TURBO CODE APPLICATIONS

Turbo Code Applications A Journey from a Paper to Realization

Edited by

KEATTISAK SRIPIMANWAT

National Electronics and Computer Technology Center (NECTEC), Pathumthani, Thailand

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 10 1-4020-3686-8 (HB) ISBN 13 978-1-4020-3686-6 (HB) ISBN 10 1-4020-3685-X (e-book) ISBN 13 978-1-4020-3685-9 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springeronline.com

Printed on acid-free paper

All Rights Reserved © 2005 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

To all scientists who have dedicated their efforts to the growth of communication engineering and information theory societies

Preface

Turbo Code Applications: a journey from a paper to realization presents contemporary applications of turbo codes in thirteen technical chapters. Each chapter focuses on a particular communication technology utilizing turbo codes, and they are written by experts who have been working in related areas from around the world. This book is published to celebrate the 10^{th} year anniversary of turbo codes invention by Claude Berrou Alain Glavieux and Punya Thitimaishima (1993-2003). As known for more than a decade, turbo code is the astonishing error control coding scheme which its performance closes to the Shannon's limit. It has been honored consequently as one of the seventeen great innovations during the first fifty years of information theory foundation. With the amazing performance compared to that of other existing codes, turbo codes have been adopted into many communication systems and incorporated with various modern industrial standards. Numerous research works have been reported from universities and advance companies worldwide. Evidently, it has successfully revolutionized the digital communications.

Turbo code and its successors have been applied in most communications starting from the ground or terrestrial systems of data storage, ADSL modem, and fiber optic communications. Subsequently, it moves up to the air channel applications by employing to wireless communication systems, and then flies up to the space by using in digital video broadcasting and satellite communications. Undoubtedly, with the excellent error correction potential, it has been selected to support data transmission in space exploring system as well.

To emphasize on its applications, the effort for editing this book is not only to focus on the technical aspect of turbo code, but also to depict its impacts and up-to-date research works. This book aims to place in courses for graduate students, to involve in research for professional scientists and engineers, and to be a reference book. These interests lie in the field of digital communications, coding theory and information technology. Principle of turbo codes can be found widely in many text books and other online materials. Thus, this book intends to provide an advance coverage of turbo code applications for readers with background experience in this topic, and targets to review up-to-date applications of turbo code and its successors. With the best effort of well-known authors in related fields including the strong support

VIII Preface

of technical committee, readers are expected of having a technical book that obtains contemporary fruitful results of turbo codes.

Acknowledgments

The organization of this editorial textbook was co-sponsored by 1) the Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology Association of Thailand (ECTI) and 2) the National Electronics and Computer Technology Center (NECTEC) of the National Science and Technology Development Agency (NSTDA). That was also with technical supports from Thailand chapters of the IEEE Communications Society, IEEE CAS Society, and IEEE MTT/AP/ED. Completing this editorial book, it was with valuable contribution from many people in various ways. To express this appreciation, first special thanks are for consulting members: Sawasd Tantaratana (SIIT)-Chair, Witold Krzymien (U of Alberta), Johann Weinrichter (TU-Wien), Sirikiat Ariyavisitakul (Texas Instruments), and Thaweesak Koanantakool (NECTEC).

This book is particularly indebted to technical committee and reviewers. Their suggestions for all possible improving of the manuscript and ensuring of chapters consistency, are highly appreciated. Thus, grateful thanks are for Sorin Adrian Barbulescu, Piengpen Butkatanyoo, Ditsapon Chumchewkul, Ivan Fair, Peter Hamilton, Nguyen H. Ha, Chutima Indaraprasirt, Chaiwat Keawsai, Busaba Kramer, Pham Manh Lam, Komsak Meksamoot, Amporn Poyai, Chumnarn Punyasai, R.M.A.P. Rajatheva, Athikom Roeksabutr, Hamid Sadjadpour, Mathini Sellathurai, Christian Seyringer, Morakot Sriswasdi, Nidapan Sureeratanan, Phubate Udomsaph, Johann Weinrichter, and Yan Xin.

It is pleased to acknowledge the administrative support for preparing the final manuscript. That was provided by an assistant editor, *Theeraputh Mekathikom*, with co-supporting from *Warapong Suwanarak*. Also, thanks to *Mark de Jongh* and *Helga Melcherts* of Springer publisher for their supportive.

Since the kick off time for organizing this book, it was strongly encouraged by the general secretary team. Grateful thank is then for *Pornchai Supnithi* (KMITL), and the profound appreciation is to *Poramate Tarasak* (U of Victoria) for the support that was provided continuously throughout the entire steps of this book.

Finally, to all scientists for the dedication to develop our communication engineering society, and to their (our) families for understanding, thank you.

ECTI & NECTEC - NSTDA Pathumthani, Thailand

Keattisak Sripimanwat February 2005

Contents

1 Book Introduction

Kea	ttisak Sr	<i>ipimanwat</i>	1
1.1	A Brief	History of Turbo Codes	3
	1.1.1	Evolutions and Milestones	3
	1.1.2	Golden Patents and Awards	7
1.2	Outline	of Book: a journey from a paper to realization	10
Refe	erences .		13

Part I Data Storage Systems

2 Iterative Codes in Magnetic Storage Systems

Hon	gwei So	ng and B. V. K. Vijaya Kumar	17
2.1	Introdu	action	17
2.2	Turbo	Equalization	20
	2.2.1	Turbo Codes Concatenated with Partial Response Channels	22
	2.2.2	Single Convolutional Code Concatenated with PR Channel.	23
	2.2.3	EXIT Chart Analysis of Turbo Equalization	25
2.3	Develo	pment	26
2.4	Simula	tion Results	29
	2.4.1	Bit Error Rate (BER) Performance	29
	2.4.2	Sector Failure Rate (SFR) Performance	33
	2.4.3	Block Error Statistics	34
	2.4.4	Transfer Functions of the Channel Detector and Decoder	37
	2.4.5	FPGA Based Reconfigurable Platform for LDPC Code	
		Evaluation	41
2.5	Conclu	sions	42
Refe	erences		42

3 Turbo Product Codes for Optical Recording Systems

Porr	ichai Si	upnithi	45
3.1	Optical	Recording Systems	46
	3.1.1	Writing	46
	3.1.2	Reading	48
	3.1.3	Error Correction Codes (ECC) in Optical Recording Systems	49
3.2	The Ph	ysics of Optical Recording	50
	3.2.1	Recording on Phase-Change Media	51
	3.2.2	Magneto-Optical Media	52
	3.2.3	Multilevel Recording (ML) on Optical Media	53
3.3	Channe	el and Noise Modeling	54
	3.3.1	Optical Recording Channel Modeling	55
3.4	Turbo I	Product Codes in Optical Recording Systems	57
	3.4.1	Turbo Product Codes (TPC)	57
	3.4.2	Multilevel Coding	59
3.5	System	Performance	59
	3.5.1	Performance Parameters	59
	3.5.2	Performance Results	60
3.6	Approv	ed DVD Standards	62
Refe	rences .		62

Part II Wireline Communications

4 T	urbo and Turbo-like Code Design in ADSL Modems	
Han	nid R. Sadjadpour and Sedat Olçer	67
4.1	Turbo Encoder Design for ADSL Modems	69
4.2	Turbo Decoder Design for ADSL Modems	71
4.3	Interleaver Design for Turbo Code in ADSL Modems	74
4.4	LDPC Codes and LDPC Encoder Design for ADSL Modems	80
4.5	LDPC Decoder Design for ADSL Modems	84
4.6	Performance	87
4.7	Final Remarks	90
Refe	erences	91
5 T	Curbo Codes for Single-Mode and Multimode Fiber Optic	
	mmunications	
Cen	k Argon and Steven W. McLaughlin	95
	Forward Error Correction in Fiber Optic Links	
	Turbo Product Codes	
	5.2.1 Background	
	5.2.2 Finite Bit Precision Effects on TPC Decoding	
5.3	Single-Mode Fiber Links	100

0.0	Single-		. 100
	5.3.1	System Model	. 102
	5.3.2	FEC Performance	. 104
5.4	Multin	node Fiber Links	. 109

	5.4.1	MMF System with MSD	111
	5.4.2	MSD and TPC for MMF Links	114
5.5	Results	and Future Research	117
5.6	Acknow	vledgment	117
Refe	rences .		118

Part III Wireless Communications

6 Iterative Demodulation and Decoding

Chra	istian Se	chlegel
6.1	Informa	ation Theoretic Communications
	6.1.1	The Shannon Capacity123
	6.1.2	Spectral and Power Efficiency
	6.1.3	Discrete-Time Communications
	6.1.4	Low-Density Parity-Check and Turbo Codes
6.2	Large-0	Constellation Channels127
	6.2.1	The Demodulation Problem $\dots\dots\dots 127$
	6.2.2	The Code-Division Multiple Access (CDMA) Channel 129
	6.2.3	The Multiple Antenna Channel
6.3	Layerin	g of Large-Constellation Channels
	6.3.1	Back to Single-Stream Channels132
	6.3.2	The Zero-Forcing Filter (Decorrelation)
	6.3.3	Minimum-Mean Square Error (MMSE) Layering134
	6.3.4	Iterative Filter Implementations
6.4	Iterativ	re Decoding
	6.4.1	Signal Cancellation
	6.4.2	Convergence – Variance Transfer Analysis
	6.4.3	Filters in the Loop144
	6.4.4	Low-Complexity Loop Filters
6.5	Asymm	netric Operating Conditions149
6.6	Conclu	sions
Refe	rences	

7 Turbo Receiver Techniques for Coded MIMO OFDM Systems

Ben	Lu and	l Xiaodong Wang18	57
7.1	LDPC	-Coded MIMO OFDM Systems10	30
	7.1.1	MIMO OFDM Modulation10	30
	7.1.2	Channel Capacity	33
	7.1.3	Transmitter Structure10	33
7.2	Turbo	Receivers for LDPC-Coded MIMO OFDM10	34
	7.2.1	Turbo Receiver with Ideal CSI10	35
	7.2.2	Turbo Receiver without Ideal CSI 10	37
	7.2.3	Simulation Results	72
7.3	Design	of LDPC for MIMO OFDM1'	75

XII Contents

	7.3.1	Low Density Parity Check (LDPC) Codes	177
	7.3.2	Density Evolution Design of LDPC Coded MIMO OFDM	177
	7.3.3	Numerical Results	178
7.4	Conclu	sion	187
Refe	erences		188

8 Space-Time Turbo Coded Modulation for Future Wireless Communication Systems

Djor	rdje Tuj	<i>kovic</i>
8.1	System	Model
	8.1.1	Encoder
	8.1.2	Information Interleaver
	8.1.3	Decoder
8.2	Perform	nance Analysis
	8.2.1	Upper Bounds over AWGN and Fading Channels197
	8.2.2	Distance Spectrum Interpretation
	8.2.3	Truncated Union Bound for $N = 1$
	8.2.4	Truncated Union Bound for $N = 2 \dots 200$
	8.2.5	Iterative Decoding Convergence
8.3	Constit	cuent Code Optimization
	8.3.1	Distance Spectrum Optimization for $N = 1 \dots 206$
	8.3.2	Design Criteria $N>1$
	8.3.3	Subset of Candidate Constituent Codes for $N \ge 1 \dots 208$
	8.3.4	Distance Spectrum Optimization for $N = 2 \dots 210$
8.4	Perform	nance Evaluation
	8.4.1	New versus Old Constituent Codes in TTCM and ST-TTCM212 $$
	8.4.2	Bit versus Symbol Information Interleaving216
	8.4.3	TTCM versus ST-TTCM in $N = M = 2$ Systems
8.5	Summa	ary
Refe	erences	
о т	1 7	
		IIMO for High-Speed Wireless Communications
9.1		lathurai and Yvo L.C. de Jong 223 MIMO 223
9.1 9.2		225
9.2	9.2.1	ST-BICM
	9.2.1 9.2.2	
9.3	0.111	Iterative Detection and Decoding
9.3	9.3.1	
		List Sphere Detection
	9.3.2	Iterative Tree Search Detection
	9.3.3	Multilevel Mapping ITS Detection
9.4	9.3.4	Soft Interference Cancellation MMSE Detection
•·-		
9.5		ations
9.6	Summa	ary and Discussion

XIII

References
10 Turbo Codes in Broadband Wireless Access Based on the
IEEE 802.16 Standard
Poramate Tarasak and Theeraputh Mekathikom
10.1 Brief Overview of BWA based on the IEEE802.16 Standard243
10.1.1 Frequency Range 10-66 GHz
10.1.2 Frequency Range 2-11 GHz
10.2 Turbo Codes in the IEEE802.16 Standard
10.2.1 Block Turbo Code
10.2.2 Convolutional Turbo Code
10.3 Performance Analysis of BTC
10.4 Implementation
10.5 Conclusions
References

Part IV Satellite and Space Communications

11 Turbo Codes on Satellite Communications

Sorin Adr	ian Barbulescu
11.1 A Ne	w Turbo World
11.2 Turb	p-like Coding Technology Used in Satellite Services
11.2.	Convolutional Turbo Codes
11.2.2	
11.2.3	B LDPC Codes
11.3 Turb	o Satellite Modem Manufacturers
11.3.	
11.3.2	2 Radyne
11.3.3	
11.3.4	4 Advantech
11.3.	5 iDirect
11.3.	5 ViaSat
11.3.	
11.3.3	
11.3.9	9 STM Networks
11.4 Satel	lite Systems Using Turbo-like Codes
11.4.	I Inmarsat Broadband Global Area Network
11.4.2	2 SKYPLEX
11.4.3	3 iPSTAR
11.4.4	4 Satellite IP: Boeing (Connexion)
11.4.	5 Anik F2
11.4.0	5 Satellite TV
11.4.	7 Telemetry Channel Coding
11.4.8	B Australian Federation Satellite

11.5 New A	pplications and Technologies
11.5.1	Improved Security in Satellite Communications
11.5.2	Joint Source-channel Coding
11.5.3	Higher Order Modulations for Satellite Systems
11.5.4	Decoder-assisted Synchronization
11.5.5	Turbo Codes for Frequency-Hopped Spread Spectrum $\ldots .287$
11.5.6	Turbo Codes for Jammed Channels
11.5.7	Chaotic Turbo Codes
11.5.8	Analog Decoders
11.5.9	De-mapping and Decoding
11.5.10	Performance in Nonlinear Channels
11.6 A New	Turbo Hat?
References	

12 Turbo	and LDPC Codes for Digital Video Broadcasting
$Matthew \ C.$	Valenti, Shi Cheng and Rohit Iyer Seshadri
12.1 DVB-F	CS
12.1.1	Encoding
12.1.2	Decoding
12.1.3	Simulation Results
12.2 DVB-S	2
12.2.1	Encoding
12.2.2	Decoding
12.2.3	Simulation Results
12.3 Putting	g It All Together
$12.4~\mathrm{About}$	the Simulations
References	

13 Turbo Code Applications on Telemetry and Deep Space Communications

Gian Paolo Calzolari, Franco Chiaraluce, Roberto Garello and Enrico
Vassallo
13.1 Theory
13.2 CCSDS Turbo Codes Performance
13.2.1 Error Rates Curves and Comparisons
13.2.2 Minimum Distances and Error Floors
13.3 Symbol Synchronization Properties
13.4 Applications: CCSDS Turbo Codes and Space Missions
13.5 Future Developments
13.6 Conclusive Remarks
13.7 Acknowledgment
References

Part V Implementations

14 VLSI for Turbo Codes

Guido Masera
14.1 General Architecture of a Turbo Decoder
14.2 Digital Architectures for SISO Processing
14.2.1 Reduced Complexity Implementation
14.2.2 Fixed-point Representation
14.3 SISO Architecture
14.4 Parallel Architectures
14.4.1 Design of Collision-Free Turbo Codes
14.4.2 Design of Collision-Free Architectures
14.5 Energy Aware Techniques
14.6 Standards & Products
14.7 Concluding Remarks
References
Index

List of Contributors

C. Argon Seagate Technology Bloomington

MN 55435, USA

S. A. Barbulescu

Institute for Telecommunications Research, University of South Australia, Mawson Lakes SA 5095, Australia

G. P. Calzolari

European Space Agency D/OPS, ESOC Robert-Bosch-Straße 5 64293 Darmstadt, Germany

S. Cheng

Lane Dept. of Computer Science and Electrical Engineering West Virginia University Morgantown, WV 26506-6109, USA

F. Chiaraluce

Dipartimento di Elettronica Intelligenza Artificiale e Telecomunicazion, Università Politecnica delle Marche Via Brecce Bianche 60131 Ancona, Italy

R. Garello

Dipartimento di Elettronica Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Y. L. C. de Jong

Communications Research Centre 3701 Capling Ave.,Ottawa Ontario K2H 8S2, Canada

B. V. K. Vijaya Kumar

Dept. of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh PA 15213, USA

B. Lu

Silicon Laboratories Broomfield CO 80021, USA

G. Masera

Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24-10129, Torino, Italy

S. W. McLaughlin School of Electrical and Computer Engineering Geogia Institute of Technology Atlanta GA 30332, USA

XVIII List of Contributors

T. Mekathikom

National Electronics and Computer Technology Center -NSTDA Thailand Science Park Pathumthani 12120, Thailand

S. Ölçer

IBM Research Division Zurich Research Laboratory Saeumerstrasse 4 8803 Rueschlikon, Switzerland

H. Sadjadpour

School of Engineering University of California 1556 High Street Santa Cruz, CA 95064, USA

C. Schlegel

Dept. of Electrical and Computer Engineering University of Alberta Edmenton, AB T6G 2V4, Canada

M. Sellathurai

Communications Research Centre 3701 Capling Ave.,Ottawa Ontario K2H 8S2, Canada

R. I. Seshadri

Lane Dept. of Computer Science and Electrical Engineering West Virginia University Morgantown WV 26506-6109, USA

H. Song

Agere Systems 1921 Corporate Center Circle Suite 3-A Longmont CO 80504, USA

K. Sripimanwat

National Electronics and Computer Technology Center -NSTDA Thailand Science Park Pathumthani 12120, Thailand

P. Supnithi

Dept. of Telecommunications Engineering, Faculty of Engineering King Mongkut's Institute of Technology Ladkrabang Bangkok 10520, Thailand

P. Tarasak

Dept. of Electrical and Computer Engineering University of Victoria Victoria, BC V8W3P6, Canada

D. Tujkovic

Centre for Wireless Communications (CWC) University of Oulu P.O. Box 4500, FIN-90014 Oulu, Finland

M. C. Valenti

Lane Dept. of Computer Science and Electrical Engineering West Virginia University Morgantown WV 26506-6109, USA

E. Vassallo

European Space Agency D/OPS, ESOC Robert-Bosch-Straße 5 64293 Darmstadt, Germany

X. Wang

Department of Electrical Engineering, Columbia University New York, NY 10027, USA

List of Acronyms

3GPP 4-PSK 8PSK	3rd Generation Partnership Project Quaternary Phase Shift Keying 8-ary Phase Shift Keying		
ADSL	Asymemtric Digital Subscriber Line		
AGC	Automatic Gain Control		
APP	a posteriori probability		
APSK	Amplitude Phase Shift Keying		
ARQ	Automatic Repeat Request		
ASIC	Application Specific Integrated Circuit		
ASIP	Application Specific Instruction set Processor		
ASK	Amplitude Shift Keying		
ASM	Attached Sync Marker		
ATM	Asynchronous Transfer Mode		
AWGN	Additive White Gaussian Noise		
BCC	Binary Convolutional Codes		
BCCC	Binary Concatenated Convolutional Codes		
BCH	Bose-Chaudhuri-Hocquenghem code		
BCJR	Bahl, Cocke, Jelinek, and Raviv Algorithm		
BER	Bit Error Rate		
BICM	Bit-Interleaved Coded Modulation		
bps	bit per second		
BPSK	Binary Phase Shift Keying		
BSC	Binary Symmetric Channel		
BTC	Block Turbo Code		
BWA	Broadband Wireless Access		
CCSDS	Consultative Committee for Space Data Systems		
CD	Compact Disc		
CDMA	Code Division Multiple Access		
CD-R	Read-only CD		
CD-ROM	Read-only Memory CD		

XX List of Acronyms

CD-RW	Powmitable CD				
CD-RW CGA	Rewritable CD Change CMD, Algorithm				
CIRS	Chase-GMD Algorithm Cross-Interleaved Reed-Solomon codes				
CMOS					
CNES	Complementary Metal Oxide Semiconductor				
CPM	Centre National d'Etudes Spatiales				
CRC	Continuous-Phase Modulation				
CRSC	Cyclic Redundancy Check				
CSI	Circular Recursive Systematic Convolutional				
CTC	Channel State Information Convolutional Turbo Code				
DFE					
	Decision Feedback Equalizer				
DFG	Data Flow Graph				
DLR	Deutschen Zentrum für Luft- und Raumfahrt				
DMC	Discrete Memoryless Channel				
DMS	Discrete Markov Source				
DMT	Discrete Multi-Tone				
DOW	Direct Overwrite				
DSB-SC	Double Side-Band Suppressed Carrier				
DSL	Digital Subscriber Line				
DSP	Digital Signal Processing				
DVB	Digital Video Broadcasting				
DVB-RCS	Digital Video Broadcasting-Return Channel via Satellite				
DVB-S	Digital Video Broadcasting-Satellite				
DVB-S2	Digital Video Broadcasting-Satellite (second generation)				
DVD	Digital Video Disc				
DVD-R	Read-only DVD				
DVD-RW	Rewritable DVD				
\mathbf{EFM}	Eight-to-Fourteen Modulation				
eIRA	extended Irregular Repeat Accumulate (code)				
\mathbf{EM}	Expectation-Maximization algorithm				
\mathbf{ESA}	European Space Agency				
ETSI	European Telecommunications Standards Institute				
EXIT	Extrinsic Information Transfer				
FER	Frame Error Rate				
FIR	Finite Impulse Response				
FPGA	Field Programmable Gate-Array				
FSE	Fractionally-Spaced Equalizer				
FSM	Finite State Machine				
FWHM	Full Width at Half Maximum density				
GF	Galois Field				
GMD	Generalized Minimum Distance				
GMSK	Gaussian Minimum Shift Keying				
GPR	Generalized Partial Response				
HCCC	Hybrid Concatenated Convolutional Code				
HD-DVD	High-Density DVD				

HDL	Hardware Description Language				
i.i.d.	Independent and Identically Distributed				
IIR	Infinite Impulse Response				
ISI	Inter Symbol Interference				
JAXA	Japan Aerospace Exploration Agency				
LAN	Local Area Network				
LBC	Linear Block Code				
LDPC	Low Density Parity Check code				
LLR	Log-Likelihood Ratio				
LMMSE	Linear Minimum Mean-Square-Error				
MAC	Medium Access Control				
MAN	Metropolitan Area Network				
MAP	Maximum a posteriori Probability				
MIMO	Multiple-Input Multiple-Output				
MLC	Multilevel Coded modulation				
MLSD	Maximum Likelihood Sequence Detector				
MMF	Multimode Fiber				
MMSE	Minimum-Mean Square Error				
MO	Magneto-Optical				
MPEG	Moving Picture Experts Group				
M-PSK	M-ary Phase Shift Keying				
MTF	Modulation Transfer Function				
NASA	National Aeronautics and Space Administration				
NPML	Noise-Predictive Maximum-Likelihood				
NRC	Non Recursive Convolutional				
NRZ	Nonreturn-to-Zero				
NRZI	Non-Return-to-Zero-Inverted				
OFDM	Orthogonal Frequency Division Multiplexing				
PAM	Pulse Amplitude Modulation				
\mathbf{PC}	Phase Change				
PCC	Parallel Concatenated Code				
PCCC	Parallel Concatenated Convolutional Code				
PCE	Parallel Concatenated Encoder				
\mathbf{PR}	Partial Response				
PRML	Partial Response Maximum Likelihood				
PWM	Pulse-Width Modulation				
\mathbf{QAM}	Quadrature Amplitude Modulation				
QPSK	Quadrature Phase Shift Keying				
RAM	Random Access Memory				
RCPCC	Rate-Compatible Punctured Convolutional Code				
RCST	Return Channel Satellite Terminal				
RIBB	Ring Interleaver Bottleneck Breaker				
RLL	Runlength-Limited				
RM	Reed-Muller Code				
RS	Reed-Solomon Code				

XXII List of Acronyms

RSC	Recursive Systematic Convolutional			
RSPC	Reed-Solomon Product Codes			
SCC	Serial Concatenated Code			
SCCC	Serial Concatenation Convolutional Code			
SCE	Serial Concatenated Encoder			
SCTC	Serially-Concatenated Turbo Codes			
SCTCM	Serial Concatenated Trellis Coded Modulation			
SDR	Sigma-to-Dynamic Ratio			
SER	Symbol Error Rate			
SIC	Soft Interference Cancellation			
SIHO	Soft-Input / Hard-Output			
SIMO	Single-Input Multiple-Output			
SISO	Soft-Input / Soft-Output			
SMF	Single-Mode Fiber			
SNR	Signal to Noise Ratio			
SOVA	Soft Output Viterbi Algorithm			
SPB	Sphere Packing Bound			
SSPA	Solid State Power Amplifier			
ST	Space-Time			
ST-BICM	Space-Time Bit-Interleaved Coded Modulation			
STTrCs	Space-Time Trellis Codes			
$\operatorname{ST-TTCM}$	Space-Time Turbo Trellis Coded Modulation			
TCC	Turbo Convolutional Code			
TCM	Trellis Coded Modulation			
TPC	Turbo Product Code			
TTCM	Turbo Trellis Coded Modulation			
UEP	Unequal Error Protection			
UMTS	Universal Mobile Telecommunication Service			
VA	Viterbi Algorithm			
VLSI	Very Large Scale Integrated circuits			
VSAT	Very Small Aperture Terminal			
WEF	Weight Enumerating Function			
WER	Word Error Rate			
WGN	White Gaussian Noise			
WSSUS	Wide Sense Stationary random processes with Uncorrelated Scattering			
ZF-LE	Zero-Forcing Linear Equalizer			

ZF-LE Zero-Forcing Linear Equalizer

Book Introduction

Keattisak Sripimanwat

National Electronics and Computer Technology Center-NSTDA, Thailand

"The invention of turbo codes did not result from a linear limit mathematical demonstration. It was the outcome of an empirical construction of a global coding/decoding scheme, using existing bricks that had never been put together in this way before." [1]

Claude Berrou (2001)

Getting a method to control or to mitigate error for data transmission or storage in digital communication systems, error control coding is one of the main communication techniques for this purpose. Obviously for more than fifty years, in advanced communication systems error control coding has played a very important role. It has been developing and adopted successfully into many application platforms.

Briefly regarding the historical timeline of error correcting codes, it was officially started in the year 1948 with the introduction of an information theory by *Claude E. Shannon*. A prediction of *Shannon* is that arbitrarily reliable communications are achievable by redundant channel coding. Subsequently, there were many pioneer works or milestones after Shannon's discovery. Starting in early 1950s, most researches emphasized on theoretical side or on the foundation of concerned mathematics [2]. Next, greater effort on searching for good codes structure was done during 1960s. Through the 1970s, the design of families of codes with larger code lengths and better performance was focused as the main target. Then, the transformation from theoretical era to the practice was concentrated in 1980s. It is noted that new design of encoders and decoders were presented frequently to digital communication engineering community during this period of time.

In that past fifty years, intensive research efforts have been done worldwide in order to achieve coding solution for solving related communication problems. Those are, among other things, 1) to have the better coding gain, 2) to reduce decoding complexity, and 3) to support or to associate working

© 2005 Springer. Printed in the Netherlands.

K. Sripmanwat (ed.), Turbo Code Applications: a journey from a paper to realization, 1–14.

2 Keattisak Sripimanwat

with other communication techniques. As the coding target, performance of the systems has been sailing closing to that *Shannon's* limit gradually. Resulting to recognized milestones along the past five decades, development of that error control coding came up many successful results. For examples, they are block codes, Hamming codes, Convolutional codes and Viterbi algorithm, Bose and Chaudhuri and Hocquenghem codes (BCH), Reed-Solomon codes (RS), and Trellis Coded Modulation (TCM). The historical breakthrough of turbo codes then arrived at early of 1990s.

In the year 1993, an annual international conference on communications or ICC was organized in Geneva, Switzerland. In that technical event, it was recognized that a paper of *Claude Berrou Alain Glavieux* and *Punya Thitimajshima* introduced an invention of new error control coding scheme. This novel method provides virtually error-free communications or obtains much better coding gain beyond that of any other existing codes. Gradually, it became a forefront of communication research and also inspires to generate other new numerous ideas until date. Turbo codes, on the same hand, plays an important role in most modern communication systems. It stepped out from that paper and successfully entered for the commercialization in the present telecommunication market. Undoubtedly from those accomplishments, a number of awards were then honored to its inventors [3]. As known for more than ten years, the first appearance of turbo codes to the public was on a paper entitled "Near Shannon limit error-correcting coding and decoding: turbo-codes" [4].

In this first chapter, it is an introduction of this great coding invention with related stories to the motivation and the organization of this book. That would give readers with more basic point of view before going on to its application in the following chapters. This book emphasizes mainly on advanced turbo codes applications. For more information, readers can find more details for the concept of error control coding and the principle of turbo codes from a number of other good sources. The helpful materials are available both online and in hardcopy styles. Some suggested books are as in [2, 5–7].

To follow by Sec. 1.1, it engulfs a brief turbo codes history. That provides the explanation to its evolutions and milestones, main related publications, patents, and awards. Sec. 1.2 guides readers to the organization of the book which emphasizes on the utilization. It summarizes all further thirteen chapters which present the grasp of turbo codes applications, and were written by leading scientists in the related communication areas.

1.1 A Brief History of Turbo Codes

"At first, it was a great surprise to observe that the bit error rate (BER) of these reconstructed symbols after decoding was lower than that of decoded information d. We were unable to find any explanation for this strange behavior in the literature." [8]

Claude Berrou and Alain Glavieux (1998)

This section is giving readers with a collection of important materials along the turbo codes discovery. That begins with a group of scientists which their work based on the contemporary scheme of convolutional encoding and Viterbi algorithm decoding. The main events are also depicted in the timeline of Fig. 1.1. Its details are presented as follows.

1.1.1 Evolutions and Milestones

Refer in the "Reflections on the Prize Paper: Near optimum error-correcting coding and decoding: turbo codes" published on June 1998 in IEEE information theory society newsletter [8], *Claude Berrou, Alain Glavieux*, and *Patrick Adde* were mentioned as key persons prior to the time of turbo codes invention. At the Ecole Nationale Supérieure des Télécommunications de Bretagne of France, these scientists started their work focusing on the *Soft-Output Viterbi Algorithm (SOVA)*. It was based on the literature of *G. Battail* in 1987 [9] and of *J. Hagenauer* and *P. Hoeher* in 1989 [10]. Those were certainly referred to famous papers of *A.J. Viterbi*, "Convolutional codes and their performance in communication systems" [11], and of *G.D. Forney*, "The Viterbi algorithm" [12]. Initially, their research was to transfer the SOVA algorithm into hardware platform on MOS transistors in the simplest possible way as the target.

Consequently, they observed that SOVA can be considered as a signal-tonoise (SNR) amplifier. This could be mentioned as the beginning of "turbo"codes concept because it stimulated them to consider "feed back" techniques that commonly used with electronic amplifier circuits. To explore that concept, they cascaded that signal-to-noise (SNR) amplifier or their SOVA version in order to obtain large asymptotic gains. This connection bases on "concatenation" coding technique of the well known concept in the literature. Their experiments were done on a serial concatenation of two ordinary convolutional codes at the early step. It was later concentrated on parallel concatenation. Because the idea of two component decoders working with the same clock signal matches with that the reason of hardware implementation (in parallel) for clock signal distribution. This parallel concatenation with amplifiers was considered to be meaningful only if the code is systematic, and it was a straightforward to use recursive systematic convolutional (RSC) codes at the final.

3

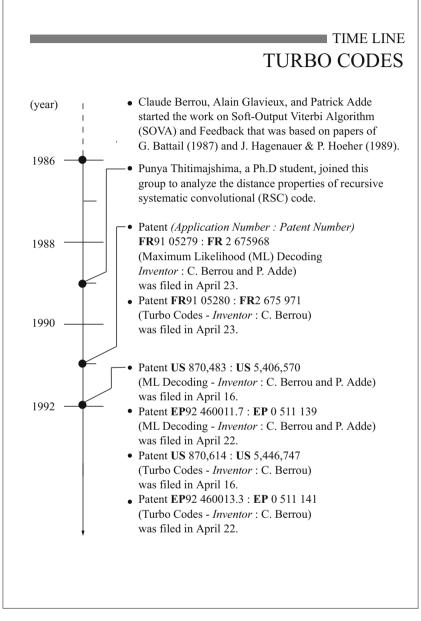


Fig. 1.1. Milestones of Turbo Codes.

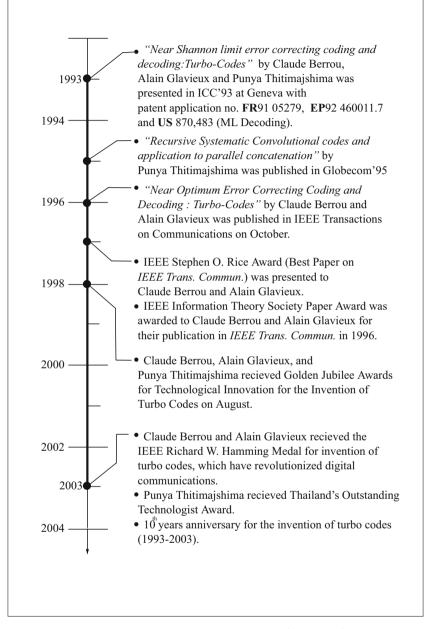


Fig. 1.1. Milestones of Turbo Codes (continued).

6 Keattisak Sripimanwat

During this time of turbo codes foundation, a Ph.D student, *Punya Thiti-majshima*, started joining this group to work on the distance properties analysis in the year 1989. His dissertation devotes to studying distance properties and of error probability of the recursive punctured systematic convolutional (RPSC) codes and their concatenation in serial and parallel styles. Certainly, it is combined with iterative decoding [13]. This work entitled "Les codes Co-volutifs Rcursifs Systmatiques et leur application la concatenation parallel", as a dissertation at l'Universit de Bretagne Occidentale (UBO).

Gradually, the construction of original turbo codes was formed with related technical bricks. In order to solve obstruction in those initial works which reported on weighting problems, the beginning of SOVA was then replaced by Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [14] at the end of the discovery. It was mentioned that the first experiment with this novel coding construction was run in 1991 [15]. With the founding of following well known technical terms of extrinsic information, iterative decoding, recursive systematic convolutional codes, parallel concatenation, and non-regular interleaving, turbo codes was born finally.

There are two other main publications regarding turbo codes which appeared to the public after its introduction. First, a part of above dissertation was published in "Recursive Systematic Convolutional codes and application to parallel concatenation", which was presented at IEEE Globecom 1995 conference by *Thitimajshima* [16]. Moreover, at a year later another well known article was published as "Near optimum error correcting coding and decoding: turbo-codes" on the IEEE transactions on communications. That was issued on October 1996 and written by *Claude Berrou* and *Alain Glavieux* [17].

Since 1993, the legacy of turbo codes has opened new technical research areas continuously. It sparks new numerous ideas to improve its own performance. Moreover, its concept is combined with other communication techniques in order to improve overall system performance. Those examples of "turbo codes effect" are;

- *Turbo product codes / Turbo block codes* a new iterative decoding algorithm for product (block) codes based on soft decoding and soft decision output of the component codes. It was invented as a new generation coding scheme with a high code rate.
- *Turbo equalization* an iterative equalization technique that achieves highly impressive performance for communication through intersymbol interference (ISI) channels. That is for the multi-path propagation environment of wireless communications, or for other bandlimited-channel systems.
- Turbo codes for multilevel or turbo trellis coded modulation (TTCM) the combined technique of turbo coding with high spectral efficiency modulation or non-binary (high) order signaling.

- *Space-time turbo codes* the application of turbo codes with multiple transmit antennas for improving the data rate and/or the reliability of communications over fading channels for wireless communications.
- Low-density parity-check codes (LDPC) a long time forgotten code that was invented much earlier in 1962. Turbo codes recall researchers to this date-back invention of LDPC codes. Then, to develop this complex coding scheme of the past to be a today competitive method for obtaining the better coding gain. This LDPC has returned to the society of communication engineering and has obtained the closer performance to that Shannon's limit. Obviously, LDPC was re-stimulated from the invention of turbo codes.

Moreover, turbo codes / turbo principle and their successors of above mentioned, have been applied successfully with other popular communication techniques. For examples, those are *multiuser detection, multiple-input multipleoutput (MIMO)* - a technique that results to high spectral efficiency and capacity-approaching performance, and *orthogonal-frequency division multiplexing (OFDM)* - an efficient method capable of establishing high speed digital transmission through frequency selective fading channels. Details are presented in the upcoming chapters.

Finally, an obvious milestone of a young turbo code, has settled permanently along the road of digital communication development. Its successors, then, have been continuously following on the next miles and ahead.

1.1.2 Golden Patents and Awards

After the successful revolution in the year 1993, turbo code has been praised and crowned widely. Its impacts are not only in its technical communities but also found on economic, educational, and academic aspects. It affects to sparking of other technical ideas as mentioned before. Following its emergence, enhanced researchers worldwide generate a number of new related works. More than 400 patents involving its theory and applications have been filed afterward [18]. Successfully, it became one of the core technology for today's cutting edge communication products.

Prior to mentioning to the high valued patent of turbo codes, principle of the invention should be redefined with the construction concept comprising of a). Recursive Systematic Convolutional (RSC) coding and its parallel concatenation, b). iterative decoding, and c). extrinsic information.

Initially, it recalled us to the first glance of turbo code appearance in ICC'93, that was on the context with patent filing numbers of 91 05279 (France), 92 460011.7 (Europe), and 07/870,483 (USA) [4]. In fact, these numbers are entitled in French of "Procédé de décodage d'un code convolutif à maximum de vraisemblance et pondération des décision, et décodeur correspondants" for filing in France and Europe. "Method for a maximum likelihood decoding of a convolutional code with decision weighting, and corresponding

decoder" is the coincided title that was filed in USA. They are all invented by *Claude Berrou* and *Patrick Adde* [19–21].

However, to follow above mentioned turbo coding concept, there are other numbers of concerned patents. The main or the golden patent should most match with that in the title of "Procédé de codage correcteur d'erreurs à au moins deux codages convolutifs systématiques en parallèle, procédé de décodage itératif, module de décodage et décodeur correspondants" or "Error-correction coding method with at least two systematic convolutional coding in parallel, corresponding iterative decoding method, decoding module and decoder". The first one was first filed in France (number 91 05280) on April 23, 1991. Later, this number was used as a priority data for filing other two main patents for expanding the right on turbo codes covering over Europe and USA. Claude Berrou is solely the inventor of them. Details are collected in Table 1.1.

Legally, the exclusive right on a patent exists for twenty years from the filing date. The patent owner may give permission to, or license, other parties to use the invention on mutually agreed terms. However, the patented invention may be available for commercial exploration by others in the countries which the patent is not filed. Thus, above mentioned turbo code patents which filed over three places (France, Europe, and USA), are then free to use at other places as in Asian countries.

The exclusive right on turbo codes and other turbo code related patents have been licensed and used for various application platforms. Many industrial standards have been incorporated. Consequently, a lot of product models from a number of chip making manufacturers have been placed in the market. In early of 2000s, the commercialization of this innovation focuses mainly for the new generation mobile and satellite communication systems. Licensing of those patents has been reported with impressive stories on its values [15, 22, 23].

Apparently, turbo code has revolutionized the communication engineering. Its successful stories and impacts have been highlighted. To guarantee those accomplishments, below awards and honors to its invention are the witness.

- In 1997, information theory society paper award was announced for *Claude Berrou* and *Alain Glavieux*. That was based on their work of "*Near optimum error-correcting coding and decoding: Turbo codes*," published in IEEE transaction on communications–October 1996 [24]. In the same event, an honorable mention was given to *Punya Thitimajshima* for his contribution to the first turbo code paper in ICC'93.
- Based on the same work, *Claude Berrou* and *Alain Glavieux* were recipients of 1997 Stephen O. Rice award for the best paper in IEEE transactions on communications.
- Again, turbo code was honored in the year 1998 as one of the seventeen of great innovations. It was presented in the fifty year anniversary of information theory that *Claude Berrou*, *Alain Glavieux* and *Punya Thitimajshima* captured the IEEE information theory society's golden jubilee award for

Table 1.	1. Dasic Into	rmation of Golden Turbo Code Patent
Institut	National de	e la Propriété Industrielle (INPI),
		France
		tle of invention :
	-	cteur d'erreurs à au moins deux codages
		les en parallèle, procédé de décodage
itératif, module de décodage et décodeur correspondants		
Inventor	Claude Berrou	
Assignee	France Telecom and Telediffusion de France S.A.	
Application number		91 05280
Patent number		2675971
Filin	ig date	April 23, 1991
E	European Pa	atent Office(EPO), Europe
	Ti	tle of invention :
Proédé de	codage corre	cteur d'erreurs à au moins deux codages
		les en parallèle, procédé de décodage
itératif, m	odule de déco	odage et décodeur correspondants
Inventor	Claude Berrou	
Assignee	France Telecom and Telediffusion de France S.A.	
Application number		92 460013.3
Patent number		0 511141
Filin	ig date	April 22, 1992
United States Patent Office (USPTO), USA		
Title of invention :		
Error-Correction coding method with at least two systematic		
convolutional coding in parallel, corresponding iterative decod-		
ing method, decoding module and decoder		
Inventor	Claude Berrou	
Assignee	ee France Telecom and Telediffusion de France S.A.	
	ion number	870614
Patent number		5446747
Filing date		April 16, 1992
~		

 Table 1.1. Basic Information of Golden Turbo Code Patent

technological innovation. This award was among other great inventions which were invented earlier during the past fifty years. For examples, those are algebraic decoding algorithm, convolutional codes, concatenated codes, Reed-Solomon (RS) codes, trellis coded modulation (TCM), and the Viterbi algorithm [3].

• In 2003, *Clude Berrou* and *Alain Glavieux* received IEEE Richard W. Hamming medal, for the invention of turbo codes, which have revolutionized digital communications. *Punya Thitimajshima* was honored with the 2003 Thailand's outstanding technologist award for turbo code invention.

All above impressive turbo code stories, from its invention through the related technological development as well as the achievements, motivates us to organize for this editorial book. Also, it is in order to celebrate another successful milestone for the first fifty years of the information theory that was founded by *Claude E. Shannon*.

1.2 Outline of Book: a journey from a paper to realization

"It's not often in the rarefied world of technological research that an esoteric paper is greeted with scoffing. Its even rarer that paper proves in the end to be truly revolutionary." [15]

Erico Guizzo (2004)

Starting with the application in data storage systems, first two chapters present with the application of turbo and turbo-like codes in the magnetic and optical storage media respectively. Typically, the demand for higher capacity, transfer rate, and storage density, is the main target of research in the field. In the hard-drive system, although the increasing of storage capacity is leading by the advances in head and media technologies, however coding and signal processing are those the cost-efficient methods to improve this storage capacity as well. In Chapter 2, the traditional media of magnetic recording channels where the application of recent developed error-control codes including turbo codes and low density parity check (LDPC) codes, is reviewed under the turbo equalization structure. It is remarked in this chapter that the iterative detection and decoding technique is the most potential candidate for the next generation read channels.

Another storage media follows in the Chapter 3. It presents the environment of read/write system of binary and multilevel (ML) for optical recording systems. In this chapter, it provides interesting principle of optical recording system through the mechanism of multilevel. Turbo product codes are applied potentially in this high-density storage system comparing with other conventional schemes. In addition, the concatenated coding for future optical recording systems is also discussed. It is noted with the necessity of using Reed-Solomon (RS) code as the outer part, and with iterative decoding nature codes as the inner one.

For wire or land line communication systems, applications of turbo codes are provided in two chapters. Those are for classical metal line and in fiber optic systems respectively. Chapter 4 presents turbo and turbo-like codes that is designed for Asymmetric Digital Subscriber Line (ADSL) which allows household consumers to access high speed broadband internet. In ADSL channel, by employing turbo and turbo-like coding it is possible to operate DSL links with greater robustness and reliability under the imperfect channel conditions. This chapter illustrates the approach to improve transmission performance by incorporating turbo and LDPC coding into ADSL technologies. The results of those applications are provided and compared with that of the concatenated coding scheme in ANSI standard (T1.413 or Wei code).

To reduce the negative effect from various types of noise and dispersion in fiber optic communications, error control coding by using turbo codes is one of the solutions. Chapter 5 reviews the application of turbo product codes (TPC) in optical fiber networks for both long-haul applications using singlemode fibers, and for short-haul multimode fiber links. Well organized sections and a thorough review would give readers with a complete guide to understand the basic of using contemporary error control codes in this type of channel.

For the present popular wireless communication systems, the application of turbo code principle is reviewed in five chapters. In order to improve overall performance in the wireless environment, they combine the turbo or iterative principle with other techniques. Those are, for examples, the multiple-input multiple-output (MIMO), space time coding, and orthogonal-frequency division multiplexing (OFDM).

In Chapter 6, the fascination of iterative demodulation and decoding for large constellation channel is presented. Code-Division Multiple Access (CDMA) and the multiple antenna technique are illustrated as that type of channel. Incorporating with turbo decoding principle, it is shown as the extremely useful scheme. Moreover, iterative demodulation and decoding is considered as a very powerful methodology to work with large numbers of interfering signals, and as the undergoing significant research.

Chapter 7 discusses importance of the application of the iterative decoding principle to the demodulation and error control decoding operations within a coded MIMO OFDM system. The principle of turbo decoding, that of iterative exchange of extrinsic information, is extended to this system and its receiver architecture. These techniques result high spectral efficiency and capacityapproaching performance in wireless channels.

Chapter 8 introduces a new paradigm for MIMO signal transmission by summarizing single and multiple antenna turbo coded modulation for using in the future wireless communication systems. This chapter presents the combining application techniques of space-time coding, turbo coding, and high order modulation scheme as the space-time turbo coded modulation (ST-TTCM). In the same hand, it is an application of turbo codes to design space-time trellis codes.

Currently, wireless communication industries have shown considerable interest in the progress of development of MIMO products which is used to support for high speed wireless communication systems. MIMO is advocated to be used in the future wireless data networks such as wireless local area network of IEEE 802.11 standards. It also will likely to be included in the next phase of the third generation (3G) mobile communication standardization. Chapter 9 reviews the turbo or iterative techniques with the above mentioned MIMO (turbo-MIMO systems). Its concentration is on the trade-off between performance and complexity for different detection schemes. Specifically, it in-