civil engineering, turbomachinery and helicopter (rotor systems) appli-
cations will introduce the reader to the fascinating phenomena which
arise in these fields.
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Since most aeroelastic phenomena are of an undesirable character,
leading to loss of design effectiveness or even sometimes spectacular
structural failure as in the case of aircraft wing flutter or the Tacoma
Narrows Bridge disaster, the spreading importance of aeroelastic effects
will not be warmly welcomed by most design engineers. However, the
mastery of the material to be discussed here will permit these effects to
be better understood and dealt with if not completely overcome. More-
over in recent years, the beneficial effects of aeroelasticity have received
greater attention. For example, the promise of new aerospace systems
such as uninhabited air vehicles (UAVs) and morphing aircraft will un-
doubtedly be more fully realized by exploiting the benefits of aeroelas-
ticity while mitigating the risks.



Chapter 2

STATIC AEROELASTICITY

2.1. Typical Section Model of An Airfoil
We shall find a simple, somewhat contrived, physical system useful for

introducing several aeroelastic problems. This is the so-called ‘typical
section’ which is a popular pedagogical device.∗ This simplified aeroe-
lastic system consists of a rigid, flat, plate airfoil mounted on a torsional
spring attached to a wind tunnel wall. See Figure 2.1; the airflow over
the airfoil is from left to right.

Figure 2.1. Geometry of typical section airfoil.

The principal interest in this model for the aeroelastician is the rota-
tion of the plate (and consequent twisting of the spring), α, as a function

∗See Chapter 6, BA, especially pp. 189–200.
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U U

STRUCTURAL

FAILURE

α e

D

Figure 2.2. Elastic twist vs airspeed

of airspeed. If the spring were very stiff or airspeed were very slow, the
rotation would be rather small; however, for flexible springs or high flow
velocities the rotation may twist the spring beyond its ultimate strength
and lead to structural failure. A typical plot of elastic twist, αe, vs
airspeed, U , is given in Figure 2.2. The airspeed at which the elastic
twist increases rapidly to the point of failure is called the ‘divergence
airspeed’, UD. A major aim of any theoretical model is to accurately
predict UD. It should be emphasized that the above curve is representa-
tive not only of our typical section model but also of real aircraft wings.
Indeed the primary difference is not in the basic physical phenomenon
of divergence, but rather in the elaborateness of the theoretical analy-
sis required to predict accurately UD for an aircraft wing versus that
required for our simple typical section model.

To determine UD theoretically we proceed as follows. The equation
of static equilibrium simply states that the sum of aerodynamic plus
elastic moments about any point on the airfoil is zero. By convention,
we take the point about which moments are summed as the point of
spring attachment, the so-called ‘elastic center’ or ‘elastic axis’ of the
airfoil.

The total aerodynamic angle of attack, α, is taken as the sum of some
initial angle of attack, α0 (with the spring untwisted), plus an additional
increment due to elastic twist of the spring, αe.

α = α0 + αe (2.1.1)


