Arabian Deserts
Nature, Origin, and Evolution
Arabian Deserts
Nature, Origin, and Evolution

by

H. Stewart Edgell
formerly Professor of Geology.
King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia; Center of Applied Geology,
Jiddah, Saudi Arabia; American University of Beirut,
Beirut, Lebanon

Springer
Table of Contents

Preface xi
List of Illustrations xv
Acknowledgements lvii
Introduction lix

1 Definitions of deserts 1
 1.1 Deserts in ancient history 1
 1.2 Arabian deserts of historians and explorers 2
 1.3 Deserts as defined in dictionaries 2
 1.4 Basic scientific definitions of deserts 2
 1.5 Meteorological concepts of deserts 3
 1.6 Definitions of deserts by climatologists 4
 1.7 Botanists’ definitions of deserts 6
 1.8 Definitions of deserts by remote sensing 7
 1.9 Definitions of deserts by geomorphologists 8

2 Types of deserts and landform regions of Arabia 11
 2.1 Arid coastal plains 11
 2.2 Sabkha areas (sibakh) 13
 2.3 Deltas 14
 2.4 Desert islands 14
 2.5 Claypan deserts (qa’, khabra’, and faydah deposits) 14
 2.6 Yardangs 15
 2.7 Duricrust 15
 2.8 Karst features 18
 2.9 Stony deserts 20
 2.10 Rocky deserts 20
 2.11 Sand seas 20
 2.12 Desert plateaux 21
 2.13 Desert mountains 23
 2.14 Geomorphological provinces of Arabia 24
3 Geological setting of Arabian deserts 29
 3.1 Geological evolution of Arabia 29
 3.2 Structural geology of Arabia 32
 3.3 Summary of Arabian stratigraphy 36
 3.4 Geological relations of Arabian deserts 36
 3.5 Minor geological features 39
 3.6 Quaternary 18O fluctuations as related to sea level changes 40

4 Influences of climate 45
 4.1 Present climate of Arabia 45
 4.1.1 Temperature 45
 4.1.2 Precipitation 49
 4.1.3 Humidity 50
 4.1.4 Evaporation 53
 4.1.5 Winds 53
 4.2 Palæowinds of the Quaternary in Arabia 62
 4.3 Inter-tropical convergence zone 65
 4.4 Remarks on the role of wind in Arabian deserts 66

5 Ecology of Arabian deserts 71
 5.1 Ecological regions of Arabia 71
 5.1.1 Arabian desert and East Sahero-Arabian deserts and xeric shrublands 71
 5.1.2 Red Sea Nubo-Sindian tropical desert and semi-desert 73
 5.1.3 South-western Arabian foothills savannah 74
 5.1.4 Arabian peninsula fog desert 75
 5.1.5 Socotra island xeric shrublands 76
 5.1.6 Red Sea coastal desert 76
 5.1.7 South-western Arabian montane woodlands 76
 5.1.8 Al Hajar montane woodlands 76
 5.1.9 Gulf of Oman desert and semi-desert 77
 5.1.10 Persian Gulf-Nubo-Sindian tropical desert and semi-desert 78
 5.1.11 Tigris–Euphrates–Karun alluvial salt marsh 78
 5.1.12 Mesopotamian shrub desert 80
 5.1.13 Middle East steppe 80
 5.2 Desert Plant Communities 80
 5.2.1 Calligonum comosum community 80
 5.2.2 Haloxylon persicum community 80
 5.2.3 Artemesia monosperma community 81
 5.2.4 Scrophularia hypericifolia community 81
 5.2.5 Stipagrostis drarik community 82
 5.2.6 Cornulacea arabica community 82
 5.2.7 Calligonum crinitum and Dipterygium glaucum community 82
5.2.8 Haloxylon salicornicum community 82
5.2.9 Rhanterium epapposum community 82
5.2.10 Seidlitzia rosmarinus community 83
5.3 The influence of human occupation on Arabian deserts 83
 5.3.1 Effects of overgrazing 83
 5.3.2 Woodcutting 84
 5.3.3 Cultivation 84
 5.3.4 Construction 84
 5.3.5 Vehicular use and recreation 84
 5.3.6 Desertification 86

6 Watercourses and rivers of Arabia 89
 6.1 Flash floods 89
 6.2 Erosion and the Arid Cycle 90
 6.3 Sediment transport 91
 6.4 Sediment deposition 91
 6.5 Desert rivers and streams 92
 6.5.1 Permanent watercourses 92
 6.5.2 Non-perennial watercourses (widyan) 94
 6.6 Oases of Arabia 110
 6.6.1 Oases of Saudi Arabia 110
 6.6.2 Oases of the United Arab Emirates 113
 6.6.3 Oases of northern Oman 115
 6.6.4 Oases of southern Oman (Dhofar) 117
 6.6.5 Oases of southern Yemen 119
 6.6.6 Oases of northern Yemen 119
 6.6.7 Oases of Jordan 120
 6.7 Endorheic drainage and water bodies 121
 6.7.1 Ephemeral water bodies 122
 6.7.2 Permanent water bodies 124

7 Arabian sand seas 125
 7.1 Introduction 125
 7.2 Ar Rub' al Khali sand sea 126
 7.3 An Nafud sand sea (The Great Nafud) 143
 7.4 Ad Dahna sand sea 150
 7.5 Al Jafurah sand sea 154
 7.6 Ramlat as Sab'atayn sand sea 156
 7.7 Ramlat Al Wahtbah (Wahiba Sands, Wahiba sand sea) 162

8 Lesser dunefields of Arabia 167
 8.1 Nafud ath Thuwayrat 167
 8.2 'Urayq al Buldan 168
 8.3 'Irq Banban 169
 8.4 Nafud ash Sirr 169
8.5 Nafud Qunayfidah 171
8.6 Nafud ash Shuqayyiqah 171
8.7 Nafud al Ghamsis and adjacent anfad 172
8.8 Nafud al Mazhur (Nafud Mazur) 173
8.9 Nafud al ’Urayq (Nafud al Urayk) 175
8.10 Nafud ad Dahi 175
8.11 ’Uruq as Subay (’Irq as Subay) 178
8.12 As Sawdah desert 178
8.13 Nafud as Sirrah (Nafud as Surrah) 180
8.14 Nafud Rumhat 181
8.15 Nafud Hanjaran 182
8.16 ’Irq al Wadi 183
8.17 Khulays dune field 184
8.18 Sahil Jazir 184
8.19 Sahil Jinawt 185
8.20 ’Ayn al Juwayri dune field 185
8.21 Qishn-west Ra’s Fartaq dune fields 186
8.22 Qatar south-eastern dune field 187
8.23 Sinai desert 189
8.24 Wadi Araba dune fields 190
8.25 Wadi Ram desert 191
8.26 South-eastern Jordan desert 192
8.27 Sahra’ al Musalla 193
8.28 Sahra’ as Suwan 193
8.29 Nafud al Ghuwaytah 193
8.30 Kuwaiti dune fields 193
8.31 Ash Shamiyah desert (Al Badiyah al Janubiyyah) 194
8.32 Baiji desert 196
8.33 Southern alluvial plains desert 198

9 Types of desert dunes in Arabia 201
9.1 A morphogenetic dune classification 202
9.2 Holm’s dune classification 229
9.3 Bramkamp’s dune classification 230
9.4 Besler’s dune classification 231
9.5 Fedorovich’s dune classification and relief types 231
9.6 BRGM dune study and classification, Eastern Province, Saudi Arabia 233
9.7 U. S. Geological Survey dune classification 233
9.8 Dune classification of Ahlbrandt and Fryberger 233
9.9 Tsoar’s dune classification 234
9.10 Some Arabic terms for dunes 234
9.11 Dune cycles 234
9.12 Interdunes, or shuquq 236
Contents

10 Sources of sand for Arabian sand dune deserts

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Sand sources for the Rub' al Khali desert</td>
<td>239</td>
</tr>
<tr>
<td>10.2</td>
<td>Sources of sand for An Nafud (The Great Nafud Desert)</td>
<td>248</td>
</tr>
<tr>
<td>10.3</td>
<td>Sources of sand for Ad Dahna (Ad Dahana)</td>
<td>251</td>
</tr>
<tr>
<td>10.4</td>
<td>Sources of sand for the Nafud al Mazhur</td>
<td>252</td>
</tr>
<tr>
<td>10.5</td>
<td>Sources of sand for the Nafud ath Thuwayrat</td>
<td>253</td>
</tr>
<tr>
<td>10.6</td>
<td>Sources of sand for the Buraydah anfad</td>
<td>253</td>
</tr>
<tr>
<td>10.7</td>
<td>Sources of sand for Nafud al 'Urayq</td>
<td>254</td>
</tr>
<tr>
<td>10.8</td>
<td>Sources of sand for Nafud ad Dahi</td>
<td>254</td>
</tr>
<tr>
<td>10.9</td>
<td>Sources of sand for anfad of the southern Arabian Shield</td>
<td>255</td>
</tr>
<tr>
<td>10.10</td>
<td>Sources of sand for 'Irq al Wadi</td>
<td>255</td>
</tr>
<tr>
<td>10.11</td>
<td>Sources of sand for Al Jafurah desert</td>
<td>255</td>
</tr>
<tr>
<td>10.12</td>
<td>Sources of sand for the Ramlat as Sab’atayn</td>
<td>257</td>
</tr>
<tr>
<td>10.13</td>
<td>Sources of sand for the south-eastern Qatar dunefield</td>
<td>258</td>
</tr>
<tr>
<td>10.14</td>
<td>Sources of sand for the Ramlat al Wahibah (Wahiba Sands)</td>
<td>259</td>
</tr>
<tr>
<td>10.15</td>
<td>Sources of sand for the Sinai desert</td>
<td>260</td>
</tr>
<tr>
<td>10.16</td>
<td>Sources of sand for the dunefields of Iraq and Kuwait</td>
<td>260</td>
</tr>
<tr>
<td>10.17</td>
<td>Sources of sand for the dunefields of Wadi Araba, South-Western Jordan</td>
<td>261</td>
</tr>
</tbody>
</table>

11 Mechanisms of sand accumulation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Aeolian sand transport</td>
<td>263</td>
</tr>
<tr>
<td>11.2</td>
<td>Aeolian sand accumulation</td>
<td>268</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Aeolian ripples</td>
<td>269</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Dune sand accumulations</td>
<td>270</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Sand sheets and sand streaks</td>
<td>277</td>
</tr>
</tbody>
</table>

12 Sedimentology of Arabian dune sands

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>General sedimentological characteristics</td>
<td>281</td>
</tr>
<tr>
<td>12.2</td>
<td>Granulometry of Arabian aeolian dune sands</td>
<td>281</td>
</tr>
<tr>
<td>12.3</td>
<td>Roundness of aeolian dune sands</td>
<td>286</td>
</tr>
<tr>
<td>12.4</td>
<td>Surface texture of aeolian dune sands</td>
<td>288</td>
</tr>
<tr>
<td>12.5</td>
<td>Grain coatings and dune colour</td>
<td>289</td>
</tr>
<tr>
<td>12.6</td>
<td>Mineralogical composition of Arabian dune sands</td>
<td>293</td>
</tr>
</tbody>
</table>

13 Desert dust and loess

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1</td>
<td>Dust Formation</td>
<td>298</td>
</tr>
<tr>
<td>13.2</td>
<td>Dust Sources</td>
<td>298</td>
</tr>
<tr>
<td>13.3</td>
<td>Loess</td>
<td>304</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Alluvial loess of central Sinai</td>
<td>305</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Buried loess of the Sinai Desert</td>
<td>305</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Loess-like soils of Wadi Yatimah (Wadi Yutamah)</td>
<td>306</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Loess of the Tihamat Asir</td>
<td>306</td>
</tr>
<tr>
<td>13.3.5</td>
<td>Loess-like silt in western Saudi Arabia</td>
<td>306</td>
</tr>
</tbody>
</table>
13.3.6 Loess of lava tubes in harrah of western Saudi Arabia 306
13.3.7 Loess in lava tube caves of Harrat Khsib 306
13.3.8 Loess at Tabah 307
13.3.9 Loess and loess-like soil of Yemen 307
13.3.10 Cave loess of Dhofar, southern Oman 308
13.3.11 Loess in Ra's al Khaimah 308
13.3.12 Loess at Tall Leilan, northern Syria 308

14 Stony and rocky deserts of Arabia 309
14.1 Stony Deserts of Arabia 309
14.1.1 Najd of interior southern Yemen 310
14.1.2 Najd of interior Dhofar, southern Oman 310
14.1.3 Jiddat al Harasis stony desert 310
14.1.4 Interior Oman-eastern Emirates bajada 312
14.1.5 Stony desert of the western Rub’ al Khali 315
14.1.6 Wadi Bishah-Wadi Ranyah-Wadi as Subay’ gravels 316
14.1.7 Stony deserts of the south–western Rub’ al Khali 316
14.1.8 Nafud ad Dahi gravels 317
14.1.9 Wadi as Sahba’ stony desert 317
14.1.10 Wadi al Judwal gravels 318
14.1.11 Wadi al Maqran gravels 319
14.1.12 Sahl Rukbah 319
14.1.13 Stony deserts within the central Arabian escarpments 319
14.1.14 Ad Dibdibba stony desert and giant alluvial fan or delta 321
14.1.15 Wadi al ‘Atk gravel plain 322
14.1.16 Wariah ridge gravels 323
14.1.17 Al Jafr Depression gravels 323
14.1.18 Qa’alat al Hasa fluviatile and lacustrine deposits 323
14.1.19 Upper Euphrates River terraces 323
14.1.20 Northern Saudi Arabian hamadah 325
14.1.21 South Jordan hamadah 325
14.1.22 Syrian Desert hamadah 325
14.1.23 North-western Tabuk gravels 326
14.1.24 As Sahn gravel plain 326
14.1.25 Desert pavements of Bahrain 327

14.2 Rocky Deserts of Arabia 327
14.2.1 Extent of rocky deserts in Arabia 327
14.2.2 Harrah of Saudi Arabia 327
14.2.3 Harrah of Yemen 338
14.2.4 Harrah of Syria 343
14.2.5 Harrah of Jordan 347
14.3 Arabian Shield Rocky Desert 347
14.4 Sinai Rocky Desert 349

15 Deserts of interior drainage basins 351
15.1 Claypan Deserts (qa’ or Khabra’ Deposits) of Arabia 351
 15.1.1 Al Jafr area 351
 15.1.2 Mudawarrah Depression 351
 15.1.3 Qa’ al Azraq area 353
 15.1.4 Wadi as Sirhan Basin 356
 15.1.5 Wadi at Turbal area 356
 15.1.6 Qa’ Hazawa 357
 15.1.7 Qa’ ash Sharfidah 357
 15.1.8 Qa’ al Kafqah 357
 15.1.9 Khabra’ al Arn 358
 15.1.10 Faydat al Mislah 358
 15.1.11 Al Safwah al Yamaniyah 358
 15.1.12 Khabra’ al Hawar 358
 15.1.13 Al Mundafan area 358
 15.1.14 South-western and central Rub’ al Khali lake deposits 358
 15.1.15 Kuwaiti khabra’ deposits 358
 15.1.16 Syrian khabra’ deposits 359

15.2 Lacustrine Deposits 361
 15.2.1 Dead Sea (Al Bahr al Mayyit) and Lake Lisan 361
 15.2.2 Qa’ al Jafr seasonal lake 362
 15.2.3 Qa’ al Azraq (Azraq Oasis) 363
 15.2.4 Ghadir Burqu 364
 15.2.5 Qa’ Khanna (Qa’ Hanna) 364
 15.2.6 Qa’ Disa (Qa’ Disi) 364
 15.2.7 Al Mudawarrah Pleistocene palaeolake 364
 15.2.8 Sinai palaeolakes 364
 15.2.9 Wadi as Sirhan seasonal lake 364
 15.2.10 Bahriyat al Hijanah (Bahret el Hijane) 365
 15.2.11 Bahriyat al Aateibah (Bahret el Aateibe) 365
 15.2.12 Palmyra lake basin 366
 15.2.13 Hawr al Hammar 368
 15.2.14 An Nafud palaeolakes 368
 15.2.15 Dumat al Jandl lake 370
 15.2.16 Wadi Hanifah – Wadi al Luhy terraces and palaeolake 371
 15.2.17 Al Hasa palaeolakes 371
 15.2.18 ‘Uyun al Aflaj 372
 15.2.19 Jabrin palaeolake 372
 15.2.20 Umm as Samim 373
15.2.21 Palaeolakes of the south-western Rub‘ al Khali
15.2.22 Wadi ad Dawasir palaeolakes
15.2.23 Dhamar palaeolakes
15.2.24 Ramlat as Sab‘ atayn palaeolake (Al Hawa)

15.3 Continental or Inland Sabkha
15.3.1 Umm as Samin
15.3.2 Sabkhat Fuwat ash Sham
15.3.3 Sabkha of the Jabrin area
15.3.4 Sabkha of Batn at Tarfa
15.3.5 Interdune sabkha of the ‘Uruq al Mu’taridah
15.3.6 Sabkha areas in An Nafud Desert
15.3.7 Sabkhat al Milh
15.3.8 Sabkha areas near Buraydah
15.3.9 Ba‘qa sabkha
15.3.10 Wadi as Sirhan sabkha
15.3.11 Sabkha areas of Iraq
15.3.12 Syrian sabkha areas
15.3.13 Sabkha areas of Jordan
15.3.14 Tab’a sabkha
15.3.15 Ad Dafliya sabkha

16 Coastal deserts of Arabia
16.1 Coastal Alluvium
16.1.1 Tihamah alluvial plain and pediment
16.2 Coastal Sand Dunes
16.2.1 Sahil al Jazar
16.2.2 Sahil Jinawt
16.2.3 South-eastern Qatar dunefield
16.3 Coastal Evaporite Deserts (sibakh) of Arabia
16.3.1 Coastal United Arab Emirates sibakh
16.3.2 Qatar sabkha areas
16.3.3 Bahrain sibakh
16.3.4 Sabkha as Sikuk
16.3.5 Qurayyah sabkha
16.3.6 Sabkaht ar Riyas
16.3.7 Sabkhat ad Dabbiyah
16.3.8 Sabkhat al Fasl
16.3.9 Sabkhat al Murayr
16.3.10 Safaniyah-Manifa sabkha areas
16.3.11 South Kuwait sibakh
16.3.12 North Kuwait sibakh
16.3.13 Sabkha in Oman
16.3.14 Sabkha areas in Yemen
16.3.15 ‘Gavish’ or Naqb sabkha, eastern Sinai
16.3.16 Ra’s Muhammad sabkhab, south Sinai
16.3.17 Sabkhat al Burduwil
16.3.18 Saudi Red Sea coastal sabkhab
16.4 Desert Deltas
16.4.1 Shatt al Arab delta
16.4.2 Ad Dibibba delta
16.4.3 Wadi ad Dawasir ‘delta’
16.4.4 Wadi as Sahba’ delta
16.5 Coastal Inlets of Arabia
16.5.1 Barred inlets
16.5.2 Inlets with partial barriers
16.5.3 Tidal inlets
16.5.4 Drowned valley inlets
16.5.5 Inlets with structural control
16.5.6 Estuarine inlets
16.6 Arabian Desert Islands
16.6.1 Desert islands of the Arabian side of the Persian Gulf
16.6.2 Desert islands off the southern coast of Arabia
16.6.3 Desert islands of the Arabian side of the Red Sea

17 Desert plains, steppes, and plateaux
17.1 The Syrian desert
17.1.1 Desert plains of eastern Syria and western Iraq
17.1.2 Desert plains of northern Saudi Arabia
17.2 Desert Steppes of Northern Syria
17.3 Arabian Desert Plateaux
17.3.1 Hadramawt Plateau
17.3.2 Plateau mountains of Dhofar, southern Oman
17.3.3 Jawf-Ma’rib plateau, Yemen
17.3.4 Hejaz and Asir plateaux
17.3.5 Hishmah-Tubayq plateaux
17.3.6 Midyan mountains (Ash Shifa’)
17.3.7 Plateau of south and central Sinai
17.3.8 Eastern Jordanian plateau
17.3.9 Ash Shamiyah (Chami) plateau
17.3.10 Widyan plateau
17.3.11 As Summan plateau
17.3.12 Ghawar-Shedgum plateau

18 Mountain deserts of Arabia
18.1 Distribution of mountain deserts in Arabia
18.2 Oman mountains (Al Hajar)
18.3 Musandam peninsula and the Ru’us al Jibal
18.4 Mountains of western Arabia 450
18.5 Mountain escarpments of the Interior Homocline 453
18.6 Palmyrides (Palmyrene Rungenes) 456
18.7 Jabal Sinjar 458
18.8 Jabal ‘Abd al ‘Aziz 460
18.9 Mount Lebanon and the Anti-Lebanon 460

19 Dating methods as applied to Arabian deserts and deposits 465
19.1 Radiometric Methods 465
19.1.1 Carbon-14 method 465
19.1.2 Tritium method 467
19.1.3 Uranium–Thorium method 467
19.1.4 Uranium–Protactinium method 468
19.1.5 Potassium-dating 468
19.1.6 40Ar/39Ar dating 471
19.1.7 Rubidium–Strontium method 471
19.1.8 Uranium–Lead method 471
19.1.9 Lead-210 (210Pb) dating 471
19.1.10 Deuterium–Hydrogen method 472
19.1.11 Caesium-137 method 472
19.1.12 Cl-36, Be-10 and Al-26 cosmogenic isotope dating 472
19.1.13 Fission track dating 472
19.1.14 Thermoluminescence (TL) dating 473
19.1.15 Luminescence dating 473
19.1.16 Electron spin resonance (ESR) dating 474
19.1.17 Cation ratio dating 475
19.2 Incremental Methods 475
19.2.1 Dendrochronology 475
19.2.2 Varve chronology 476
19.2.3 Annual ice layer chronology 476
19.2.4 Annual rings and layers in corals 476
19.3 Age Equivalent Horizons or Isochrons 477
19.3.1 Palaeomagnetism, magnetostratigraphy 477
19.3.2 Tephrochronology 479
19.3.3 Oxygen isotope stratigraphy 479
19.3.4 Carbon-13 isotope (δ13C) stratigraphy 484
19.4 Chemical Methods of Relative Chronology 484
19.4.1 Obsidian hydration analysis 484
19.4.2 Flourine dating 484
19.4.3 Amino acid racemization dating 484
19.5 Palaeontological Dating Methods 485
19.5.1 Marine microfossil zonation of the Quaternary 486
19.5.2 Palynology 487
19.5.3 Phytoliths 487
19.6 Hominid evolution and Quaternary Chronology in Arabia

19.6.1 Hominid evolution and Quaternary chronology in Arabia

19.6.2 Archaeological cultural stages in Arabia

19.6.3 Developmental tool stages

19.7 Vertebrate Palaeofaunal Sequence in Arabia

20 Evolution of Arabian deserts and their chronology

20.1 Late Precambrian erosional surface

20.2 Late Cretaceous exhumation of the “Najd peneplain”

20.3 Late Eocene uplift

20.4 Oligocene volcanism and rocky basalt desert

20.5 Miocene volcanism and aeolian deposits

20.6 Pliocene volcanism and alluvial gravel deposits

20.7 Early Pleistocene alluvial deposits, advent of Man in Arabia

20.8 Middle Pleistocene alternating semi-arid and arid conditions (0.78–0.126 Ma)

20.9 Late Pleistocene (126–11.5 Ka) and Last Glacial Maximum

20.10 Holocene ‘Neolithic Wet Phase’, late aridity, (11,500 BP to present)

20.11 A summary of Late Cenozoic palaeoenvironments in Arabia

Acronyms

References

A Glossary of Arabic Terms for Arabian Deserts

Index of Geographical Names
Preface

More than 50 years ago I went to Arabia as a young geologist and was fascinated by its desert landforms and its hospitable people. In retrospect, I have spent more than half my life there, first in exploration for oil, and a greater part in geological education. As I have travelled widely in Arab countries, it seemed only appropriate to put together my thoughts and observations on the varied desert landforms of Arabia that have so impressed me.

When I first arrived in Arabia in 1954, it was sparsely populated and many tribal people had never seen a motor vehicle before. Our efforts then resulted in the discovery of the first oilfield in Oman, at Marmul in 1955. Now, oil wealth has transformed Arabia, so that many of its people live in air conditioned housing and, even opulence, quite different from their forebears. Nevertheless, the great majority of Arabia’s 120 million inhabitants still live in desert conditions, and only some areas like Lebanon, western Syria, and parts of the Yemen highlands have milder climates.

The great sand dune deserts of Arabia are amongst the largest in the world and Ar Rub’ al Khali, or the Empty Quarter, is the world’s largest continuous sand desert. Where else can one find great linear dunes, which the Arabs call ‘uruq or veins, running for hundreds of kilometres, indeed, up to 500 km long for a few individual ‘uruq? Many other giant transverse sand dunes also extend for over 100 km and are up to 230 m high. Here, I have attempted to record, classify, and explain the great many different forms of sand dunes encountered in Arabia covering an area the size of France and Britain combined. My observations on the ‘Evolution of the Rub’ al Khali Desert’ were first published in 1989.

These sand deserts are far from the only deserts in Arabia, and vast areas of western Saudi Arabia, Jordan, Syria, and Yemen are covered by the rugged terrain of lava fields, or harrah, some of quite recent origin. Their black surfaces absorb maximum heat, unlike the light reflective sand deserts, and form a particularly inhospitable type of rocky desert. Widespread gravel deserts known as hamadah also cover large parts of northern Arabia, including much of the Syrian Desert.

Along the coasts of Arabia, extensive saline flats are so well developed, that they have been adopted by geologists as the type for sabkhab, whose gypsiferous deposits develop into anhydrite, an important cap rock in oilfields worldwide. These sabkhab areas not only form distinctive saline deserts along the coasts of
the southern Persian Gulf and eastern Red Sea, but are also found inland as widespread continental sabkha where saline groundwater is near the surface.

In the hot arid environment of most of Arabia with evaporation exceeding rainfall by more than one hundred times, drainage is almost all in the form of dry watercourses known as wadis, or more correctly widyans. Their flow is so infrequent as to lead to the formation of many enclosed drainage basins often with claypan deposits, known locally as qa’, or khabra’. These frequently cover large areas and are another type of desert.

Even the plateaux and mountains of Arabia are generally so dry that they constitute two further types of deserts with difficult terrain and their own characteristics. The large Hadramawt Plateau of southern Yemen and Al Hajar, or Oman Mountains, of northern Oman are examples of these desert types.

In this book, I have attempted to cover all of Arabia and all the various types of deserts that are found there. Examples are given for each type and these are mostly illustrated by photos taken in the course of my work and travels throughout Arabia from 1954 onwards. In some cases colleagues have kindly provided additional photos. In other cases I have relied upon satellite imagery, especially NASA’s near-infrared Landsat 7, and Aster images made available by the U. S. Geological Survey, as well as occasional high resolution scenes released by SPOT Image. The seamless Landsat 7 2000 series imagery from NASA’s John C. Stennis Space Center has proved especially useful.

I have lived and worked in Oman, Saudi Arabia, and Lebanon, in addition to field work in Syria, Jordan, and Kuwait, as well as travels in Iraq, Yemen, and in Palestine before 1967. These experiences have given me a fairly comprehensive coverage of the deserts of Arabia. Some of my observations and interpretations are already published in some 24 publications on various aspects of the geology, geomorphology and hydrogeology of Arabia, as well as in 20 reports, 6 of which are coauthored.

Although I have taken considerable care with details of places and facts, some readers may find other place names more suitable. Here, I have followed the instructions of the Permanent Committee for Geographic Names with regard to Arabic place names. So many Arabic terms have been used or misused in the geological literature that I have felt it necessary to append a Glossary of Arabic Terms for Arabian deserts, to which the reader may refer.

Early European travellers too found a certain fascination with the deserts of Arabia, and it is interesting to see that one of the few reasonable published accounts of the 57,000 km² An Nafud Desert and much of northern Saudi Arabia is by Lady Anne Blunt in 1881. A good description of the terrain and lava fields of northern Arabia is also given by Doughty (1888). Classic travel accounts of Ar Rub’al Khali Desert are given in the books of Thomas (1932), Philby (1933), and Thesiger (1959).

Apart from major map sources, I have gone carefully through a multitude of available publications on or related to, the deserts of Arabia and have tried to incorporate their main findings.
Since the Arabian American Oil Company (now the Saudi Arabian Oil Company) became established in 1948, numerous geological surveys of Saudi Arabia took place mostly published as a series of detailed maps by the U. S. Geological Survey beginning in 1963. The author prepared the first geological map of southern Oman in 1956. For the Oman Mountains of northern Oman a team of Shell Oil geologists prepared the first published map in 1974 (Glennie et al., 1974). Details for the Syrian Arab Republic by a team of Russian geologists are integrated in the work of Ponikarov et al., (1967). The basic references for Jordan are the 1968 ‘Geologische Karte von Jordanien’ by the Bundesamt für Bodenforschung and Bender’s ‘Geologie von Jordanien’ (1968). For much of Yemen one has to still rely on the work of von Wissmann et al., (1942), although Beydoun’s geological accounts of the East Aden Protectorate, now southern Yemen (1964, 1966) are still relevant. For Iraq, a comprehensive map in 2 sheets published by the Directorate General of Geological Survey and Mineral Investigation in 1986 provides coverage at a scale 1: 1 million.

All the above works are essentially geological and pay little attention to the nature of desert landforms, their origin and development. This book considers the many aspects of Arabian deserts not only as developing landforms, but also in relation to climate, palaeoclimate, ecology, and sedimentology. I have attempted to trace the history of the development of the deserts of Arabia and to show the ways in which these have been dated, as well as to indicate further methods by which they may be dated and studied.
List of Illustrations

Chapter 1. Definitions of deserts.

Fig. 1.1. Position of the Inter-Tropical Convergence Zone (ITCZ) in Arabia during summer (July to September) between the South–West Monsoon and the north-westerly winds (left), and on the right during winter (December to February), with north–easterlies blowing from India.

Fig. 1.2. Köppen-Geiger climate classification map of Arabia and surroundings.

Fig. 1.3. Climatic zones in Arabia. Grey areas are semi-arid, white areas are arid. Dotted areas like the Rub’ al Khali, are extremely arid. Letters are: E = extremely arid; A = arid; B = semi-arid; a = no marked rainfall season; b = summer rain; c = winter rain. The first digit is mean temperature of the coldest month; second digit is mean temperature of the warmest month on the scale: 0 = < 0°C to 10°C; 2 = 10°C to 20°C; 3 = 20°C to 30°C; 4 = > 30°C. (Modified from Meigs, 1953).

Fig. 1.4. Normalized Difference Vegetative Index (NDVI) Map of Arabia for May 2003 (Image courtesy of NOAA 2003).

Fig. 1.5. Albedo image of Arabia. Dark areas are volcanics, or ophiolites. Bright yellow and red brown areas are desert (MODIS image modified from NASA and Tsvetsinskaya et al., 2002).

Chapter 2. Types of deserts and landform regions of Arabia.

Fig. 2.1. Digital Elevation Model (DEM) of Arabia showing relief features. A mosaic constructed from four NIMA DEM images. Some irregular high in the central and western Rub’ al Khali are computer artifacts in the original DEM. (Source: NIMA).

Fig. 2.2. Topographic map of Arabia, contours labelled in metres. Scale: 1:22,000,000. (Modified from data in Hearn et al., 2003).
Fig. 2.3. Ferruginous duricrust, or laterite capping, developed on the Lower Cretaceous Biyadh Sandstone, near As Sulayyil, Saudi Arabia. (Photo by H. S. Edgell).

Fig. 2.4. Karst sinkhole, or dahl, in the Paleogene Umm er Radhuma limestone in the As Summan Plateau, north–eastern Saudi Arabia. (Photo by H. S. Edgell).

Fig. 2.5. Geomorphological provinces of Arabia.

Fig. 2.6. Part of the Precambrian Solat area of southern Oman (geomorphological province 4, Fig. 2.5) seen here at the town of Mirbat (Murbat), with Upper Proterozoic reddish brown sandstones, siltstones, and basal fluvi-glacial beds of the Murbat Formation in the middle distance and forming the mountain slopes. Jabal Samhan, beneath the clouds, is the eastern part of the Hadramawt-Dhofar Plateau (geomorphological province 24, Fig. 2.5), and consists of Paleogene limestones underlain by Cretaceous carbonates, marls, and a basal sandstone. The subhorizontal Tertiary-Cretaceous sequence rests with pronounced angular unconformity on the north-dipping Proterozoic sediments, which in turn rest with nonconformity on older, Upper Proterozoic igneous and metamorphic rocks. Here the whitish rocks on which Mirbat is built belong to the 706 ma Mirbat Granodiorite. (Photo by H. S. Edgell).

Fig. 3.1. Geological map of Arabia with legend (Modified from data in Hearn et al., 2003).

Fig. 3.2. Arabian Plate and its separation from the African Plate, showing its relation to adjacent tectonic plates. Rates and direction of plate movements are indicated by arrows. (Base map modified from Jacob and Quittmayer (1979); plate movements after McKenzie (1972), McCluskey et al., (2003), and Regard et al., (2004), with additions).

Fig. 3.3. Major tectonic zones of Arabia. (Modified from Henson, 1951).

Fig. 3.4. Major structural features of Arabia. (Modified from Edgell, 1997a).

Fig. 3.5. Tectono-sedimentary provinces of Arabia (Modified from Pollastro et al., 2003).

Fig. 3.6. Stratigraphic sequence in various parts of Arabia. (Standard divisions from the International Commission on Stratigraphy, International Stratigraphic Chart 2004).

Fig. 3.7. Natural bridge, Hanun, southern Oman. (Photo by H. S. Edgell).

Fig. 3.8. Zeugen, or pedestal rock undercut by wind erosion near Wadi Rum, southern Jordan. (Photo by kind permission of Yoshiko Okonogi).
Chapter 4. Influences of climate.

Fig. 4.1. a. Cross section of large linear dunes, or ‘uruq with cloud streets formed above the inversion level by convection cells. b. Schematic diagram showing roll-type producing cloud streets, and their relation to linear dune formation. Vector V_g is the geostrophic wind vector (Modified from Le Mone, 1973).

Fig. 4.2. Cloud streets, or cloud lanes, over Ras Madrakah, in eastern Oman and the adjacent Arabian Sea. Image width is 100 km and the cloud streets are spaced about 6 km apart. (Image courtesy of Image Analysis Laboratory, NASA Johnson Space Center).

Fig. 4.3. Mean January (winter) isotherms for Arabia.

Fig. 4.4. Mean July (summer) isotherms for Arabia.

Fig. 4.5. Mean annual precipitation in millimetres for the Rub’ al Khali and adjacent areas. Isohyets constructed by the author from raw data.

Fig. 4.6. Mean annual precipitation in millimeters for Arabia.

Fig. 4.7. Relative Humidity for Arabia (January).

Fig. 4.8. Relative Humidity for Arabia (late June).

Fig. 4.9. Winter winds (December-February). (from “Saudi Arabian Wind Energy Atlas”, Al-Ansari et al., 1986).

Fig. 4.10. Summer winds (June-August). (from “Saudi Arabian Wind Energy Atlas”, Al-Ansari et al., 1986).

Fig. 4.11a. The Kharif or South–West Monsoon, with its moisture-laden winds blowing against cliffs of Paleogene Umm er Radhuma Formation, Jabal Qara escarpment, Dhofar, Oman. (Photo credit S. Al-Yafei).

Fig. 4.11b. The Jabal Qara mountain plateau in Dhofar, southern Oman during the Kharif, or South–West Monsoon. There is a bright green grass cover in the middle of summer, which lasts only a month or two from July through August. Note the misty, drizzly conditions, as seen on the horizon. (Photo by H. S. Edgell).
Fig. 4.12. Prefrontal dust storm of 25 March 2003. The barbed line marks the cold front strengthened by polar jet stream (PFJ) behind the front and the subtropical jet stream (STJ) in front of it. Widespread rain followed this front in northern Arabia. (Source: UCAR).

Fig. 4.13. Map of Annual Mean Wind Speed for Saudi Arabia, showing low wind speed areas in the north–central Rub’ al Khali and around Ha’il, and high wind speeds in the coastal plain of north–eastern Saudi Arabia and Kuwait. (from “Saudi Arabian Wind Energy Atlas”, Al-Ansari et al., 1986).

Fig. 4.14. Directions of aeolian sand movement in the Arabian Peninsula (After Holm 1961, Fig. 8, courtesy of the Saudi Arabian Oil Company).

Fig. 4.15. Landsat 7 near infrared image of the eastern United Arab Emirates and northern Oman, showing the east to north–east trending, large linear dunes, or ‘uruq, said to be anomalous to present-day winds, and their influence on coastal promontories (ru’us) and inlets (akhwar). Image width is 230 km. (Part of U. S. Geological Survey “Landsat Image Mosaic of the Arabian Peninsula” Map USGS-OF-02-11).

Fig. 4.16. Mada’in Salih in the western Tabuk Basin, northern Saudi Arabia showing wind abrasion of over 1 m during the last two millennia at the base of a rock-cut tomb on the lower left. (Photo credit Saudi Resources).

Fig. 4.17. Striation and grooving in the Lower Eocene Rus Formation, due to wind erosion, as seen on the campus of King Fahd University of Petroleum and Minerals, Dhahran, north–eastern Saudi Arabia. (Photo by H. S. Edgell).

Fig. 4.17b. A general view of striations and grooving produced by wind erosion on the Lower Eocene Rus Formation on the campus of King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia. (Photo by H. S. Edgell).

Fig. 5.1. Ecological Regions of Arabia (Developed from the World Wildlife Fund for Nature divisions).

Fig. 5.2. Tussocks of the sedge Cyperus conlomeratus Rottb. s. l., and the vascular flowering plant Tribulus arabicus Hosni on sand dunes near Ash Shaybah (Identifications by J. P. Mandaville and H. S. Edgell, photo from M. Rasheeduddin).

Fig. 5.3. A typical Boswellia sacra in the najd of interior Dhofar, near Hanun. The Bedouin cut the bark for the sap to ooze out, congealing as frankincense (Photo and identification by H. S. Edgell).

Fig. 5.4. The thickly wooded south-facing eastern Jabal Qara near Darbat, dominated by the forest tree Anogeissus dhofarica Scott, part of the so-called Arabian Fog Desert. (Photo and identification by H. S. Edgell).
Fig. 5.5. The date palm Phoenix dactylifera growing wild in the western Sinai Peninsula, part of the Red Sea Coastal Desert. The adjacent outcrops are Nubian Sandstone.

Fig. 5.6. Dikakah terrain near Abu Hadriyah, Eastern Province, Saudi Arabia with sand anchored by grass clumps of Panicum turgidum Forssk. (Botanical identification by J. P. Mandaville).

Fig. 5.7. Phragmites growing along the Aftan, or Hofuf River outflow from Al Hasa oases to the Gulf of Bahrain. (Photo from the ‘Water Atlas of Saudi Arabia’).

Fig. 5.8. A bush of Calligonum comosum in the Eastern Province of Saudi Arabia. (Photo credit N. Al-Homaid). (Identification by H. S. Edgell confirmed by J. P. Mandaville).

Fig. 5.9. The oil development facilities of Ash Shaybah, mainly gas-oil separator plant (GOSP) between the megabarchanoid dunes of the ‘Uruq ash Shaybah in the eastern Rub’ al Khali Desert (Photo credit AramcoExpats wwwaramcoexpatscom101_716jpg).

Fig. 5.10. A satellite view of oil development facilities at Ash Shaybah, in the eastern Rub’ al Khali among giant megabarchans, showing their relatively small scale in relation to the huge dunefields in which they are situated. Facilities include gas/oil separation plant (left), airfield, numerous roads, and housing and administration (right). It is a measure of the stability of these old megadunes that roads have been constructed across them, in front of slipfaces, and even along their crests (middle right). Estimated elevation of airfield is 75 m and the dune to SW has an estimated elevation of 148 m. Part of a dune NW of the airfield has been cut back to make extra space. Image width is 11.7 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 5.11. Areas of desertification in Arabia. Much of Arabia is hyper-arid, but severe desertification occurs in Jordan, Syria, and much of Iraq. Moderate desertification in the Arabian Shield and Oman Mountains, but only slight in the inner Hadramawt and Jiddat al Harasis of Oman. (Extract from a map of desertification in Asia by Drenge 1986).

Chapter 6. Watercourses and rivers of Arabia.

Fig. 6.1. Flash flood on the old Ta’if-Abha road in Wadi Turbah (Photo by H. S. Edgell).

Fig. 6.2. Major Plio-Pleistocene alluvial fans of the Arabian Peninsula (After Edgell 1989a).

Fig. 6.3. The Jordan River, Lake Tiberias and the Dead Sea. The light areas around the Dead Sea give an indication of its former extent in the Late Pleistocene. Note the Yarmouk River entering the Jordan River from the east just below Lake Tiberias, Wadi az Zarqa.
entering from the east midway between Lake Tiberias and the Dead Sea, and Wadi al Mujib entering the Dead Sea also from the east. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 6.4. Detailed drainage pattern for Arabia. Note the absence of drainage in all the major sand desert areas, which appear white or yellow. Non-perennial watercourses are in black and permanent streams or semi-permanent streams are in red, while permanently wet areas appear in blue. (Constructed from data in Hearn et al., 2003).

Fig. 6.5. Late Pleistocene drainage systems of the Arabian Peninsula, during the wetter, semi-arid interval, from 22,000 to 34,000 years ago. Wadi ad Dawasir and its tributaries, Wadi al Maqran, Wadi al Judwal, and Wadi Jawb formed one drainage system flowing across a riverine plain in the emptied Persian Gulf to join the Indian Ocean in the Gulf of Oman. (From Edgell 1989a).

Fig. 6.6. Wadi as Sahba’ showing its ancient delta-like distributaries, with the main course extending to Dawhat Sumaira and towards Sabkha Matti, while others extend to the Gulf of Salwah. Image width is 308 km. (Modified NASA Landsat Landsat 7 imagery 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 6.7. Wadi as Sahba,’ shown from lower right to near top right corner, where it enters the Persian Gulf in Dawhat Sumaira and towards Sabkha Matti, while others extend to the Gulf of Salwah. Image width is 100 km. Note North (direction of letter N). (NASA SIR-C images, flt2_33/dt027_10/2000/1862/17, 18, 19; flt2_44/dt043_10/2000/1654/13.16).

Fig. 6.8. Hofuf River, or Aftan River, flowing NE through sand dunes to Dawhat Zalum from Al Hasa oases. There are now two channels. The lower one is the Hofuf River, and the upper one is more recent overflow from waste water. Image width is 60 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 6.9. Wadi Tathlith in its southern part looking NW, showing terraces of alluvial silt incised by the present watercourse. Part of the Asir Plateau is in the left background. (Photo courtesy of P. Vincent).

Fig. 6.10. Widyan of Dhofar in south Oman, flowing northward from the narrow plateau formed by Jabal Qamar, Jabal Qara, and Jabal Samhan (From Edgell, 2004. Modified from U. S. Geological Survey Landsat 7 imagery USGS-OF-02-11; SA (IR) -342).
List of Illustrations

Fig. 6.11. Travertine filled valley of Wadi Darbat with a 130 m high cliff, called the Dahaq Thuari, facing south to the Dhofar coastal plain, southern Oman. (Photo by H. S. Edgell).

Fig. 6.12. Darbat freshwater lake in Wadi Darbat behind the Dahaq Thuari, Dhofar, southern Oman, 1955. Major St. John Armitage, with two askaris of the Sultan’s Dhofar Defence Force, and Bill Terry of the American Foundation for the Study of Man. (Photo by H. S. Edgell).

Fig. 6.13a. Wadi Hadramawl near Saiwun (Sayun). Lower slopes are clastics of the sandy Cretaceous Tawilah Group, the cliffs are of limestones of the Paleocene-Lower Eocene Umm er Radhuma Formation, and the low scarp on the skyline is the Middle Eocene Dammam Formation. (Photo by H. S. Edgell).

Fig. 6.13b. View of the south side of Wadi Hadramawl at Saiwun (Sayun). Note the cliff of Paleogene Umm er Radhuma Formation in the top left and the lower slopes of the thick Cretaceous Tawilah Group. (Photo by H. S. Edgell).

Fig. 6.13c. Geological map of the central Wadi Hadramawl from Arabsat imagery. Scale 1:1,760,500. (After Edgell 1987f).

Fig. 6.14. Najran Dam in Precambrian crystalline rocks of the southern Arabian Shield on Wadi Najran, in south-western Saudi Arabia. (Photo by H. S. Edgell).

Fig. 6.15. Widyan of the Tihamat al Yemen descending from the Yemen highlands with many closely spaced, braided watercourses, as seen near Al Mukha (Mocha). Image width is 100 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 6.16. ‘Ayun Khuddud Spring at Al Hufuf, view of the main pool. (Photo by H. S. Edgell).

Fig. 6.17. Geological cross section of the Ghawar Anticline and Al Hufuf (Hofuf) areas showing groundwater from the main Umm er Radhuma aquifer and Alat and Khobar aquifers leaking up through the karstified Dam Formation limestone to appear as springs at Al Hufuf. (Modified from B.R.G.M. 1977).

Fig. 6.18a. Old Portuguese fort on Tarut Island. A warm freshwater spring, known as the ‘women’s spring,’ emerges at the lower right below the corrugated iron, so that it is forbidden to climb the jabal. Neolithic implements were found in a crevice just above the stone wall. (Photo by H. S. Edgell).

Fig. 6.18b. The oases of Tarut Island and the nearby city of Qatif. Ra’s Tannurah is seen in the upper right corner. Image width is 20 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 6.19. Satellite image of Al Ain, the major Buraimi oasis, situated on Wadi al Ain to its south and Wadi al Jimi to its north. Jabal Hafit anticline appears in the lower mid right. Image width is 25 km.

Fig.6.20. Bahlia, an oasis town in interior Oman. View looking north from Bahlia Fort across date gardens to the Oman Mountains, or Al Hajar. (Photo by H. S. Edgell).

Fig.6.21. Balad Seet, a mountain village in Jabal Akhdar in the higher parts of the Oman Mountains, or Al Hajar Al Gharbi. (Photo reproduced by kind permission of A. Buerkert).

Fig.6.22a. Shisur sinkhole in limestones of the Middle Eocene Dammam Formation in the najd of interior Dhofar, southern Oman. Traces of an old wall can be seen around the sinkhole as it is the only waterhole for 100 km, and it exposes the Dammam aquifer. (RAF air photograph 1959).

Fig.6.22b. Shisur sinkhole looking north–west down the partly in-filled sand slope to the water in the Dammam aquifer in 1955. Geologists are Hal Knudsen and Bill Shellenberger. (Photo by H. S. Edgell).

Fig.6.23. View of Shibam looking north. This unusual city in western Wadi Hadramawt, southern Yemen, has multistoried buildings. The arid desert climate preserves the largely mud brick houses. Cliffs in the background are Lower Tertiary limestones of the Um er Radhuma Formation, and the lower slopes are sandstones and siltstones of the Cretaceous Tawilah Group. (Photo courtesy of “Yemen Times”).

Fig.6.24. View of part of the remarkably well-built wall of the ancient Ma’rib Dam on the western margin of the Ramlat as Sab’ayn, Yemen. (Photo by H. S. Edgell).

Fig.6.25. View of the entrance to Petra through the narrow Siq of Wadi Musa. This ancient city lies in the desert plateau of south–western Jordan in gorges in the Cambrian Siq Sandstone and is a type of oasis founded by careful use of water runoff. The Khazineh, an impressive tomb at the entrance to the old Nabataean city of Petra can be seen as one leaves the narrow Siq and enters Petra. (Photo by H. S. Edgell).

Fig.6.26. SPOT image of the central part of Wadi as Sirhan seen as a sinuous grey watercourse extending from top middle to lower right corner. Width of the image is 40 km. (Image courtesy of © CNES/SPOT Image 1992-1994).

Fig.6.27. View of a shiqq, or interdune, and megabarchanoid dune near Ash Shaybah. Note the line of vegetation due to seepage near dune base (centre to middle right). Bushes in the foreground are of the salt tolerant Zygophyllum community. (Photo by Shaybah road sand hazards evaluation group, Al-Hinai et al 1991).

Chapter 7. Arabian sand seas.

Fig.7.1. World sand seas larger than 12,000 km2. (Reprinted from “Sedimentology” v. 19, Wilson, I. G. Aeolian bedforms - their development and origins. 173–219. 1972, with permission of Elsevier).
Fig. 7.2. Tectonic framework of the Rub’ al Khali Basin, or Embayment (After Edgell 1989a).

Fig. 7.3. Geological map of `Ar Rub’ al Khali Desert and surrounding areas. The sands of this desert appear here in light grey. (After Edgell 2004). (See CD for colour version and legend).

Fig. 7.4. Topographical map of `Ar Rub’ al Khali Desert. Contours in metres. The border of the Rub’ al Khali is marked by a dashed line. (Map constructed from raw elevation data).

Fig. 7.5. Locality map for the Rub’ al Khali and adjacent areas.

Fig. 7.6. ‘Uruq of the south–western Rub’ al Khali showing their remarkably uniform spacing and great length due to the Taylor-Couette Effect and the Shamal. There are over 70 giant linear dunes in this Gemini space photo. The northern border of the Hadramawt is in the lower right corner. Image width is 120 km. (Image courtesy of the Image Analysis Laboratory, NASA Johnson Space Center).

Fig. 7.7. ‘Uruq, or large linear dunes in the Shaqqat al Kharitah, south–western Rub’ al Khali. Each dune is from 0.75 km to 1 km wide and 50–60 m high. Interdunes or shuquq are typically 3 to 4 km wide. Note the chevron pattern of small, linear, seif dunes on the ‘uruq and the pattern of zibar here mostly on the south–eastern side of the interdunes. Image width is 25 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.8. Uniformly spaced, large, linear dunes, or ‘uruq of the ‘Uruq al Muwarid in the south central Rub’ al Khali. These dunes extend for hundreds of kilometres. Image width is 58 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.9. ‘Uruq, or giant linear dunes of the ‘Uruq Bani Ma’arid, in the west south-western Rub’ al Khali. Dune heights range from 80 m up to 160 m. Note the numerous somewhat tangential zibar on the flanks of the ‘uruq. Image is 12 km wide centred at lat. 19.6º N; long. 45.8º E. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.10. View of the irregular crest of an ‘irq in the SW Rub’ al Khali 128 km WSW of Ash Sharawrah (Photograph credit C. Irvine and K. Long).

Fig. 7.11. View of ‘uruq with relatively level crest lines in southern “Uruq al Awarik looking NW across dune crests. (Photo credit E. Mandaville, “Saudi Aramco World” /PADIA).

Fig. 7.12. Smaller, 20 m high, closer spaced ‘uruq of the “Uruq al Awarik (top left) truncating and overriding large, 50 to 80 m high, widely spaced ‘uruq of the “Uruq al Qa’amiyat (lower right) in the south–western Rub’ al Khali. Image width is 55 km lat. 18.62” N; long. 47.32” E. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.13. Barchanoid dune ridges of Al Liwa’ advancing south–eastward onto giant megabarchans and megabarchanoid ridges. Image
width is 30 km centred at lat. 23.0º N; long. 53.2º E. (U. S. Geological Survey Aster VNIR image ID: AST_LIB.003.2019214917).

Fig.7.14a. Rows of laterally linked megabarchans standing 120 to 180 m above the intervening sabkha-surfaced interdunes in ‘Uruq ash Shaybah, north–eastern Rub’ al Khali. Note the small barchans on their surfaces (lower left centre) and more commonly a network of small sigmoidal dunes on megabarchan surfaces. Image width is 22 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig.7.14b. Small barchanoid dune ridges, 4 to 5 m high, developed on the windward side of a large megabarchan in the ‘Uruq ash Shaybah by secondary easterly winds. (Photo from Saudi Arabian Oil Company Shaybah Calendar for 2002).

Fig.7.15. Dome dunes in Ramlat Umm Gharib, southern Rub’ al Khali. The dome dunes have a pattern of short linear to reticulate seif dunes on their surfaces. Image width is 8 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig.7.16. Late Pleistocene lake bed marl deposits, Al Mundafan area, south–western Rub’ al Khali (Photo credit H. A. McClure, “Saudi Aramco World”/ PADIA).

Fig.7.17. Late Pleistocene lake bed deposits between dunes in the south–western Rub’ al Khali. (Photo credit H. A. McClure “Saudi Aramco World” 1989/PADIA).

Fig.7.18. Hippopotamus teeth from the Late Pleistocene lake beds of the south–western Rub’ al Khali. (Photo credit M. S. Shabeeb, “Saudi Aramco World” 1989/PADIA).

Fig.7.19. Dune type distribution in the Rub’ al Khali Desert and surroundings.

Fig.7.20. Geological setting of An Nafud Desert in northern Saudi Arabia annotated with standard geological symbols. The detailed drainage is added to show how An Nafud has no drainage. (Constructed from data in Hearn et al 2003).

Fig.7.21. Broad linear dunes of the central Nafud bearing giant crescentic hollows and slip faces facing east. Photo looking north–west. (After Holm, reproduced by permission of “Science”, No. 3437, Fig. 3, p. 1373, photo credit Saudi Arabian Oil Company).

Fig.7.22. Large linear dunes, or ‘uruq 40–60 m high of the north–central An Nafud with small linear dunes on their surfaces. Numerous crescentic slip faces representing lines of barchans lie mainly in the interdunes and only occasionally on the ‘uruq. Inverting the image makes the pattern clearer. Image width is 12 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).
Fig. 7.23. View of a broad linear dune in the southern An Nafud showing well-established vegetation on the nearly stabilized crescentic slip face. (Photo reproduced by kind permission of F. Oberlaender).

Fig. 7.24. Star dunes with 3–5 arms in the eastern An Nafud Desert, northern Saudi Arabia. Note their linear arrangement. Farther west, they merge into broad ‘uruq, or giant linear dunes. The darker bands are salty sabkha areas of shuquq, or interdunes. Image width is 5 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.25. Barchanoid dune ridges, here about 100 m high on the central western edge of An Nafud. Stoss slopes are relatively broad with frequent irregular seif dunes. The bare area on the west (left) consists of Palaeozoic beds swept clear of sand by westerly winds. Image width is 12 km and is clearer viewed inverted. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.26. Distribution of different dune types in An Nafud Desert.

Fig. 7.27. Lake beds of Early Holocene age, 7.5 km E. of Jubbah, southern An Nafud, northern Saudi Arabia seen on the right behind fence. Lower Palaeozoic sandstones of the Saq and Tabuk formations of Jabal Umm Silman in background and sand dune in foreground and left. (Photo credit C. Newman).

Fig. 7.28. A composite of two images showing Ad Dahna Desert extending in a great outer arc around the escarpments of the Interior Homocline from upper left corner where it joins An Nafud to near lower right edge, where it joins the Rub’ al Khali. The Arabian Shield is on the west (left) and the Nafud ad Dahi can be seen extending northward from the middle of the lower edge. Image width is 645 km. (NASA Landsat 7 images 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.29. Closely spaced linear sand dunes in the narrower northern Ad Dahna. Image width is 20 km. (Image ISS005-E-9293_1000; Courtesy of NASA Earth Observatory).

Fig. 7.30. Star dunes on ‘uruq of the north–eastern Ad Dahna in the Hawmat an Niqan area, NE Saudi Arabia, as seen in the lower four ‘uruq. Image width is 6 km. Individual star dunes are over 100 m high and up to 1.5 km in diameter. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.31. Large, chevron-shaped dune complexes of the southern Al Jafurah Desert composed of barchanoid ridges, and barchans on their leeward sides. Image width is 15 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.32. Barchan dunefield on Sabkhat ad Dabbiyah, west of Qatif. Image width is 4 km. Small nested parabolic dunes occur on the south–east (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.33</td>
<td>Wind rose for Ad Dhahran, typical for the Jafurah Desert. The red line represents wind direction (i.e., the direction winds come from) in percent. (From ‘Saudi Arabian Wind Energy Atlas, Al-Ansari et al., 1986).</td>
</tr>
<tr>
<td>7.34</td>
<td>Ramlat as Sab’atayn – a mosaic of Landsat 7 images. The sinuous linear dunes or ‘urruq are quite different from those of the Rub’ al Khali. Image width is 260 km. (Source NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).</td>
</tr>
<tr>
<td>7.35a</td>
<td>Ramlat as Sab’atayn eastern part, showing large curved linear dunes, or ‘urruq from lower centre to top right, with numerous small barchan dunes, with south-east-facing slip faces on their surfaces, and especially occurring in interdunes. An old watercourse appears near the mid line of the image and has even cut the dunes locally. Lower Tertiary limestones of the Hadramawt are dark on the lower right. Scattered outcrops of the Cretaceous Tawilah Group occur in the lower mid right. The ancient city of Shabwah lies in the white area in the lower right corner. Image width is 50 km. (U.S. Geological Survey Aster VNIR image ID: AST_LIB.003.2009436874).</td>
</tr>
<tr>
<td>7.35b</td>
<td>An enlarged view of the distinctive pattern of barchan-like hollows, with east to south-east facing slip faces, which appear rarely on large, linear dunes of the eastern Ramlat as Sab’atayn, but are quite concentrated in interdunes, or shuquq. The dunes are narrower, 30 m high, about a third the width of interdunes, and bear a pattern of short linear seif dunes. Width of the image is 12 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).</td>
</tr>
<tr>
<td>7.36</td>
<td>’Ururq of the southern Ramlat as Sab’atayn some 60 km west of Shabwah. These dunes are 30 to 50 m high. They converge towards the west and each ‘irq has a pattern of slightly oblique, linear, seif dunes on its surface. Note the small watercourse in the interdune to the NW. Image width is approximately 20 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).</td>
</tr>
<tr>
<td>7.37</td>
<td>Sand dunes of southern Ramlat as Sab’atayn near ’Ataq (Photo credit Nexen Inc).</td>
</tr>
<tr>
<td>7.38</td>
<td>Dune sand of western Ramlat a Sab’atayn almost covering the Awwam temple, locally known as Mahram Bilqis at Ma’rib, Yemen in 1983. (Photo by H. S. Edgell).</td>
</tr>
<tr>
<td>7.39</td>
<td>A satellite image of the Ramlat Al Wahibah (Wahiba Sands) consisting mainly of large linear dunes, or ‘urruq, except the narrow southern part, which consists of narrower N–S trending dunes and some sand sheet. Width of the image is 100 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).</td>
</tr>
</tbody>
</table>
Fig. 7.40. ‘Uruq of the north–western Ramlat Al Wahiba, or Wahiba Sands. Note the numerous oblique seif dunes on the surfaces of ‘uruq and the relatively narrow interdunes. Width of the image is 6 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.41. ‘Uruq of the north–eastern Ramlat Al Wahiba showing a pattern of broad, asymmetrical, north-facing mounds on their surfaces. These mounds contain a cross pattern of small sigmoidal dunes. Interdunes are narrow and often contain long seif dunes. Image width is 7.7 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 7.42. View of dunes in the north–eastern Ramlat Al Wahiba showing the hummocky nature of many ‘uruq. (Photo reproduced by kind permission of I. Barker).

Chapter 8. Lesser dunefields of Arabia.

Fig. 8.1. Nafud ath Thuwayrat seen from lower right to mid top. The Nafud as Sirr is on the lower mid image extending to Wadi ar Rimah. Nafud ash Shuqayyiqah is seen near the lower left corner and Nafud al Ghamis is just above it, including Nafud Buraydah, while Nafud at Tarifiyah is NW of Nadud as Sirr. Width of image is 133 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 8.2. Nafud ath Thuwayrat on its north–western edge with dome dunes and barchan ridges. Image width is 45 km. (U. S. Geological Survey Aster VNIR image ID: AST_LIB.003.2019083427).

Fig. 8.3. Dome dunes of Nafud as Sirr with short peripheral radiating ridges. These dunes are mostly over 1 km in diameter and up to 150 m high, but mostly 50 m high. Some seif dunes trend NNE–SSW. The black circles are centre-pivot irrigation plots. Image width is 30 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 8.4. Dome dunes on the southern end of Nafud Qunayfidah near the main road 150 km west of Ar Riyadh. These dunes have an average diameter of 1 km. Image width is 30 km. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 8.5. Linear dunes of Nafud al Ghamis (middle to lower left), including Nafud al Buraydah (lower centre), and Nafud at Tarafiyyah (top right). The city of Buraydah is seen to the left of centre. Image width is 30 km centred at lat. 26.18° N; long. 43.47° E. (NASA Landsat 7 image 2000 series, courtesy of nasa.gov/mrsid/mrsid.pl).

Fig. 8.6. Large linear dunes or ‘uruq of the Nafud al Mazhur on the left with minor small linear seif dunes on their surfaces. Giant dome dunes of the Nafud ath Thuwayrat are seen on the right.