A Modern Course in Aeroelasticity

## SOLID MECHANICS AND ITS APPLICATIONS Volume 116

#### Series Editor: G.M.L. GLADWELL Department of Civil Engineering University of Waterloo Waterloo. Ontario. Canada N2L 3GI

#### Aims and Scope of the Series

The fundamental questions arising in mechanics are: *Why?*, *How?*, and *How much?* 

The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.

# A Modern Course in Aeroelasticity

Fourth Revised and Enlarged Edition

by

EARL H. DOWELL (Editor) Duke University, Durham, NC, U.S.A.

ROBERT CLARK Duke University, Durham, NC, U.S.A.

DAVID COX NASA Langley Research Center, Hampton, VA, U.S.A.

H.C. CURTISS, JR. Princeton University, Princeton, NJ, U.S.A.

JOHN W. EDWARDS NASA Langley Research Center, Hampton, VA, U.S.A.

KENNETH C. HALL Duke University, Durham, NC, U.S.A.

#### DAVID A. PETERS

Washington University, St. Louis, MO, U.S.A.

ROBERT SCANLAN

Johns Hopkins University, Baltimore, MD, U.S.A.

EMIL SIMIU National Institute for Standards and Technology, Gaithersburg, MD, U.S.A.

FERNANDO SISTO Stevens Institute of Technology, Hoboken, NJ, U.S.A.

and

THOMAS W. STRGANAC Texas A&M University, College Station, TX, U.S.A.

KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBook ISBN: 1-4020-2106-2 Print ISBN: 1-4020-2039-2

©2005 Springer Science + Business Media, Inc.

Print ©2004 Kluwer Academic Publishers Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: and the Springer Global Website Online at: http://ebooks.kluweronline.com http://www.springeronline.com

The authors would like to pay tribute to Robert H. Scanlan, a superb aeroelastician, an inspiring teacher, and a consummate mentor and friend. He is greatly missed.

## Contents

| Pr            | eface                         |                                                    | xvii  |
|---------------|-------------------------------|----------------------------------------------------|-------|
|               | Preface to the First Edition  |                                                    | xvii  |
|               | Preface to the Second Edition |                                                    | xix   |
|               | Pref                          | ace to the Third Edition                           | XX    |
|               | Pref                          | face to the Fourth Edition                         | xxi   |
| $\mathbf{Sh}$ | ort E                         | Bibliography                                       | xxiii |
| 1.            | INT                           | TRODUCTION (DOWELL)                                | 1     |
| 2.            | STA                           | ATIC AEROELASTICITY (DOWELL)                       | 5     |
|               | 2.1                           | Typical Section Model of An Airfoil                | 5     |
|               |                               | Typical section model with control surface         | 10    |
|               |                               | Typical section model—nonlinear effects            | 16    |
|               | 2.2                           | One Dimensional Aeroelastic Model of Airfoils      | 18    |
|               |                               | Beam-rod representation of large aspect ratio wing | 18    |
|               |                               | Eigenvalue and eigenfunction approach              | 22    |
|               |                               | Galerkin's method                                  | 24    |
|               | 2.3                           | Rolling of a Straight Wing                         | 26    |
|               |                               | Integral equation of equilibrium                   | 26    |
|               |                               | Derivation of equation of equilibrium              | 27    |
|               |                               | Calculation of $C^{\alpha\alpha}$                  | 28    |
|               |                               | Sketch of function $S(y_1, \eta)$                  | 28    |
|               |                               | Aerodynamic forces (including spanwise induction)  | 30    |
|               |                               | Aeroelastic equations of equilibrium and lumped    |       |
|               |                               | element solution method                            | 32    |
|               |                               | Divergence                                         | 33    |
|               |                               | Reversal and rolling effectiveness                 | 34    |

|    |      | Integral equation eigenvalue problem and the<br>experimental determination of influence functions | 37  |
|----|------|---------------------------------------------------------------------------------------------------|-----|
|    | 2.4  | Two Dimensional Aeroelastic Model of Lifting Surfaces                                             | 41  |
|    |      | Two dimensional structures—integral representation                                                | 41  |
|    |      | Two dimensional aerodynamic surfaces—integral                                                     |     |
|    |      | representation                                                                                    | 42  |
|    |      | Solution by matrix-lumped element approach                                                        | 43  |
|    | 2.5  | Other Physical Phenomena                                                                          | 44  |
|    |      | Fluid flow through a flexible pipe                                                                | 44  |
|    |      | (Low speed) fluid flow over a flexible wall                                                       | 47  |
|    | 2.6  | Sweptwing Divergence                                                                              | 47  |
|    | Refe | erences for Chapter 2                                                                             | 51  |
| 3. | DY   | NAMIC AEROELASTICITY (DOWELL)                                                                     | 53  |
|    | 3.1  | Hamilton's Principle                                                                              | 54  |
|    |      | Single particle                                                                                   | 54  |
|    |      | Many particles                                                                                    | 56  |
|    |      | Continuous body                                                                                   | 56  |
|    |      | Potential energy                                                                                  | 56  |
|    |      | Nonpotential forces                                                                               | 59  |
|    | 3.2  | Lagrange's Equations                                                                              | 60  |
|    |      | Example—typical section equations of motion                                                       | 61  |
|    | 3.3  | Dynamics of the Typical Section Model of An Airfoil                                               | 64  |
|    |      | Sinusoidal motion                                                                                 | 64  |
|    |      | Periodic motion                                                                                   | 67  |
|    |      | Arbitrary motion                                                                                  | 67  |
|    |      | Random motion                                                                                     | 73  |
|    |      | Flutter - an introduction to dynamic aeroelastic instability                                      | 81  |
|    |      | Quasi-steady, aerodynamic theory                                                                  | 85  |
|    | 3.4  | Aerodynamic Forces                                                                                | 87  |
|    |      | Aerodynamic theories available                                                                    | 91  |
|    |      | General approximations                                                                            | 95  |
|    |      | 'Strip theory' approximation                                                                      | 95  |
|    |      | 'Quasisteady' approximation                                                                       | 95  |
|    |      | Slender body or slender (low aspect ratio) wing approximation                                     | 96  |
|    | 3.5  | Solutions to the Aeroelastic Equations of Motion                                                  | 97  |
|    |      | Time domain solutions                                                                             | 98  |
|    |      | Frequency domain solutions                                                                        | 100 |

|    | 3.6  | Representative Results and Computational<br>Considerations   | 103  |
|----|------|--------------------------------------------------------------|------|
|    |      | Time domain                                                  | 103  |
|    |      | Frequency domain                                             | 103  |
|    |      | Flutter and gust response classification including           |      |
|    |      | parameter trends                                             | 105  |
|    |      | Flutter                                                      | 105  |
|    |      | Gust response                                                | 121  |
|    | 3.7  | Generalized Equations of Motion for Complex Structures       | 128  |
|    |      | Lagrange's equations and modal methods (Rayleigh-Ritz)       | 128  |
|    |      | Kinetic energy                                               | 129  |
|    |      | Strain (potential elastic) energy                            | 130  |
|    |      | Examples                                                     | 133  |
|    |      | (a) Torsional vibrations of a rod                            | 133  |
|    |      | (b) Bending-torsional motion of a beam-rod                   | 134  |
|    |      | Natural frequencies and modes-eigenvalues and eigenvectors   | 5135 |
|    |      | Evaluation of generalized aerodynamic forces                 | 136  |
|    |      | Equations of motion and solution methods                     | 137  |
|    |      | Integral equations of equilibrium                            | 139  |
|    |      | Natural frequencies and modes                                | 141  |
|    |      | Proof of orthogonality                                       | 143  |
|    |      | Forced motion including aerodynamic forces                   | 144  |
|    |      | Examples                                                     | 147  |
|    |      | (a) Rigid wing undergoing translation responding to a gus    | t147 |
|    |      | (b) Wing undergoing translation and spanwise bending         | 153  |
|    |      | (c) Random gusts-solution in the frequency domain            | 155  |
|    | 3.8  | Other Fluid-Structural Interaction Phenomena                 | 156  |
|    |      | Fluid flow through a flexible pipe: "firehose" flutter       | 156  |
|    |      | (High speed) fluid flow over a flexible wall - a simple      | 150  |
|    | DC   | prototype for plate or panel nutter                          | 108  |
|    | Refe | erences for Chapter 3                                        | 165  |
| 4. | NO   | NSTEADY AERODYNAMICS (DOWELL)                                | 169  |
|    | 4.1  | Basic Fluid Dynamic Equations                                | 169  |
|    |      | Conservation of mass                                         | 170  |
|    |      | Conservation of momentum                                     | 171  |
|    |      | Irrotational flow, Kelvin's theorem and Bernoulli's equation | n172 |
|    |      | Derivation of a single equation for velocity potential       | 174  |
|    |      | Small perturbation theory                                    | 175  |

|    |                       | Reduction to classical acoustics                                                        | 177   |
|----|-----------------------|-----------------------------------------------------------------------------------------|-------|
|    |                       | Boundary conditions                                                                     | 178   |
|    |                       | Symmetry and anti-symmetry                                                              | 180   |
|    | 4.2                   | Supersonic Flow                                                                         | 182   |
|    |                       | Two-dimensional flow                                                                    | 182   |
|    |                       | Simple harmonic motion of the airfoil                                                   | 183   |
|    |                       | Discussion of inversion                                                                 | 185   |
|    |                       | Discussion of physical significance of the results                                      | 187   |
|    |                       | Gusts                                                                                   | 189   |
|    |                       | Transient motion                                                                        | 190   |
|    |                       | Lift, due to airfoil motion                                                             | 191   |
|    |                       | Lift, due to atmospheric gust                                                           | 192   |
|    |                       | Three dimensional flow                                                                  | 195   |
|    | 4.3                   | Subsonic Flow                                                                           | 201   |
|    |                       | Derivation of the integral equation by transform methods<br>and solution by collocation | 201   |
|    |                       | An alternative determination of the Kernel Function<br>using Green's Theorem            | 204   |
|    |                       | Incompressible, three-dimensional flow                                                  | 207   |
|    |                       | Compressible, three-dimensional flow                                                    | 211   |
|    |                       | Incompressible, two-dimensional flow                                                    | 215   |
|    |                       | Simple harmonic motion of an airfoil                                                    | 218   |
|    |                       | Transient motion                                                                        | 224   |
|    |                       | Evaluation of integrals                                                                 | 229   |
|    | 4.4                   | Representative Numerical Results                                                        | 232   |
|    | 4.5                   | Transonic Flow                                                                          | 238   |
|    | Refe                  | erences for Chapter 4                                                                   | 270   |
| 5. | STALL FLUTTER (SISTO) |                                                                                         | 275   |
|    | 5.1                   | Background                                                                              | 275   |
|    | 5.2                   | Analytical formulation                                                                  | 276   |
|    | 5.3                   | Stability and aerodynamic work                                                          | 278   |
|    | 5.4                   | Bending stall flutter                                                                   | 279   |
|    | 5.5                   | Nonlinear mechanics description                                                         | 281   |
|    | 5.6                   | Torsional stall flutter                                                                 | 282   |
|    | 5.7                   | General comments                                                                        | 285   |
|    | 5.9                   | Boducod order models                                                                    | 200   |
|    | 0.0                   |                                                                                         | - 200 |

|    | 5.9  | Computational stalled flow                                                                                      | 289 |
|----|------|-----------------------------------------------------------------------------------------------------------------|-----|
|    | Refe | rences for Chapter 5                                                                                            | 294 |
| 6. | AI   | EROELASTICITY IN CIVIL ENGINEERING                                                                              |     |
|    | (SCA | ANLAN AND SIMIU)                                                                                                | 299 |
|    | 6.1  | Vortex-induced Oscillation                                                                                      | 301 |
|    |      | Vortex shedding                                                                                                 | 301 |
|    |      | Modeling of vortex-induced oscillations                                                                         | 305 |
|    |      | Coupled two-degree-of-freedom equations: wake oscillator models                                                 | 306 |
|    |      | Single-degree-of- freedom model of vortex-induced response                                                      | 310 |
|    | 6.2  | Galloping                                                                                                       | 314 |
|    |      | Equation of motion of galloping bodies. The Glauert-Den<br>Hartog necessary condition for galloping instability | 314 |
|    |      | Description of galloping motion                                                                                 | 320 |
|    |      | Chaotic galloping of two elastically coupled square bars                                                        | 321 |
|    |      | Wake galloping : physical description and analysis                                                              | 321 |
|    | 6.3  | Torsional Divergence                                                                                            | 327 |
|    | 6.4  | Flutter and Buffeting in the Presence of Aeroelastic Effects                                                    | 328 |
|    |      | Formulation and analytical solution of the two-<br>dimensional bridge flutter problem in smooth flow            | 330 |
|    |      | Bridge section response to excitation by turbulent wind<br>in the presence of aeroelastic effects               | 334 |
|    | 6.5  | Suspension-Span Bridges                                                                                         | 336 |
|    |      | Wind tunnel testing of suspended-span bridges                                                                   | 336 |
|    |      | Torsional divergence analysis for a full bridge                                                                 | 338 |
|    |      | Locked-in vortex-induced response                                                                               | 340 |
|    |      | Flutter and buffeting of a full-span bridge                                                                     | 350 |
|    |      | Reduction of bridge susceptibility to flutter                                                                   | 360 |
|    | 6.6  | Tall Chimneys and Stacks, and Tall Buildings                                                                    | 361 |
|    |      | Tall chimneys and stacks                                                                                        | 361 |
|    |      | Tall buildings                                                                                                  | 365 |
|    | Refe | rences for Chapter 6                                                                                            | 367 |
| 7. | AE   | ROELASTIC RESPONSE OF ROTORCRAFT                                                                                |     |
|    | (CUI | RTISS AND PETERS)                                                                                               | 377 |
|    | 7.1  | Blade Dynamics                                                                                                  | 379 |
|    |      | Articulated, rigid blade motion                                                                                 | 379 |
|    |      | Elastic motion of hingeless blades                                                                              | 390 |

|    | 7.2  | Stall Flutter                                                          | 403 |
|----|------|------------------------------------------------------------------------|-----|
|    | 7.3  | Rotor-Body Coupling                                                    | 409 |
|    | 7.4  | Unsteady Aerodynamics                                                  | 433 |
|    |      | Dynamic inflow                                                         | 434 |
|    |      | Frequency domain                                                       | 440 |
|    |      | Finite-state wake modelling                                            | 441 |
|    |      | Summary                                                                | 444 |
|    |      | References for Chapter 7                                               | 444 |
| 8. | AEI  | ROELASTICITY IN TURBOMACHINES (SISTO)                                  | 453 |
|    | 8.1  | Aeroelastic Environment in Turbomachines                               | 454 |
|    | 8.2  | The Compressor Performance Map                                         | 455 |
|    | 8.3  | Blade Mode Shapes and Materials of Construction                        | 460 |
|    | 8.4  | Nonsteady Potential Flow in Cascades                                   | 462 |
|    | 8.5  | Compressible Flow                                                      | 467 |
|    | 8.6  | Periodically Stalled Flow in Turbomachines                             | 471 |
|    | 8.7  | Stall Flutter in Turbomachines                                         | 475 |
|    | 8.8  | Choking Flutter                                                        | 477 |
|    | 8.9  | Aeroelastic Eigenvalues                                                | 479 |
|    | 8.10 | Recent Trends                                                          | 481 |
|    | Refe | rences for Chapter 8                                                   | 487 |
| 9. |      | MODELING OF FLUID-STRUCTURE                                            |     |
| -  | INT  | ERACTION (DOWELL AND HALL)                                             | 491 |
|    | 9.1  | The Range Of Physical Models                                           | 491 |
|    |      | The classical models                                                   | 491 |
|    |      | The distinction between linear and nonlinear models                    | 494 |
|    |      | Computational fluid dynamics models                                    | 495 |
|    |      | The computational challenge of fluid structure interaction<br>modeling | 495 |
|    | 9.2  | Time-Linearized Models                                                 | 496 |
|    |      | Classical aerodynamic theory                                           | 496 |
|    |      | Classical hydrodynamic stability theory                                | 497 |
|    |      | Parallel shear flow with an inviscid dynamic perturbation              | 497 |
|    |      | General time-linearized analysis                                       | 498 |
|    | 0.0  | Some numerical examples                                                | 500 |
|    | 9.3  | Nonlinear Dynamical Models                                             | 500 |
|    |      | Harmonic balance method                                                | 503 |

|         | System identification methods                                                             | 503 |
|---------|-------------------------------------------------------------------------------------------|-----|
|         | Nonlinear reduced-order models                                                            | 504 |
|         | Reduced-order models                                                                      | 504 |
|         | Constructing reduced order models                                                         | 505 |
|         | Linear and nonlinear fluid models                                                         | 506 |
|         | Eigenmode computational methodology                                                       | 507 |
|         | Proper orthogonal decomposition modes                                                     | 508 |
|         | Balanced modes                                                                            | 509 |
|         | Synergy among the modal methods                                                           | 509 |
|         | Input/output models                                                                       | 509 |
|         | Structural, aerodynamic, and aeroelastic modes                                            | 511 |
|         | Representative results                                                                    | 512 |
|         | The effects of spatial discretization and a finite<br>computational domain                | 512 |
|         | The effects of mach number and steady angle of attack:<br>subsonic and transonic flows    | 516 |
|         | The effects of viscosity                                                                  | 521 |
|         | Nonlinear aeroelastic reduced-order models                                                | 522 |
| 9.4     | Concluding Remarks                                                                        | 524 |
| Refer   | rences for Chapter 9                                                                      | 529 |
| App     | endix: Singular-Value Decomposition, Proper Orthogonal<br>Decomposition, & Balanced Modes | 538 |
| 10. EXP | ERIMENTAL AEROELASTICITY (DOWELL)                                                         | 541 |
| 10.1    | Review of Structural Dynamics Experiments                                                 | 541 |
| 10.2    | Wind Tunnel Experiments                                                                   | 543 |
| 10.2    | Sub-critical flutter testing                                                              | 543 |
|         | Approaching the flutter boundary                                                          | 544 |
|         | Safety devices                                                                            | 544 |
|         | Research tests vs. clearance tests                                                        | 544 |
|         | Scaling laws                                                                              | 544 |
| 10.3    | Flight Experiments                                                                        | 545 |
|         | Approaching the flutter boundary                                                          | 545 |
|         | When is flight flutter testing required?                                                  | 545 |
|         | Excitation                                                                                | 545 |
|         | Examples of recent flight flutter test programs                                           | 546 |
| 10.4    | The Role of Experimentation and Theory in Design                                          | 546 |
| Refer   | rences for Chapter 10                                                                     | 548 |

| 11. | . N<br>EDV | ONLINEAR AEROELASTICITY (DOWELL,<br>VARDS AND STRGANAC)                             | 551 |
|-----|------------|-------------------------------------------------------------------------------------|-----|
|     | 11 1       | Introduction                                                                        | 551 |
|     | 11.2       | Generic Nonlinear Aeroelastic Behavior                                              | 552 |
|     | 11.2       | Flight Experience with Nonlinear Aeroelestic Effects                                | 554 |
|     | 11.0       | Nonlinear aerodynamic effects                                                       | 556 |
|     |            | Freenlay                                                                            | 556 |
|     |            | Geometric structural nonlinearities                                                 | 557 |
|     | 11.4       | Physical Sources of Nonlinearities                                                  | 557 |
|     | 11.5       | Efficient Computation of Unsteady Aerodynamic Forces:<br>Linear and Nonlinear       | 558 |
|     | 11.6       | Correlations of Experiment/Theory and Theory/Theory                                 | 560 |
|     |            | Aerodynamic forces                                                                  | 560 |
|     | 11.7       | Flutter Boundaries in Transonic Flow                                                | 566 |
|     | 11.8       | Limit Cycle Oscillations                                                            | 573 |
|     |            | Airfoils with stiffness nonlinearities                                              | 573 |
|     |            | Nonlinear internal resonance behavior                                               | 575 |
|     |            | Delta wings with geometrical plate nonlinearities                                   | 577 |
|     |            | Very high aspect ratio wings with both structural and<br>aerodynamic nonlinearities | 578 |
|     |            | Nonlinear structural damping                                                        | 581 |
|     |            | Large shock motions and flow separation                                             | 581 |
|     |            | Abrupt wing stall                                                                   | 594 |
|     |            | Uncertainty due to nonlinearity                                                     | 595 |
|     | Refe       | rences for Chapter 11                                                               | 598 |
| 12. | AEF        | ROELASTIC CONTROL (CLARK AND COX)                                                   | 611 |
|     | 12.1       | Introduction                                                                        | 611 |
|     | 12.2       | Linear System Theory                                                                | 612 |
|     |            | System interconnections                                                             | 612 |
|     |            | Controllability and observability                                                   | 615 |
|     | 12.3       | Aeroelasticity: Aerodynamic Feedback                                                | 617 |
|     |            | Development of a typical section model                                              | 617 |
|     |            | Aerodynamic model, 2D                                                               | 619 |
|     |            | Balanced model reduction                                                            | 622 |
|     |            | Combined aeroelastic model                                                          | 623 |
|     |            | Development of a delta wing model                                                   | 627 |
|     |            | Transducer effects                                                                  | 630 |

| Aerodynamic model, 3D                                                           | 633        |
|---------------------------------------------------------------------------------|------------|
| Coupled system                                                                  | 634        |
| 12.4 Open-Loop Design Considerations                                            | 636        |
| HSVs and the modal model                                                        | 637        |
| Optimization strategy                                                           | 638        |
| Optimization results                                                            | 641        |
| 12.5 Control Law Design                                                         | 642        |
| Control of the typical section model                                            | 644        |
| Control of the delta wing model                                                 | 647        |
| 12.6 Parameter Varying Models                                                   | 647        |
| Linear matrix inequalities                                                      | 648        |
| LMI controller specifications                                                   | 649        |
| An LMI design for the typical section                                           | 652        |
| 12.7 Experimental Results                                                       | 654        |
| Typical section experiment                                                      | 655        |
| LPV system identification                                                       | 656        |
| Closed-loop results                                                             | 658<br>664 |
| Delta wing experiment                                                           | 004        |
| 12.8 Closing Comments                                                           | 667        |
| References for Chapter 12                                                       | 669        |
| 13. MODERN ANALYSIS FOR COMPLEX                                                 |            |
| AND NONLINEAR UNSTEADY FLOWS IN<br>TURBOMACHINERY (HALL)                        | 675        |
| 13.1 Linearized Analysis of Unsteady Flows                                      | 676        |
| 13.2 Analysis of Unsteady Flows                                                 | 683        |
| 13.3 Harmonic Balance Method                                                    | 688        |
| 13.4 Conclusions                                                                | 000<br>600 |
| Beferences for Chapter 13                                                       | 701        |
|                                                                                 | 701        |
| Appendices                                                                      | 705        |
| Appendix A: A Primer For Structural Response To<br>Random Pressure Fluctuations | 705        |
| A.1 Introduction                                                                | 705        |
| A.2 Excitation-Response Relation For The Structure                              | 705        |
| A.3 Sharp Resonance or Low Damping Approximation                                | 709        |
| Nomenclature                                                                    | 710        |
| References for Appendix A                                                       | 710        |

| Appendix B: Some Example Problems |                 | 711 |
|-----------------------------------|-----------------|-----|
| B.1                               | For Chapter 2   | 711 |
| B.2                               | For Section 3.1 | 724 |
| B.3                               | For Section 3.3 | 730 |
| B.4                               | For Section 3.6 | 735 |
| B.5                               | For Section 4.1 | 738 |
| Index                             |                 | 743 |

## Preface

#### Preface to the First Edition

A reader who achieves a substantial command of the material contained in this book should be able to read with understanding most of the literature in the field. Possible exceptions may be certain special aspects of the subject such as the aeroelasticity of plates and shells or the use of electronic feedback control to modify aeroelastic behavior. The first author has considered the former topic in a separate volume. The latter topic is also deserving of a separate volume.

In the first portion of the book the basic physical phenomena of divergence, control surface effectiveness, flutter and gust response of aeronautical vehicles are treated. As an indication of the expanding scope of the field, representative examples are also drawn from the non-aeronautical literature. To aid the student who is encountering these phenomena for the first time, each is introduced in the context of a simple physical model and then reconsidered systematically in more complicated models using more sophisticated mathematics.

Beyond the introductory portion of the book, there are several special features of the text. One is the treatment of unsteady aerodynamics. This crucial part of aeroelasticity is usually the most difficult for the experienced practitioner as well as the student. The discussion is developed from the fundamental theory underlying numerical lifting surface analysis. Not only the well known results for subsonic and supersonic flow are covered; but also some of the recent developments for transonic flow, which hold promise of bringing effective solution techniques to this important regime.

Professor Sisto's chapter on Stall Flutter is an authoritative account of this important topic. A difficult and still incompletely understood phenomenon, stall flutter is discussed in terms of its fundamental aspects as well as its significance in applications. The reader will find this chapter particularly helpful as an introduction to this complex subject.

Another special feature is a series of chapters on three areas of advanced application of the fundamentals of aeroelasticity. The first of these is a discussion of Aeroelastic Problems of Civil Engineering Structures by Professor Scanlan. The next is a discussion on Aeroelasticity of Helicopters and V/STOL aircraft by Professor Curtiss. The final chapter in this series treats Aeroelasticity in Turbomachines and is by Professor Sisto. This series of chapters is unique in the aeroelasticity literature and the first author feels particularly fortunate to have the contributions of these eminent experts.

The emphasis in this book in on fundamentals because no single volume can hope to be comprehensive in terms of applications. However, the above three chapters should give the reader an appreciation for the relationship between theory and practice. One of the continual fascinations of aeroelasticity is this close interplay between fundamentals and applications. If one is to deal successfully with applications, a solid grounding in the fundamentals is essential.

For the beginning student, a first course in aeroelasticity could cover Chapters 1-3 and selected portions of 4. For a second course and the advanced student or research worker, the remaining Chapters would be appropriate. In the latter portions of the book, more comprehensive literature citations are given to permit ready access to the current literature.

The reader familiar with the standard texts by Scanlan and Rosenbaum, Fung, Bisplinghoff, Ashley and Halfman and Bisplinghoff and Ashley will appreciate readily the debt the authors owe to them. Recent books by Petre<sup>\*</sup> and Forsching<sup>†</sup> should also be mentioned though these are less accessible to an English speaking audience. It is hoped the reader will find this volume a worthy successor.

<sup>\*</sup>Petre, A., *Theory of Aeroelasticity. Vol. I Statics, Vol. II Dynamics.* In Romanian Publishing House of the Academy of the Socialist Republic of Romania, Bucharest, 1966. <sup>†</sup>Forsching, H. W., *Fundamentals of Aeroelasticity.* In German. Springer-Verlag, Berlin, 1974.

#### Preface to the Second Edition

The authors would like to thank all those readers who have written with comments and errata for the First Edition. Many of these have been incorporated into the Second Edition. They would like to thank Professor Holt Ashley of Stanford University who has been most helpful in identifying and correcting various errata.

Also the opportunity has been taken in the Second Edition to bring up-to-date several of the chapters as well as add a chapter on unsteady transonic aerodynamics and aeroelasticity. Chapters 2,5,6 and 8 have been substantially revised. These cover the topics of Static Aeroelasticity, Stall Flutter, Aeroelastic Problems of Civil Engineering Structures and Aeroelasticity in Turbomachines, respectively. Chapter 9, Unsteady Transonic Aerodynamics and Aeroelasticity, is new and covers this rapidly developing subject in more breadth and depth than the First Edition. Again, the emphasis is on fundamental concepts rather than, for example, computer code development per se. Unfortunately due to the press of other commitments, it has not been possible to revise Chapter 7, Aeroelastic Problems of Rotorcraft. However, the Short Bibliography has been expanded for this subject as well as for others. It is hoped that the readers of the First Edition and also new readers will find the Second Edition worthy of their study.

#### Preface to the Third Edition

The authors would like to thank all those readers of the first and second editions who have written with comments and suggestion. In the third edition the opportunity has been taken to revise and update Chapters 1 through 9. Also three new chapters have been added, i.e., Chapter 10, Experimental Aeroelasticity, Chapter 11, Nonlinear Aeroelasticity; and Chapter 12, Aeroelastic Control. Chapter 10 is a brief introduction to a vast subject: Chapter 11 is an overview of a frontier of research; and Chapter 12 is the first connected, authoritative account of the feedback control of aeroelastic systems. Chapter 12 meets a significant need in the literature. The authors of the first and second editions welcome two new authors, David Peters who has provided a valuable revision of Chapter 7 on rotorcraft, and Edward Crawley who has provided Chapter 12 on aeroelastic control. It is a privilege and a pleasure to have them as members of the team. The author of Chapter 10 would also like to acknowledge the great help he has received over the year from his distinguished colleague, Wilmer H. "Bill" Reed, III, in the study of experimental aeroelasticity. Mr. Reed kindly provided the figures for Chapter 10. The author of Chapter 12 would like to acknowledge the significant scholarly contribution of Charrissa Lin and Ken Kazarus in preparing the chapter on aeroelastic control. Finally the readers of the first and second editions will note that the authors and subject indices have been omitted from this edition. If any reader finds this an inconvenience, please contact the editor and we will reconsider the matter for the next edition.

#### Preface to the Fourth Edition

In this edition several new chapters have been added and others substantially revised and edited. Chapter 6 on Aeroelasticity in Civil Engineering originally authored by Robert Scanlan has been substantially revised by his close colleague, Emil Simiu. Chapter 9 on Modeling of Fluid-Structure Interaction by Earl Dowell and Kenneth Hall is entirely new and discusses modern methods for treating linear and nonlinear unsteady aerodynamics based upon computational fluid dynamics models and their solution. Chapter 11 by Earl Dowell, John Edwards and Thomas Strganac on Noninearity Aeroelasticity is also new and provides a review of recent results. Chapter 12 by Robert Clark and David Cox on Aeroelastic Control is also new and provides an authoritative account of recent developments. Finally Chapter 13 by Kenneth Hall on Modern Analysis for Complex and Nonlinear Unsteady Flows in Turbomachinery is also new and provides an insightful and unique account of this important topic. Many other chapters have been edited for greater clarity as well and author and subject indices are also provided.

Dr. Deman Tang has provided invaluable contributions to the production of the text and all of the authors would like to acknowledge his efforts with great appreciation.

Useful comments on Chapter 6 by Professor Nocholas P. Jones of the Whiting School of Engineering, John Hopkins University, are gratefully acknowledged.

Figures 6.4, 6.24, 6.28, 6.33, 6.34, 6.35, 6.36, and 6.37 are reprinted with permission from Elsevier.

EARL H. DOWELL

### Short Bibliography

Books

- Bolotin, V. V., Nonconservative Problems of the Elastic Theory of Stability, Pergamon Press, 1963.
- 2 Bisplinghoff, R. L., Ashley, H. and Halfman, R. L., Aeroelasticity, Addison-Wesley Publishing Company, Cambridge, Mass., 1955. (BAH)
- 3 Bisplinghoff, R. L., and Ashley, H., *Principles of Aeroelasticity*, John Wiley and Sons, Inc., New York, N.Y., 1962. Also available in Dover Edition. (BA)
- 4 Fung, Y. C., An Introduction to the Theory of Aeroelasticity, John Wiley and Sons, Inc., New York, N.Y., 1955. Also available in Dover Edition.
- 5 Scanlan, R. H. and Rosenbaum, R., Introduction to the Study of Aircraft Vibration and Flutter, The Macmillan Company, New York, N.Y., 1951. Also available in Dover Edition.
- 6 AGARD Manual on Aeroelasticity, Vols. I-VII, Beginning 1959 with continual updating. (AGARD)
- 7 Ashley, H., Dugundji, J. and Rainey, A. G., *Notebook for Aeroelasticity*, AIAA Professional Seminar Series, 1969.
- 8 Dowell, E. H., *Aeroelasticity of Plates and Shells*, Noordhoff International Publishing, Leyden, 1975.
- 9 Simiu, E., and Scanlan, R. H., Wind Effects on Structures An Introduction to Wing Engineering, John Wiley and Sons, 1978.
- 10 Johnson, W., Helicopter Theory, Princeton University Press, 1980.
- 11 Dowell, E. H., and Ilgamov, M., Studies in Nonlinear Aeroelasticity, Springer - Verlag, 1988.
- 12 Paidoussis, M. P., Fluid Structure Interactions: Slender Structures and Axial Flow, Volume 1, Academic Press, 1998.

In parentheses, abbreviations for the above books are indicated which are used in the text.

Survey articles

- 1 Garrick, I. E., "Aeroelasticity Frontiers and Beyond", 13th Von Karman Lecture, J. of Aircraft, Vol. 13, No. 9, 1976, pp. 641-657.
- 2 Several Authors, "Unsteady Aerodynamics. Contribution of the Structures and Materials Panel to the Fluid Dynamics Panel Round Table Discussion on Unsteady Aerodynamics", Goettingen, May 1975, AGARD Report R-645, March 1976.
- 3 Rodden, W. P., A Comparison of Methods Used in Interfering Lifting Surface Theory, AGARD Report R-643, March 1976.
- 4 Ashley, H., "Aeroelasticity", *Applied Mechanics Reviews*, February 1970.
- 5 Abramson, H. N., "Hydroelasticity: A Review of Hydrofoil Flutter", Applied Mechanics Reviews, February 1969.
- 6 Many Authors, "Aeroelastic Effects From a Flight Mechanics Standpoint", AGARD, Conference Proceedings No. 46, 1969.
- 7 Landhal, M. T., and Stark, V. J. E., "Numerical Lifting Surface Theory - Problems and Progress", AIAA Journal, No. 6, No. 11, November 1968, pp. 2049-2060.
- 8 Many Authors, "Symposium on Fluid Solid Interactions" ASME Annual Winter Meeting, November 1967.
- 9 Kaza, K. R. V., "Development of Aeroelastic Analysis Methods for Turborotors and Propfans - Including Mistuning", in *Lewis Structure Technology*, Vol. 1, Proceedings, NASA Lewis Research Center, 1988.
- 10 Ericsson, L. E. and Reading, J. P., "Fluid Mechanics of Dynamic Stall, Part I, Unsteady Flow Concepts, and Part II, Prediction of Full Scale Characteristics", *J. Fluids and Structures*, Vol. 2, No. 1 and 2, 1988, pp. 1-33 and 113-143, respectively.
- 11 Mabey, D. G., "Some Aspects of Aircraft Dynamic Loads Due to Flow Separation", AGARD-R-750, February, 1998.
- 12 Yates, E. C., Jr. and Whitlow W., Jr., "Development of Computational Methods for Unsteady Aerodynamics at the NASA Langley Research Center", in AGARD-R-749, Future Research on Transonic Unsteady Aerodynamics and its Aeroelastic Applications, August 1987.
- 13 Gad-el-Hak, M., "Unsteady Separation on Lifting Surfaces", Applied Mechanics Reviews, Vol. 40, No. 4, 1987, pp. 441-453.

- 14 Hajela, P. (Ed.), "Recent Trends in Aeroelasticity, Structures and Structural Dynamics", University of Florida Press, Gainesville, 1987.
- 15 Jameson, A., "The Evolution of Computational Methods in Aerodynamics", J. Applied Mechanics, Vol. 50, No. 4, 1983, pp. 1052-1070.
- 16 Seebass, R., "Advances in the Understanding and Computation of Unsteady Transonic Flows", in *Recent Advances on Aerodynamics*, edited by A. Krothapalli and C. Smith, Springer - Verlag, 1984.
- 17 McCroskey, W. J., "Unsteady Airfoils", in Annual Reviews of Fluid Mechanics, 1982, Vol. 14, pp. 285-311.
- 18 Tijdeman, H. and Seebass, R., "Transonic Flow Past Oscillating Airfoils", in Annual Reviews of Fluid Mechanics, 1980, Vol. 12, pp. 181-222.
- 19 Ormiston, R., Warmbrodt, W., Hodges, D., and Peters, D., "Survey of Army/NASA Rotocraft Aeroelastic Stability Research", NASA TM 101026 and USAASCOM TR 88-A-005, 1988.
- 20 Dowell, E.H. and Hall, K.C., "Modeling of Fluid-Structure Interaction," Annual Reviews of Fluid Mechanics, Vol.33, 2001, pp.445-490.
- 21 Eastep, Franklin E. (editor), "Flight Vehicle Aeroelasticity," a series of invited articles by several authors in the *Journal of Aircraft*, Vol.40, No.5, 2003, pp.809-874.

Journals AHS Journal AIAA Journal ASCE Transactions, Engineering Mechanics Division ASME Transaction, Journal of Applied Mechanics International Journal of Solids and Structures Journal of Aircraft Journal of Fluids and Structures Journal of Sound and Vibration

Other journals will have aeroelasticity articles, of course, but these are among those with the most consistent coverage.

The impact of aeroelasticity on design is not discussed in any detail in this book. For insight into this important area the reader may consult the following volumes prepared by the National Aeronautics and Space Administration in its series on SPACE VEHICLE DESIGN CRITERIA. Although these documents focus on space vehicle application, much of the material is relevant to aircraft as well. The depth and breadth of coverage varies considerably from one volume to the next, but each contains at least a brief State-of-the-Art review of its topics as well as a discussion of Recommended Design Practices. Further some important topics are included which have not been treated at all in the present book. These include, as already mentioned in the Preface.

Aeroelasticity of plates and shells (panel flutter) (NASA SP-8004) and Aeroelastic effects on control systems dynamics (NASA SP-8016, NASA SP-8036 NASA SP-8079) as well as Structural response to timedependent separated fluid flows (buffeting) (NASA SP-8001) Fluid motions inside elastic containers (fuel sloshing) (NASA SP-8009, NASA SP-8031) and Coupled structural - propulsion instability (POGO) (NASA SP-8055)

It was intended to revise these volumes periodically to keep them up-to-date. Unfortunately this has not yet been done.

- 1 NASA SP-8001 1970 Buffeting During Atmospheric Ascent
- 2 NASA SP-8002 1964 Flight Loads Measurements During Launch and Exit
- 3 NASA SP-8003 1964 Flutter,Buzz and Divergence
- 4 NASA SP-8004 1972 Panel Flutter
- 5 NASA SP-8006 1965 Local Steady Aerodynamic Loads During Launch and Exit
- 6 NASA SP-8008 1965 Prelaunch Ground Wind Loads
- 7 NASA SP-8012 1968 Natural Vibration Wind Analysis
- 8 NASA SP-8016 1969 Effect of Structural Flexibility on Spacecraft Control System
- 9 NASA SP-8009 1968 Propellant Slosh Loads
- 10 NASA SP-8031 1969 Slosh Suppression

- 11 NASA SP-8035 1970 Wind Loads During Ascent
- 12 NASA SP-8036 1970 Effect of Structural Flexibility on Launch Vehicle Control System
- 13 NASA SP-8050 1970 Structural Vibration Prediction
- 14 NASA SP-8055 1970 Prevention of Coupled Structure - Propulsion Instability (POGO)
- 15 NASA SP-8079 1971 Structural Interaction with Control Systems.

## Chapter 1

## INTRODUCTION

Several years ago, Collar suggested that aeroelasticity could be usefully visualized as forming a triangle of disciplines, dynamics, solid mechanics and (unsteady) aerodynamics.

Aeroelasticity is concerned with those physical phenomena which involve significant mutual interaction among inertial, elastic and aerodynamic forces. Other important technical fields can be identified by pairing the several points of the triangle. For example,

- Stability and control (flight mechanics) = dynamics + aerodynamics
- Structural vibrations = dynamics + solid mechanics
- *Static* aeroelasticity = steady flow aerodynamics + solid mechanics

Conceptually, each of these technical fields may be thought of as a special aspect of aeroelasticity. For historical reasons only the last topic,



Figure 1.1. Collar diagram.

static aeroelasticity, is normally so considered. However, the impact of aeroelasticity on stability and control (flight mechanics) has increased substantially in recent years.

In modern aerospace vehicles, the relevant physical phenomena may be even more complicated. For example, stresses induced by high temperature environments can be important in aeroelastic problems, hence the term

#### 'aerothermoelasticity'

In other applications, the dynamics of the guidance and control system may significantly affect aeroelastic problems, or vice versa, hence the term

#### 'aeroservoelasticity'

For a historical discussion of aeroelasticity including its impact on aerospace vehicle design, consult Chapter 1 of Bisplinghoff and Ashley [2] and AGARD CP No.46, "Aeroelastic Effects from a Flight Mechanics Standpoint" [6].

We shall first concentrate on the dynamics and solid mechanics aspects of aeroelasticity with the aerodynamic forces taken as given. Subsequently, the aerodynamic aspects of aeroelasticity shall be treated from first principles. Theoretical methods will be emphasized, although these will be related to experimental methods and results where this will add to our understanding of the theory and its limitations. For simplicity, we shall begin with the special case of static aeroelasticity.

Although the technological cutting edge of the field of aeroelasticity has centered in the past on aeronautical applications, applications are found at an increasing rate in civil engineering, e.g., flows about bridges and tall buildings; mechanical engineering, e.g., flows around turbomachinery blades and fluid flows in flexible pipes; and nuclear engineering; e.g., flows about fuel elements and heat exchanger vanes. It may well be that such applications will increase in both absolute and relative number as the technology in these areas demands lighter weight structures under more severe flow conditions. Much of the fundamental theoretical and experimental developments can be applied to these areas as well and indeed it is hoped that a common language can be used in these several areas of technology. To further this hope we shall discuss subsequently in some detail several examples in these other fields, even though our principal focus shall be on aeronautical problems. Separate chapters on civil engineering, turbomachinery and helicopter (rotor systems) applications will introduce the reader to the fascinating phenomena which arise in these fields.

Since most aeroelastic phenomena are of an undesirable character, leading to loss of design effectiveness or even sometimes spectacular structural failure as in the case of aircraft wing flutter or the Tacoma Narrows Bridge disaster, the spreading importance of aeroelastic effects will not be warmly welcomed by most design engineers. However, the mastery of the material to be discussed here will permit these effects to be better understood and dealt with if not completely overcome. Moreover in recent years, the beneficial effects of aeroelasticity have received greater attention. For example, the promise of new aerospace systems such as uninhabited air vehicles (UAVs) and morphing aircraft will undoubtedly be more fully realized by exploiting the benefits of aeroelasticity while mitigating the risks.

## Chapter 2

## STATIC AEROELASTICITY

#### 2.1. Typical Section Model of An Airfoil

We shall find a simple, somewhat contrived, physical system useful for introducing several aeroelastic problems. This is the so-called 'typical section' which is a popular pedagogical device.<sup>\*</sup> This simplified aeroelastic system consists of a rigid, flat, plate airfoil mounted on a torsional spring attached to a wind tunnel wall. See Figure 2.1; the airflow over the airfoil is from left to right.



Figure 2.1. Geometry of typical section airfoil.

The principal interest in this model for the aeroelastician is the rotation of the plate (and consequent twisting of the spring),  $\alpha$ , as a function

<sup>\*</sup>See Chapter 6, BA, especially pp. 189–200.



Figure 2.2. Elastic twist vs airspeed

of airspeed. If the spring were very stiff or airspeed were very slow, the rotation would be rather small; however, for flexible springs or high flow velocities the rotation may twist the spring beyond its ultimate strength and lead to structural failure. A typical plot of elastic twist,  $\alpha_e$ , vs airspeed, U, is given in Figure 2.2. The airspeed at which the elastic twist increases rapidly to the point of failure is called the 'divergence airspeed',  $U_D$ . A major aim of any theoretical model is to accurately predict  $U_D$ . It should be emphasized that the above curve is representative not only of our typical section model but also of real aircraft wings. Indeed the primary difference is not in the basic physical phenomenon of divergence, but rather in the elaborateness of the theoretical analysis required to predict accurately  $U_D$  for an aircraft wing versus that required for our simple typical section model.

To determine  $U_D$  theoretically we proceed as follows. The equation of static equilibrium simply states that the sum of aerodynamic plus elastic moments about any point on the airfoil is zero. By convention, we take the point about which moments are summed as the point of spring attachment, the so-called 'elastic center' or 'elastic axis' of the airfoil.

The total aerodynamic angle of attack,  $\alpha$ , is taken as the sum of some initial angle of attack,  $\alpha_0$  (with the spring untwisted), plus an additional increment due to elastic twist of the spring,  $\alpha_e$ .