PHOTOMORPHOGENESIS IN PLANTS
AND BACTERIA
3RD EDITION
This book is dedicated to

Hans Mohr,

a founding member of the AESOP
(Annual European Symposium of Photomorphogenesis),

on the occasion of his 75th anniversary (May 11th 2005).
Plants as sessile organisms have evolved fascinating capacities to adapt to changes in their natural environment. Arguably, light is by far the most important and variable environmental factor. The quality, quantity, direction and duration of light is monitored by a series of photoreceptors covering spectral information from UVB to near infrared. The response of the plants to light is called photomorphogenesis and it is regulated by the concerted action of photoreceptors.

The combined techniques of action spectroscopy and biochemistry allowed one of the important photoreceptors – phytochrome – to be identified in the middle of the last century. An enormous number of physiological studies published in the last century describe the properties of phytochrome and its function and also the physiology of blue and UV-B photoreceptors, unidentified at the time.

This knowledge was summarized in the advanced textbook “Photomorphogenesis in Plants” (Kendrick and Kronenberg, eds., 1986, 1994).

With the advent of molecular biology, genetics and new molecular, cellular techniques, our knowledge in the field of photomorphogenesis has dramatically increased over the last 15 years.

In 2002 the publisher approached us with a suggestion to start a new edition of this advanced textbook. After several discussions we came to the conclusion that a new edition containing only the novel observations would no longer be useful as a textbook. Clearly, all the new molecular information has not erased the validity of the “old” physiological and biochemical data. Even more importantly, it is most unfortunate that in the new generation of researchers the knowledge of the “old” data starts to get lost. Consequently, ample evidence can be found in the literature for over or underinterpretation of results obtained by applying state of art methodologies which can be traced back to lack of in-depth knowledge of classical physiological data.

Therefore, in agreement with the publisher we decided to edit a new textbook focusing on the novel observations and at the same time suggesting the 2nd edition of Photomorphogenesis in Plants (Kendrick and Kronenberg, eds.) to be still available for the interested and motivated reader.

In this new textbook the basis of the physiology and molecular biology of photomorphogenesis is once again summarized in a few introductory chapters, to support the reading of the new chapters. Nevertheless, reading the 2nd edition is strongly recommended.

The world’s leading experts from Europe, Japan, South America and the USA were invited to contribute to this advanced textbook and we are very pleased that almost all of them immediately accepted our invitation.

Despite enormous advances the primary molecular function of photoreceptors is still not known and the UV-B photoreceptor still remains to be identified. Nevertheless, this book attempts to guide the reader through the approaches made with the aim of elucidating how absorption of light by the photoreceptors will be converted into a biochemical signal which then triggers molecular events at cellular level leading to characteristic physiological responses underlying photomorphogenesis of the plant.
Molecular biology, transgenic work, genetics, biochemistry and cell biology techniques have dramatically increased our knowledge in the field of photomorphogenesis. We hope that students, postdocs and academic teachers, like in the past, will again favourably respond to the fascination of photomorphogenesis research and that reading the book in the post-genomic era will stimulate new creative research in this field.

Last but not least we would like to thank the publisher, especially Jacco Flipsen, for his strong support and interest, Prof. Govindjee for invitation and encouragement for this project and Dr. Erzsebet Fejes and Birgit Eiter for excellent assistance in editing.

REFERENCES

E. Schäfer¹ and F. Nagy²

¹University of Freiburg
Institute of Biology II/ Botany
Schänzlestr. 1
D-79104 Freiburg
Germany
Eberhard.Schaefer@biologie.uni-freiburg.de

²Biological Research Center
Institute of Plant Biology
P. O. Box 521
H-6701 Szeged
Hungary
nagyf@nucleus.szbk.u.szeged.hu
CONTENTS

Preface…………………………………………………………………………… VII

Abbreviations……………………………………………………………… XXVII

Color plates……………………………………………………………… XXXI

PART 1: GENERAL INTRODUCTION AND HISTORICAL OVERVIEW OF PHOTOMORPHOGENESIS

Chapter 1

HISTORICAL OVERVIEW
Eberhard Schäfer and Ferenc Nagy

1. Introduction……………………………………………………………… 1
2. Phytochrome Induction Responses…………………………………… 2
3. The “High Irradiance Responses”……………………………………… 8
4. Very Low Fluence Responses………………………………………… 10
5. Further reading………………………………………………………….. 10
6. References……………………………………………………………… 10

Chapter 2

PHYSIOLOGICAL BASIS OF PHOTOMORPHOGENESIS
Eberhard Schäfer and Ferenc Nagy

1. Introduction……………………………………………………………… 13
2. Classical action spectroscopy………………………………………… 13
3. Mode of function of phytochrome…………………………………….. 16
4. Correlations between in vivo spectroscopical measurements and physiological responses……………………………………… 18
5. Phytochrome response types………………………………………… 20
6. Summary……………………………………………………………… 21
8. References……………………………………………………………… 22

Chapter 3

HISTORICAL OVERVIEW OF MOLECULAR BIOLOGY AND GENETICS IN PHOTOMORPHOGENESIS
Eberhard Schäfer and Ferenc Nagy

References……………………………………………………………………. 30
Chapter 4

GENETIC BASIS AND MOLECULAR MECHANISMS OF SIGNAL TRANSDUCTION FOR PHOTOMORPHOGENESIS

Eberhard Schäfer and Ferenc Nagy

1. Introduction .. 33
2. Phototropism mutants .. 34
3. Photomorphogenic mutants ... 34
4. Circadian mutants ... 35
5. Genetic variation, mutants identified by QTL mapping 35
6. Signal transduction mutants ... 36
7. Signal transduction at the molecular level ... 37
8. Summary ... 38
9. References .. 39

PART 2: THE PHYTOCHROME

Chapter 5

THE PHYTOCHROME CHROMOPHORE

Seth J. Davis

1. Introduction .. 41
2. Structure of the phytochrome chromophore ... 44
3. Phytochromobilin synthesis ... 47
 3.1 Heme Oxygenases ... 50
 3.2 Phytochromobilin Synthase .. 53
4. Holo assembly ... 55
5. Biophysics of the chromophore .. 58
6. Personal Perspectives .. 59
 6.1 Phy chromophore structure ... 59
 6.2 Phy chromophore synthesis ... 59
 6.3 Holo-phy assembly and structure .. 59
7. References ... 60
Chapter 6

STRUCTURE, FUNCTION, AND EVOLUTION OF MICROBIAL PHOTORECEPTORS

Baruch Karniol and Richard D. Vierstra

1. Introduction .. 65
2. Higher plant phy ... 66
3. The discovery of microbial Phys .. 69
4. Phylogeny of the Phy Superfamily 72
 4.1 Cyanobacterial phy (Cph) family 76
 4.2 Bacteriophytochrome (BphP) family 76
 4.3 Fungal phy (Fph) family .. 83
 4.4 Phy-like sequences .. 84
5. Downstream signal transduction cascades 85
6. Physiological roles of microbial phy 88
 6.1 Directing phototaxis .. 88
 6.2 Enhancement of photosynthetic potential 89
 6.3 Photocontrol of pigmentation 91
7. Evolution of the phy superfamily 92
8. Perspectives .. 94
9. References .. 95

Chapter 7

PHYTOCHROME GENES IN HIGHER PLANTS: STRUCTURE, EXPRESSION, AND EVOLUTION

Robert A. Sharrock and Sarah Mathews

1. Introduction .. 99
2. Phytochrome gene structures and protein sequences 100
 2.1 The first phytochrome sequences 100
 2.2 Phytochrome is a family of related photoreceptors encoded by
 multiple PHY genes in higher plants 101
 2.3 Phytochrome nomenclature ... 105
 2.4 Heterodimerization of type II phytochromes 105
3. Expression patterns of phytochromes in plants 106
 3.1 How important are phytochrome expression patterns? 106
 3.2 Assaying phytochromes .. 107
 3.3 Early Expression Studies .. 107
 3.4 Patterns of PHY gene expression – mRNA levels and promoter
 fusion experiments ... 108
 3.5 The levels and distributions of phytochromes in plants 112
7.2 Hypersensitive mutants... 163
8. Protein composition of nuclear speckles associated with phyB.. 163
9. The function of phytochromes localised in nuclei and cytosol 166
10. Concluding remarks.. 168
11. References... 168

PART 3: BLUE-LIGHT AND UV-RECEPTORS

Chapter 10

BLUE/UV-A RECEPTORS: HISTORICAL OVERVIEW
Winslow R. Briggs

1. Introduction... 171
2. Early history... 172
3. Phototropism: action spectra can be fickle.............................. 174
4. The LIAC: a frustrating digression... 179
5. The cryptochrome story.. 180
6. The phototropin story.. 182
7. Stomatal opening in blue light... 184
8. Chloroplast movements induced by blue light....................... 186
9. Leaf expansion.. 187
10. The rapid inhibition of growth.. 189
11. Solar tracking... 191
12. The ZTL/ADO family... 191
13. Conclusions.. 191
14 References... 192

Chapter 11

CRYPTOCHROMES
Anthony R. Cashmore

1. Introduction... 199
2. Photolyases.. 199
3. The discovery of cryptochrome.. 200
 3.1 Cryptochromes of Arabidopsis... 201
 3.2 Cryptochromes of algae, mosses and ferns....................... 202
 3.3 Drosophila cryptochrome.. 202
 3.4 Mammalian cryptochromes.. 203
 3.5 Bacterial and related cryptochromes................................. 203
4. Cryptochromes and plant photomorphogenesis..................... 203
5. Cryptochrome and flowering .. 206
6. Plant cryptochromes and circadian rhythms 206
7. Arabidopsis cryptochrome and gene expression 207
8. Cryptochromes and circadian rhythms in animals 208
 8.1 Drosophila circadian rhythms are entrained through cryptochrome.. 208
 8.2 Mammalian cryptochromes: Negative transcriptional regulators and essential components of the circadian oscillator 208
9. The mode of action of cryptochrome 210
 9.1 The Arabidopsis cryptochrome C-terminal domain mediates a constitutive light response ... 210
 9.2 COP1: A signalling partner of Arabidopsis cryptochromes 211
 9.3 Intracellular localization of Arabidopsis CRYs 213
 9.4 Phosphorylation of Arabidopsis cryptochromes 214
 9.5 Photochemical properties of Arabidopsis cryptochromes 215
 9.6 Drosophila cryptochrome interacts with PER and TIM in a light-dependent manner .. 216
 9.7 Mouse cryptochromes negatively regulate transcription in a light-independent manner ... 217
10. Cryptochrome evolution .. 217
11. Conclusions and future studies .. 217
12. References .. 218

Chapter 12

PHOTOTROPINS
Winslow R. Briggs, John M. Christie and Trevor E. Swartz

1. Introduction .. 223
2. Blue light-activated phosphorylation of a plasma-membrane protein .. 224
 2.1 The protein is likely ubiquitous in higher plants 224
 2.2 Subcellular localization of phot1 225
 2.3 Distribution of the phototropins in relation to function 226
 2.4 Biochemical properties of the phosphorylation reaction in vitro .. 227
 2.5 Correlation of phot1 phosphorylation with phototropism .. 228
 2.6 Autophosphorylation occurs on multiple sites 231
3. Cloning and molecular characterization of phototropin 232
 3.1 The initial discovery of phototropin 232
 3.2 LOV domains function as light sensors 234
4. Why two LOV domains? .. 234
5. Structural and photochemical properties of the LOV domains 236
 5.1 LOV domain photochemistry 236
 5.2 LOV-domain structure .. 236
 5.3 The LOV-domain photocycle 238
 5.4 Mechanism of FMN-cysteiny1 adduct formation 238
Chapter 13

BLUE LIGHT PHOTORECEPTORS - BEYOND PHOTOTROPINS AND CRYPTOCHROMES

Jay Dunlap

1. Introduction .. 253
2. Historical antecedents ... 253
3. The photobiology of Neurospora 255
4. Light perception - the nature of the blue light photoreceptor 257
 4.1 Flavins as chromophores 257
 4.2 Genetic dissection of the blue light response 257
5. Cloning of the white collar genes 258
6. WHITE COLLAR-1 is the blue light photoreceptor 260
7. WC-1 and WC-2 - positive elements in the circadian feedback loop 263
 7.1 How light resets the clock 265
8. VIVID, a second photoreceptor that modulates light responses 266
9. Complexities in light regulatory pathways 268
10. Other Neurospora photoreceptors 270
11. Flavin binding domain proteins as photoreceptors in photosynthetic eukaryotes .. 271
12. Summary and conclusion .. 273
13. References .. 274

Chapter 14

UV-B PERCEPTION AND SIGNALLING IN HIGHER PLANTS

Roman Ulm

1. Introduction .. 279
2. DNA damage and repair ... 281
3. Photomorphogenic responses to UV-B 284
 3.1 Synthesis of “sunscreen” metabolites 285
 3.2 Inhibition of hypocotyl growth 287
 3.3 Cotyledon opening and expansion 288
PART 4: SIGNAL TRANSDUCTION IN PHOTOMORPHOGENESIS

Chapter 16

GENERAL INTRODUCTION
Peter H. Quail

References.. 333

Chapter 17

PHYTOCHROME SIGNAL TRANSDUCTION NETWORK
Peter H. Quail

1. Introduction.. 335
2. Genetically-identified signalling-intermediate candidates.................... 337
3. Phytochrome-Interacting Factors.. 340
 3.1 PIF3 .. 340
 3.2 PKS1 .. 343
 3.3 NDPK2 .. 344
 3.4 Other phy interactors .. 344
4. Transcription-factor genes are early targets of PHY signalling.......... 345
5. Biochemical mechanism of signal transfer... 353
6. References.. 354

Chapter 18

THE FUNCTION OF THE COP/DET/FUS PROTEINS IN
CONTROLLING PHOTOMORPHOGENESIS: A ROLE FOR
REGULATED PROTEOLYSIS
Elizabeth Strickland, Vicente Rubio and Xing Wang Deng

1. Introduction.. 357
 1.1 Genetic analysis of photomorphogenesis.................................... 357
2. A brief summary of the ubiquitin-proteasome system............................ 359
3. Properties and functions of the pleiotropic COP/DET/FUS proteins,... 359
 3.1 COP1 .. 359
 3.1.1 Nuclear localization of COP1 .. 360
 3.1.2 Light regulation of COP1 .. 360
 3.1.3 Molecular role of COP1 .. 361
 3.1.4 The E3 ubiquitin-protein ligase activity of COP1 363
 3.1.5 COP1 interactors ... 364
2. Photoreceptor interaction during de-etiolation......................... 409
 2.1 Multiple photoreceptors control de-etiolation...................... 409
 2.2 Redundancy.. 410
 2.2.1 The potential action of a photoreceptor can be hidden by the
 action of others... 410
 2.2.2 Definition of redundancy.. 411
 2.2.3 The mechanisms of redundancy..................................... 411
 2.2.4 Redundant photoreceptors are not equally important......... 412
 2.3 Synergism between phytochromes and cryptochromes.............. 412
 2.3.1 Blue light-mediated responsivity amplification towards
 phytochrome... 412
 2.3.2 cry1 amplifies responsivity towards phyB...................... 413
 2.3.3 The synergism between cry1 and phyB is conditional........ 415
 2.3.4 Other manifestations of synergism between phytochromes
 and cryptochromes.. 416
 2.4 Synergistic or antagonistic interaction between phyA and phyB... 418
 2.5 Synergism between phyB and phyC...................................... 420
 2.6 Interactive signalling under sunlight reduces noise/ signal ratio 422
3. Photoreceptor interaction during adult plant body shape formation.. 424
 3.1 Redundant control of normal progression of vegetative development
 by phytochromes and cryptochromes................................ 424
 3.2 The response to R:FR.. 424
4. Photoreceptor interaction in phototropism............................... 425
 4.1 Phototropins perceive the unilateral stimulus..................... 425
 4.2 Phytochromes enhance the responses mediated by phototropins... 426
 4.3 The role of cryptochromes... 426
5. Photoreceptor interaction in clock entrainment........................ 426
6. Photoreceptor interaction controlling flowering........................ 427
 6.1 Different light signals control the transition between vegetative
 and reproductive growth.. 427
 6.2 Roles of cry2, cry1 and phyA in the photoperiodic response...... 427
 6.3 Roles of phyB, phyD and phyE in the response to low R:FR....... 428
 6.4 Integration of the responses to photoperiod and R:FR............ 428
7. Points of convergence in the photoreceptor signalling network...... 428
 7.1 The occurrence of interactions is an emergent property of the
 signalling network.. 428
 7.2 Direct convergence: Physical interaction between photoreceptor
 pigments.. 430
 7.3 Convergence in the control of transcription: HFR1................. 430
 7.4 Post-transcriptional convergence accounts for the interaction between
 phyB and phyC... 431
 7.5 Convergence in the control of protein stability: COP1............ 431
 7.6 Photoreceptor sub-cellular partitioning................................ 431
 7.7 SUB1.. 431
8. Overview... 432
8.1 Redundancy.. 432
8.2 Hierarchical action.. 432
8.3 Synergism.. 432
8.4 Sensitivity and homeostasis.. 433
8.5 Connectivity.. 433
9. References... 433

Chapter 21

INTERACTION OF LIGHT AND HORMONE SIGNALLING TO MEDIATE
PHOTOMORPHOGENESIS
Michael M. Neff, Ian H. Street, Edward M. Turk and Jason M. Ward

1. Introduction... 439
2. Gibberellins... 440
 2.1 Gibberellin biosynthetic genes and seed germination......................... 440
 2.2 Gibberellins and de-etiolation.. 442
 2.3 The SPY and PHOR1 genes... 443
 2.4 A possible role for protein degradation... 444
 2.5 Interactions with other hormone signalling pathways...................... 445
3. Auxin.. 446
 3.1 Auxin transport... 447
 3.2 Auxin and phototropism... 448
 3.3 Auxin and shade avoidance.. 449
 3.4 Auxin responsive genes involved in photomorphogenesis................. 450
 3.5 Auxin and protein degradation... 451
 3.6 Interaction of auxin with other hormone signalling pathways............ 452
4. Brassinosteroids... 452
 4.1 Brassinosteroid-deficient mutants... 454
 4.2 Brassinosteroids and gene expression... 455
 4.3 Further genetic connections between brassinosteroids and light........... 455
 4.4 Brassinosteroids and light signalling: three speculative models....... 456
5. Ethylene... 460
 5.1 Genetic connections between ethylene and photomorphogenesis.... 461
 5.2 Ethylene mutants and shade-avoidance.. 462
 5.3 Ethylene and fruit ripening... 463
6. Cytokinins... 463
7. Summary... 465
8. Further reading... 465
9. References... 466
PART 5: SELECTED TOPICS

Chapter 22

THE ROLES OF PHYTOCHROMES IN ADULT PLANTS
Keara A. Franklin and Garry C. Whitelam

1. Introduction ... 475
2. The natural light environment .. 477
3. R:FR ratio and shade avoidance 478
4. Roles of different phytochromes in shade avoidance 482
 4.1 Roles for phytochrome A in adult plants 486
5. Molecular mechanisms controlling shade avoidance responses .. 489
 5.1 The acceleration of flowering 489
 5.2 Early events in R:FR ratio signalling 491
6. References .. 493

Chapter 23

A ROLE FOR CHLOROPHYLL PRECURSORS IN PLASTID-TO-NUCLEUS SIGNALING
Robert M. Larkin and Joanne Chory

1. Introduction .. 499
2. Chlorophyll biosynthetic mutant, inhibitor, and feeding studies 500
3. Plastid-to-nucleus signaling mutants inhibit Mg-porphyrin accumulation. 504
4. Mechanism of Mg-Proto/Mg-ProtoMe signaling 506
5. Plastid and light signaling pathways appear to interact 508
6. Conclusions and perspectives ... 509
7. Further Reading .. 510
8. References ... 510

Chapter 24

PHOTOMORPHOGENESIS OF FERNS
Takeshi Kanegae and Masamitsu Wada

1. Introduction ... 515
2. Photoreceptors in Adiantum ... 517
 2.1 Cryptochromes .. 517
 2.2 Phototropins .. 518
 2.3 Phytochromes ... 519
2.3.1 Phytochrome 1... 520
2.3.2 Phytochrome 2... 521
2.3.3 Phytochrome 3... 522
2.3.4 Phytochrome 4... 523
3. Mutant analyses.. 523
 3.1 Methods of mutant selection.. 523
 3.2 Red light aphototropic mutants... 525
 3.3 Mutants deficient in the chloroplast avoidance response........... 526
 3.4 Dark position-deficient mutants.. 527
4. Function of phytochrome 3.. 527
 4.1 Phytochrome 3-dependent chloroplast movement.................... 527
 4.2 Phytochrome 3-dependent phototropism................................... 528
5. Function of phototropin 2.. 530
 5.1 Phototropin 2-dependent chloroplast movement....................... 530
 5.2 Physiological estimation of the lifetime of phot signals............... 531
6. Germination-related genes... 532
7. Concluding remarks.. 533
8. References.. 534

Chapter 25

PHOTOMORPHOGENESIS OF MOSES
Tilman Lamparter

1. Introduction.. 537
2. Effects of light on moss development... 539
 2.1 Spore germination... 539
 2.2 Cell differentiation... 541
 2.3 Phototropism and polarotropism.. 541
 2.4 Lights effects on gravitropism... 542
 2.5 Chloroplast movement.. 543
 2.6 Chlorophyll synthesis... 544
 2.7 Protoplast regeneration... 544
3. Different photoreceptors in mosses.. 545
 3.1 Phytochromes.. 545
 3.1.1 Phytochrome genes and proteins...................................... 545
 3.1.2 Mutants... 547
 Ceratodon Class 1 mutants... 549
 Ceratodon class 2 mutants... 550
 Physcomitrella phytochrome knockout mutants....................... 550
 3.1.3 Light direction and polarization.. 551
 3.2 Cryptochromes and phototropin.. 556
4. Signal transduction.. 557
 4.1 Ca2+... 558
 4.2 Cytoskeleton... 558
Chapter 26

CIRCADIAN REGULATION OF PHOTOMORPHOGENESIS

Paul Devlin

1. Introduction... 567
2. The Circadian Clock... 568
3. Circadian rhythms.. 568
4. The circadian clock in plants... 569
5. Setting the plant circadian clock.. 574
6. Driven vs Endogenous Rhythms.. 578
7. Gating.. 579
8. Circadian Regulation of Photomorphogenesis.. 580
 8.1 Circadian regulation of light-induced changes in gene expression...... 580
 8.2 Circadian regulation of light-mediated inhibition of hypocotyl elongation.. 581
 8.3 Circadian regulation of light-mediated stimulation of hypocotyl hook opening.. 581
 8.4 Circadian regulation of light-mediated stimulation of stomatal opening 582
 8.5 Circadian regulation of sensitivity to light allows daylength perception 582
9. Mechanism of circadian regulation of photomorphogenesis.................... 583
10. Mutants affecting circadian regulation of photomorphogenesis.............. 585
10.1 early flowering 3 (elf3).. 585
10.2 time for coffee (tic)... 588
11. Other possible components involved gating.. 590
11.1 Circadian regulation of photoreceptor levels..................................... 590
11.2 Circadian regulation of photoreceptor subcellular localisation........... 591
11.3 Circadian regulation of photoreceptor signal transduction components.. 592
 11.3.1 GIGANTEA (GI).. 592
 11.3.2 ZEITLUPE (ZTL).. 593
 11.3.3 Suppressor of phyA 1 (SPA1).. 594
 11.3.4 early phytochrome responsive 1 (epr1)............................... 595
12. A twist in the tale: Is there just one circadian clock regulating photomorphogenesis?.. 596
13. Conclusion: Concerns for photomorphogenic study............................ 598
14. Epilogue.. 599
15. Further suggested reading.. 599
16. References.. 600
Chapter 27

THE MOLECULAR GENETICS OF PHOTOPERIODIC RESPONSES: COMPARISONS BETWEEN LONG-DAY AND SHORT-DAY SPECIES

George Coupland

1. Introduction.. 605
2. Genetic model systems.. 606
3. A molecular pathway that controls flowering-time in response to day length in Arabidopsis by generating a long-distance signal from the leaf... 607
4. An external coincidence model for the day-length response in Arabidopsis 611
5. Genetic analysis of the photoperiodic control of flowering in rice, a short-day plant.. 614
6. Relationships between photoperiodic control and other environmental cues regulating flowering.. 618
7. Photoperiodic responses other than flowering.. 620
8. Perspectives.. 621
9. References... 621

Chapter 28

COMMERCIAL APPLICATIONS OF PHOTOMORPHOGENESIS RESEARCH

Ganga Rao Davuluri and Chris Bowler

1. Introduction.. 627
2. Light-mediated responses in the natural environment................................. 628
3. Manipulation of light responses in agriculture... 629
 3.1 Modulation of day length perception.. 629
 3.2 Modulation of shade avoidance responses... 630
 3.3 Modulation of fruit ripening... 632
4. Light-based biological engineering... 635
5. Conclusions and perspectives... 636
6. References... 637

Chapter 29

PHOTOMORPHOGENESIS – WHERE NOW?

Harry Smith

Where are we going, Dad?.. 641
Where are we now, Dad?.. 641
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFLP</td>
<td>amplified fragment-length polymorphism</td>
</tr>
<tr>
<td>APRR</td>
<td>Arabidopsis pseudo response regulator</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>B</td>
<td>blue light</td>
</tr>
<tr>
<td>BBP</td>
<td>bilin-binding pocket</td>
</tr>
<tr>
<td>Bch</td>
<td>bacteriochlorophyll</td>
</tr>
<tr>
<td>BHF</td>
<td>blue light high fluence</td>
</tr>
<tr>
<td>BLF</td>
<td>blue light low fluence</td>
</tr>
<tr>
<td>BphPs</td>
<td>bacteriophytochrome photoreceptors</td>
</tr>
<tr>
<td>BV</td>
<td>biliverdin IXa</td>
</tr>
<tr>
<td>CAB</td>
<td>chlorophyll a/b binding proteins</td>
</tr>
<tr>
<td>CAT3</td>
<td>catalase 3</td>
</tr>
<tr>
<td>CCA</td>
<td>complementary chromatic adaptation</td>
</tr>
<tr>
<td>CCA1</td>
<td>circadian clock-associated 1</td>
</tr>
<tr>
<td>CCR2</td>
<td>cold circadian clock-regulated</td>
</tr>
<tr>
<td>CCT</td>
<td>cryptochrome C-terminal domain</td>
</tr>
<tr>
<td>CFB</td>
<td>cytophaga-flexibacter-bacterioides</td>
</tr>
<tr>
<td>Chl</td>
<td>chloroplast</td>
</tr>
<tr>
<td>CHS</td>
<td>chalcone synthase</td>
</tr>
<tr>
<td>CNT</td>
<td>cryptochrome N-terminal domain</td>
</tr>
<tr>
<td>CO</td>
<td>constans</td>
</tr>
<tr>
<td>COP1</td>
<td>constitutively photomorphogenic 1</td>
</tr>
<tr>
<td>CPD</td>
<td>cyclobutane pyrimidine dimmers</td>
</tr>
<tr>
<td>Cphs</td>
<td>cyanobacterial Phys</td>
</tr>
<tr>
<td>Crt</td>
<td>carotenoids</td>
</tr>
<tr>
<td>CRY</td>
<td>cryptochrome</td>
</tr>
<tr>
<td>Cry1/hy4</td>
<td>cryptochrome1/ hypocotyl4</td>
</tr>
<tr>
<td>CT</td>
<td>circadian Time</td>
</tr>
<tr>
<td>Cyto</td>
<td>cytoplasm</td>
</tr>
<tr>
<td>DBD</td>
<td>DNA-binding domain</td>
</tr>
<tr>
<td>DDB1</td>
<td>UV-damaged DNA binding protein</td>
</tr>
<tr>
<td>DET1</td>
<td>de-etiolated 1</td>
</tr>
<tr>
<td>DET2</td>
<td>de-etiolated 2</td>
</tr>
<tr>
<td>DUF</td>
<td>domain of unknown function</td>
</tr>
<tr>
<td>ELF3</td>
<td>early flowering 3</td>
</tr>
<tr>
<td>ELF4</td>
<td>early-Flowering 4</td>
</tr>
<tr>
<td>EPR1</td>
<td>early phytochrome responsive 1</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FDD</td>
<td>fluorescence differential display</td>
</tr>
<tr>
<td>FKF1</td>
<td>flavin-binding kelch repeat F-box 1</td>
</tr>
<tr>
<td>FLC</td>
<td>flowering locus C</td>
</tr>
<tr>
<td>Fphs</td>
<td>fungal Phys</td>
</tr>
<tr>
<td>FR</td>
<td>far-red</td>
</tr>
<tr>
<td>FSBA</td>
<td>fluorosulfonylbenzoyladenosine</td>
</tr>
<tr>
<td>FT</td>
<td>flowering locus T</td>
</tr>
<tr>
<td>G</td>
<td>green light</td>
</tr>
<tr>
<td>GA</td>
<td>gibberelin acid</td>
</tr>
<tr>
<td>GAF</td>
<td>cGMP phosphodiesterase/adenyl cyclase/FhlA</td>
</tr>
<tr>
<td>GAI</td>
<td>GA-insensitive</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GGDEF</td>
<td>Gly/Gly/Asp/Gly/Phe motif</td>
</tr>
<tr>
<td>GI</td>
<td>gigantea</td>
</tr>
<tr>
<td>GRAS</td>
<td>GAI/RGA and SCARECROW</td>
</tr>
<tr>
<td>HAMP</td>
<td>HK/adenyl cyclases/methyl-binding proteins/phophatases domain</td>
</tr>
<tr>
<td>Hd</td>
<td>heading date</td>
</tr>
<tr>
<td>HIR</td>
<td>high irradiance response</td>
</tr>
<tr>
<td>HKD</td>
<td>histidine kinase domain</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HKRD</td>
<td>histidine kinase-related domain</td>
</tr>
<tr>
<td>HO</td>
<td>heme oxygenase</td>
</tr>
<tr>
<td>HPT</td>
<td>histidine phosphotransferase</td>
</tr>
<tr>
<td>HWE</td>
<td>His/Try/Asp</td>
</tr>
<tr>
<td>HY5</td>
<td>hypocotyl 5</td>
</tr>
<tr>
<td>ICGs</td>
<td>interchromatin granual clusters</td>
</tr>
<tr>
<td>LFR</td>
<td>low Fluence Response</td>
</tr>
<tr>
<td>LHCb</td>
<td>light harvesting chlorophyll a/b-binding protein</td>
</tr>
<tr>
<td>LHY</td>
<td>late elongated hypocotyl</td>
</tr>
<tr>
<td>LIAc</td>
<td>light-induced absorbance change</td>
</tr>
<tr>
<td>LKP2</td>
<td>LOV kelch protein 2</td>
</tr>
<tr>
<td>LRE</td>
<td>light-responsive regulatory element</td>
</tr>
<tr>
<td>LUC</td>
<td>luciferase</td>
</tr>
<tr>
<td>Me-Ac</td>
<td>methyl-accepting chemotaxis protein domain</td>
</tr>
<tr>
<td>Mg-ProtoMe</td>
<td>Mg-Protoporphyrin IX monomethyl ester</td>
</tr>
<tr>
<td>MS</td>
<td>mass Spectroscopic analysis</td>
</tr>
<tr>
<td>MTHF</td>
<td>methenyltetrahydrofolate</td>
</tr>
<tr>
<td>NAI2</td>
<td>nitrate reductase</td>
</tr>
<tr>
<td>NDPK2</td>
<td>nucleotide diphosphate kinase 2</td>
</tr>
<tr>
<td>NLS</td>
<td>nuclear localisation signal</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NOE</td>
<td>nuclear overhauser effect</td>
</tr>
<tr>
<td>NPA</td>
<td>1-naphthylphthalamic acid</td>
</tr>
<tr>
<td>NPH</td>
<td>non-phototropic hypocotyl</td>
</tr>
<tr>
<td>Nuc</td>
<td>nucleus</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PAC</td>
<td>PAS-like domain C-terminal to PAS</td>
</tr>
<tr>
<td>PAS</td>
<td>Per/Arndt/Sim</td>
</tr>
<tr>
<td>PCB</td>
<td>3(Z)-phycoerythrobilin</td>
</tr>
<tr>
<td>Pchlide</td>
<td>protochlorophyllide</td>
</tr>
<tr>
<td>PEB</td>
<td>phycoerythrobilin</td>
</tr>
<tr>
<td>PER</td>
<td>period</td>
</tr>
<tr>
<td>PFT1</td>
<td>phytochrome flowering time 1</td>
</tr>
<tr>
<td>Phy</td>
<td>phytochrome</td>
</tr>
<tr>
<td>PIF3</td>
<td>phytochrome interacting factor 3</td>
</tr>
<tr>
<td>PIL1</td>
<td>PIF3-like 1</td>
</tr>
<tr>
<td>PIL2</td>
<td>PIF3-like 2</td>
</tr>
<tr>
<td>PIL4</td>
<td>PIF3-like 4</td>
</tr>
<tr>
<td>PIL6</td>
<td>PIF3-like 6</td>
</tr>
<tr>
<td>PIN1</td>
<td>pinformed 1</td>
</tr>
<tr>
<td>PKS1</td>
<td>phytochrome kinase substrate 1</td>
</tr>
<tr>
<td>PKS2</td>
<td>phytochrome kinase substrate 2</td>
</tr>
<tr>
<td>PLD</td>
<td>PAS-like domain</td>
</tr>
<tr>
<td>PM</td>
<td>plasma membrane</td>
</tr>
<tr>
<td>PP</td>
<td>pyrimidine-pyrimidinone dimers</td>
</tr>
<tr>
<td>PP2C</td>
<td>protein phosphatase-2C</td>
</tr>
<tr>
<td>Proto</td>
<td>protoporphyrin IX</td>
</tr>
<tr>
<td>PYP</td>
<td>photoactive yellow protein</td>
</tr>
<tr>
<td>PФB</td>
<td>3(Z)-phytochromobilin</td>
</tr>
<tr>
<td>QTL</td>
<td>quantitative trait loci</td>
</tr>
<tr>
<td>R</td>
<td>red light</td>
</tr>
<tr>
<td>RAP2</td>
<td>red light aphototropic 2</td>
</tr>
<tr>
<td>RGA</td>
<td>repressor of ga 1-3</td>
</tr>
<tr>
<td>RGL</td>
<td>RGA-like</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RR</td>
<td>response regulator</td>
</tr>
<tr>
<td>Rubisco</td>
<td>ribulose-1,5-bisphosphate carboxylase/oxygenase</td>
</tr>
<tr>
<td>SAP</td>
<td>sequestered areas of phytochrome</td>
</tr>
<tr>
<td>SCF complex</td>
<td>Skp1 cullin F-box protein</td>
</tr>
<tr>
<td>SCN</td>
<td>suprachiasmatic nucleus</td>
</tr>
<tr>
<td>SOC1</td>
<td>suppressor of overexpression of co 1</td>
</tr>
<tr>
<td>SPA1</td>
<td>suppressor of phyA 1</td>
</tr>
<tr>
<td>SPY</td>
<td>spindly</td>
</tr>
<tr>
<td>SRD</td>
<td>serine-rich domain</td>
</tr>
<tr>
<td>SRR1</td>
<td>sensitivity to red light reduced</td>
</tr>
<tr>
<td>TC-HK</td>
<td>two-component histidine kinase</td>
</tr>
<tr>
<td>TIC</td>
<td>time for coffee</td>
</tr>
<tr>
<td>TIM</td>
<td>timeless</td>
</tr>
<tr>
<td>TIR3</td>
<td>toll interleukin resistance domain containing protein</td>
</tr>
<tr>
<td>toc1</td>
<td>timing of cab expression 1</td>
</tr>
<tr>
<td>ULI</td>
<td>UV-B light insensitive</td>
</tr>
<tr>
<td>ULI3</td>
<td>UV-B light insensitive 3</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet light</td>
</tr>
<tr>
<td>UV-A</td>
<td>320-400 nm UV</td>
</tr>
<tr>
<td>UV-B</td>
<td>280-320 nm UV</td>
</tr>
<tr>
<td>UV-C</td>
<td><280 nm UV</td>
</tr>
<tr>
<td>VLFR</td>
<td>very low fluence response</td>
</tr>
<tr>
<td>ZT</td>
<td>zeitgeber time</td>
</tr>
<tr>
<td>ZTL</td>
<td>zeitlupe</td>
</tr>
</tbody>
</table>
Chapter 7, Figure 5. Histochemical localization of the expression patterns of PHYB::GUS (a-c) and PHYD::GUS (d-f) promoter-reporter fusion genes in Arabidopsis. (a, d) seven day old dark-grown seedlings; (b, e) seven day old light-grown seedlings; (c, f) flowers.
Chapter 9, Figure 1. Localisation of PHYA-GFP fusion proteins in Arabidopsis seedlings. 4d old dark-grown Arabidopsis seedlings expressing fusion proteins of Arabidopsis PhyA and GFP controlled by the Arabidopsis promoter were irradiated briefly with white light. Subsequently bright-field images (greyscale) and confocal images of GFP (green channel) and chlorophyll (red channel) fluorescence have been recorded with a Zeiss LSM510 microscope. The colour-combined images are showing the hook area and an area of the rim of a cotyledon (inlet). Bar= 25 µm.

Chapter 9, Figure 2. Model of the light-driven intracellular dynamics of phytochrome A. In dark-grown seedlings phyA is synthesized in its physiologically inactive Pr-form (Pr) and stays in the cytosolic compartment. Irradiation establishes a wavelength-dependent equilibrium of the Pr to the active Pfr form. Red light (R) leads to formation of about 80% of Pfr; far-red light (FR) to about 3% Pfr. PhyA Pfr localises to sequestered areas of phytochrome (SAP) in the cytosol and is imported into the nucleus where it forms nuclear speckles. The light-requirements for these intracellular processes overlap with the light requirements for typical physiological responses of phytochrome A. While pulses of light can promote very low fluence response (VLFR, here the effect of a red pulse is shown), continuous irradiation with far-red light (cFR) leads to high irradiance responses (HIR). Due to the instability of the Pfr form of PHYA, continuous red-light (cR) leads to a rapid destruction of the photoreceptor.
xxxiii

Chapter 9, Figure 3. Co-localisation of Phytochrome B with the bHLH factor PIF3. 4d old dark-grown Arabidopsis seedlings simultaneously expressing fusion proteins of PhyB with YFP and PIF3 with CFP each controlled by the 35S promoter were irradiated briefly with white light. Subsequently, confocal images of YFP (green channel) and CFP (red channel) fluorescence have been recorded with a Zeiss LSM510 microscope. The images are showing epidermal cells of the base of a cotyledon, either representing the PhyB-YFP or PIF3-CFP signals, an overlay of these images resulting in yellow colour for co-localisation of PhyB and PIF3 or an additional co-localisation analysis of both factors using ImageJ software package (NIH).

Chapter 9, Figure 4. Localisation of a fusion protein consisting of Arabidopsis PhyB, GFP and a nuclear localisation sequence. 4d old dark-grown Arabidopsis seedlings expressing fusion proteins of Arabidopsis PhyB, GFP and the SV 40 NLS under the control of the Arabidopsis promoter were analysed either after incubation for 24 hours in red light (R) or darkness (cD). Subsequently, bright-field images (greyscale) and confocal images of GFP (green channel) and chlorophyll (red channel) fluorescence have been recorded with a Zeiss LSM510 microscope. The colour-combined images are showing the hook area or an area of a cotyledon. Bar = 25 µm.
Chapter 12, Figure 1. Domain structures for phototropins 1 and 2.

Chapter 12, Figure 2. Localization of phot1-green fluorescent protein (GFP) in guard cells and leaf epidermal cells. Red fluorescence is from chloroplasts. See Sakamoto and Briggs (2002).