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PREFACE

This monograph is centered around a simple and beautiful observation of
J.L. Walsh, in 1932, that if a function is analytic in a disc of radius ρ (ρ > 1)
but not in |z| ≤ ρ, then the difference between the Lagrange interpolant to it
in the nth roots of unity and the partial sums of degree n − 1 of the Taylor
series about the origin, tends to zero in a larger disc of radius ρ2, although both
operators converge to f(z) only for |z| < ρ. This result was stated by Walsh
in 1932 in a short paper [304] and proved in [87]. A precise formulation of this

and Approximation by Rational Functions in the Complex Domain [88, p. 153]).

One of the reasons why this result of Walsh was not noticed until 1980 seems
to be that it is sharp in the sense that if z = ρ2, then there exists a function f(z)
analytic in |z| < ρ, for which the difference, between its Lagrange interpolant
on the nth roots of unity and the partial sum of degree n − 1 of its Taylor
series about the origin, does not tend to zero for z = ρ2. The function which
provides this phenomenon is 1

ρ−z . In 1980 a paper authored by A.S. Cavaretta,
A. Sharma and R.S. Varga [27] gives an extension of the above result in many
new directions.

The object of this monograph is to collect the various results stemming from
this theorem of Walsh which have appeared in the literature, and to give as
well some new results. The first work which gave publicity to this subject was
a paper by R.S. Varga [82] which appeared in 1982 and later a survey paper
by A. Sharma [72] in 1986. T.J. Rivlin, E.B. Saff and R.S. Varga (all students
of Walsh) made significant contributions to extend this result. New directions
were due to V. Totik [85], K. Ivanov and A. Sharma [43], J. Szabados [80],
Lou Yuanren [202], M.P. Stojanova [76], A. Jakimovski and A. Sharma [48] and
others.

T.J. Rivlin in his brief comment on the above result in the selected papers
of Walsh, says that “...by the mid nineties the interest in this theorem had
almost disappeared. The result was probably about 200 published papers”.

xi

interesting result appears in 1935 in the first edition of his book Interpolation
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This comment encouraged us to write this monograph and to present a unified
presentation of the significant results and extensions of this theorem along with
a complete bibliography. (How T.J. Rivlin arrived at the figure of about 200
published papers is not clear to us.)

This book is easily accessible to students who have had a course in complex
variables and have gone, for example, through the book Theory of Approxima-

tion by P.J. Davis, or the book Approximation of Functions by G.G. Lorentz.
Our book is divided into 12 chapters. Chapter 1 begins with elementary results
on Lagrange interpolation to functions defined on |z| ≤ ρ and gives a proof
of the Theorem of Walsh which is the object of the present study. Chapter 2
deals with an extension of Walsh’s theorem to Hermite interpolation. Chapter
3 is concerned with an extension of Walsh’s theorem to rational functions with
given poles outside the circle |z| < ρ. Chapters 4 and 5 deal with sharpness and
converse results respectively. Chapter 6 is concerned with Padé approximation
and Walsh equiconvergence for meromorphic functions with a finite number of
given poles. Chapter 7 deals with quantitative results in the overconvergence
of meromorphic functions of Chapter 6. In Chapter 8, we turn to the study of
equiconvergence of Lagrange and Hermite interpolation for functions analytic
in an ellipse. In Chapter 9 we extend the Walsh equiconvergence by application
of methods of regular summability, which was initiated by R. Brück [16] and
continued by A. Jakimovski and A. Sharma [46]. Chapter 10 deals with Faber
expansions of analytic functions and extensions of Walsh equiconvergence results
for differences of approximation operators on Fejér and Faber nodes. Chapter
11 is concerned with corresponding results for equiconvergence on lemniscates.

We can never thank Prof. R.S. Varga enough for his kindness and constant
encouragement, advice and suggestions over several years. He has been kind
enough to go through the manuscript with constructive corrections and amend-
ments.

We are grateful to Prof. A.S. Cavaretta for his kindness and help by reading
part of this book with care and to Prof. M.G. de Bruin for his critical and
constructive help in Chapters 6 and 7. Without their help we could not complete
these chapters in their present forms.

A. Sharma is particularly grateful to his family for their encouragement and
patience with him during the preparation of this monograph. His son Raja
and his wife Sarla went “the extra mile” beyond their filial duties in caring for
him, and ungrudgingly endured his eccentricities. He records his gratefulness to
the Good Samaritan Society (Mount Pleasant Choice Center) for his care and
nursing during his illness while the work was in preparation.
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The authors acknowledge with thanks the support from NSERC grants over
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We deeply appreciate with thanks the scrupulous care of Vivian Spak in typing
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CHAPTER 1

LAGRANGE INTERPOLATION

AND WALSH EQUICONVERGENCE

1.1 Introduction

Let f(z) be a function analytic in an open domain D and continuous on the
boundary of this domain. Further let n be a positive integer, and z1, . . . , zn pair-
wise different points from D. We shall denote the (unique) Lagrange polynomial
interpolant, of degree at most n−1, of f(z) in these n zeros by Ln−1(f ; z). With
the notation ωn(z) :=

∏n
k=1(z − zk), this polynomial can be represented in the

form

Ln−1(f ; z) =
1

2πi

∫

C

ωn(t) − ωn(z)
ωn(t)

f(t)
t − z

dt,

where C may be any rectifiable Jordan curve in D containing the points z1, . . . ,

zn and z in the interior of the domain bounded by C. Indeed, this is a polynomial
of degree at most n − 1, and by Cauchy’s theorem

Ln−1(f, zk) =
1

2πi

∫

C

f(t)
t − zk

dt = f(zk), k = 1, . . . , n.

The uniqueness of this interpolant follows from the fundamental theorem of
algebra: if there existed two different interpolating polynomials, then their dif-
ference, a polynomial of degree at most n− 1 not identically zero, would vanish
at n points, which is impossible. Most often in this book, we will be concerned
with the special case when the nodes of interpolation are the nth roots of unity,
i.e., when ωn(z) = zn − 1. In 1884, Méray gave a very instructive example of a
function whose Lagrange interpolant in the nth roots of unity does not converge
to it anywhere except at the point 1. Thus if f(z) = 1/z then Ln−1(f ; z) = zn−1

is the polynomial of degree n− 1 which interpolates f(z) in the zeros of zn − 1.

For |z| > 1, lim
n→∞ zn−1 does not exist and for |z| < 1, lim

n→∞ zn−1 = 0, while

for |z| = 1, z �= 1 it diverges so that Ln−1(f ; z) converges to f(z) = z−1 only
at the point 1. The same applies to the case when f(z) = z−k, k > 0. Even for
analytic functions in the closed unit circle |z| ≤ 1, the condition

lim
n→∞

n∏

k=1

|z − zk| 1
n = |z| for |z| > 1 (1.0)

1



2 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

must be satisfied for the nodes of interpolation zk, |zk| = 1, k = 1, . . . , n, in
order to have uniform convergence of the corresponding Lagrange interpolants
in |z| ≤ 1. (For the roots of unity, this is obviously satisfied.) For functions
which are not analytic, we have the following theorem.

Theorem 1.

mann integrable) on the circumference of the unit circle Γ := {z : |z| = 1}. If
Ln−1(f ; z) is the Lagrange interpolant to f(z) in the zeros of zn − 1, then

lim
n→∞ Ln−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt, |z| < 1, (1.1)

uniformly for |z| ≤ δ < 1.

Proof. Denoting wn = exp 2πi/n, the Lagrange interpolant has the fol-
lowing representation:

Ln−1(f ; z) =
n∑

k=1

f(wk
n) · wk

n(zn − 1)
(z − wk

n)n
. (1.2)

Namely, this is indeed a polynomial of degree at most n− 1, since each wk
n is a

root of the polynomial zn − 1. Moreover,

lim
z→wj

n

zn − 1
z − wk

n

=

{
0 if j �= k,
n

wk
n

if j = k,

i.e., Ln−1(f ; wj
n) = f(wj

n), j = 1, . . . , n as stated. From the definition of the
Riemann integral, we have

F (z) :=
1

2πi

∫

Γ

f(t)
t − z

dt = lim
n→∞

1
2πi

n∑

k=1

f(wk
n)(wk+1

n − wk
n)

wk
n − z

, |z| < 1 (1.3)

and

lim
n→∞[F (z) − Ln(f ; z)] = lim

n→∞

[
1

2πi
+

zn − 1
n(wn − 1)

] n∑

k=1

wk
n(wn − 1)f(wk

n)
wk

n − z
.

Since lim
n→∞ n(wn −1) = 2πi, we see that for |z| < 1, we have (1.1). The uniform

convergence for |z| ≤ δ < 1 is also clear from the last formula. �

If f(z) is analytic for |z| < 1 and continuous for |z| = 1, then f(z) = F (z).
In order to extend this result to other operators, we shall need the following

Let f(z) be defined and continuous (or R-integrable, i.e., Rie-
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Lemma 1. Let f(z) be R-integrable on Γ and let Ln−1(f ; z) be the Lagrange

interpolant to f on the zeros of zn

p

lim
n→∞L

(p)
n−1(f ; z) =

p!
2πi

∫

Γ

f(t)
(t − z)p+1

dt, |z| < 1 (1.4)

the convergence being uniform for |z| ≤ δ < 1.

Proof. Since

Ln−1(f ; z) =
1
n

n−1∑

k=0

f(wk
n)

n−1∑

j=0

w−kj
n zj .

Differentiating the above p times with respect to z, we get

L
(p)
n−1(f ; z) =

p!
n

n−1∑

k=0

f(wk
n)wk

n

(wk
n − z)p+1

− zn

n

p∑

k=0

(
p

k

)

(n)kz−k(p − k)!
n−2∑

�=0

f(w�
n)w�

(w�
n − z)p−k+1

(1.5)

where (n)k = n(n − 1) . . . (n − k + 1). We notice that

lim
n→∞

1
n

n−1∑

k=0

f(wk
n)wk

n

(wk
n − z)p−k+1

=
1

2πi

∫

Γ

f(t)
(t − z)p−k+1

dt,

and that for any k > 0, |z|nnk → 0 uniformly for |z| ≤ δ < 1 as n → ∞. (1.4)
now follows from (1.5). �

If f (j)(z) exists along Γ for j = 0, 1, . . . , r − 1, we denote by hrn−1(f ; z) the
polynomial of degree rn − 1 which satisfies the conditions:

h
(j)
rn−1(f ; wk

n) = f (j)(wk
n), k = 1, . . . , n; j = 0, 1, . . . , r − 1. (1.6)

Then we have

Theorem 2. Let f (r−1)(z) exist and be R-integrable along Γ. If hrn−1(f ; z)
is the Hermite interpolant to f satisfying (1.6), then

lim
n→∞ hrn−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt, |z| < 1 (1.7)

and uniformly for |z| ≤ δ < 1.

Proof. For r = 1, the theorem is the same as Theorem 1; so it is enough
to consider the case when r > 1. Set

hrn−1(f ; z) = Ln−1(f ; z) +
r−1∑

j=1

(1 − zn)jPn,j(f ; z) (1.8)

− 1. Then, for any fixed nonnegative integer
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where each Pn,j(f ; z) is a polynomial of degree ≤ n − 1. Thus it is enough to
prove that

lim
n→∞Pn,j(f ; z) = 0, j = 1, . . . , r − 1, |z| < 1.

However we shall prove the stronger result that

lim
n→∞P

(�)
n,j(f ; z) = 0, j = 1, 2, . . . , r − 1, � = 0, 1, . . . , |z| < 1. (1.9)

We use induction on j. First let j = 1. Differentiating (1.8) at z = wk
n, we

obtain

wnh′
rn−1(f ; wk

n) = wnf ′(wk
n) = wnL′

n−1(f ;wk
n) − nPn,1(f ; wk

n)

(k = 0, 1, . . . , n − 1)

whence we have

Pn,1(f ; z) =
1
n

[zL′
n−1(f ; z) − Ln−1(zf ′; z)]. (1.10)

Differentiating this � times gives

P
(�)
n,1(f ; z) =

1
n

[zL
(�+1)
n−1 (f ; z) + �L

(�)
n−1(f ; z) − L

(�)
n−1(zf ′; z)] (1.11)

so that by Lemma 1, we see that (1.9) holds for j = 1. Now suppose that (1.9)
has been proved for j, 1 ≤ j ≤ r − 2. From (1.8), we deduce

w(j+1)k
n h

(j+1)
rn−1 (f ; wk

n) = w(j+1)k
n L

(j+1)
n−1 (f ;wk

n) + (−1)j+1(j + 1)!nj+1×
× Pn,j+1(f ; wk

n)

+ w(j+1)k
n

j∑

�=1

j+1∑

s=�

(
j + 1

s

)
( ds

dzs
(1 − zn)�

)
z=wk

n
P

(j+1−s)
n,� (f ; wk

n)

(k = 0, 1, . . . , n − 1).

Because of (1.6), we obtain

(−1)j+1(j + 1)!Pn,j+1(f ; z) =
1

nj+1
Ln−1(zj+1f (j+1); z) − (

z

n
)j+1L

(j+1)
n−1 (f ; z)

−
j∑

�=1

r−1∑

s=j

(
j + 1

s

)
zj+1−s

nj+1
P

(j+1−s)
n,� (f ; z)

�∑

t=1

(
�

t

)

(−1)t(nt)s.

Differentiating � times, using the induction hypothesis and Lemma 1, we see
that (1.9) holds for j + 1 and the proof is complete. �

If we set

hrn−1(f ; z) =
rn−1∑

k=0

γkzk,

then we can define the average of the partial sums of hrn−1(f ; z) and set

Arn−1(f ; z) =
1
rn

rn−1∑

j=0

j∑

k=0

γkzk.

In a similar fashion, one can establish
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Theorem 3. Let f (r−1) exist along Γ and be R-integrable on Γ. Let

Arn−1(f ; z) be the average of the partial sums of the Hermite interpolant of f(z)
satisfying (1.6). Then

lim
n→∞Arn−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt,

for |z| < 1 and uniformly for |z| ≤ δ < 1.

Proof. By a change in the order of summation we see that

Arn−1(f ; z) = zL
′
n−1(f ; z)+ z

r−1∑

k=0

(rn−k)γkzk = hrn−1(f ; z)− 1
nr

zh
′
rn−1(f ; z).

Now we see from (1.8) that

zh
′
rn−1(f ; z) =zL

′
n−1(f ; z) + z

r−1∑

k=0

(1 − zn)jP
′
n,j(f ; z) − nzn

r−1∑

j=1

j(1 − zn)j−1×

× Pn,j(f ; z).

Thus, using Lemma 1 and

lim
n→∞[hrn−1(f ; z) − Ln−1(f ; z)] = 0, |z| < 1

(which follows from (1.8)-(1.9)), we see that

lim
n→∞

z

n
h

′
rn−1(f ; z) = 0.

This, combined with Theorem 1 proves Theorem 3.

1.2. Least-Square Minimization

For m ≥ n, let Qn−1(f ; z) denote the unique polynomial of degree ≤ n − 1
which minimizes

m−1∑

k=0

|f(wk
m) − p(wk

m)|2, wm
m = 1, (2.1)

over all p(z) ∈ πn−1. If m = n, Qn−1(f ; z) is the Lagrange interpolant to f

at the nth roots of unity. If m > n, then it is easy to see that Qn−1(f ; z) is
obtained by truncating Lm−1(f ; z). More precisely if

Lm−1(f ; z) =
m−1∑

k=0

ckzk, m > n then Qn−1(f ; z) =
n−1∑

ν=0

cνzν ,
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where

cν =
1
m

m−1∑

k=0

f(wk
m)w−νk

m , ν = 0, 1, . . . , n − 1. (2.2)

To see this, we first observe that from

Lm−1(f ; z) =
1
m

m−1∑

n=0

f(wk
m)(zm − 1)wk

(z − wk
m)

it follows that the coefficient of zν in Lm−1(f ; z) is given by (2.2). If we want

to minimize (2.1) and set p(z) =
n−1∑

ν=0
pνzν , then in order to minimize

m−1∑

k=0

∣
∣
∣
∣
∣
f(wk

m) −
n−1∑

ν=0

pνwkν
m

∣
∣
∣
∣
∣

2

we need the orthogonality conditions

m−1∑

k=0

(
f(wk

m) −
n−1∑

ν=0

pνwνk
m

)
w−µk

m = 0, µ = 0, 1, . . . , n − 1.

Simplifying, we see that

m−1∑

k=0

f(wk
m)w−µk

m =
m−1∑

ν=0

pν

m−1∑

k=0

wνk−µk
m = mpµ

which proves that pµ = cµ in (2.2) and proves the assertion. From (2.2) we can
see that

Qn−1(f ; z) =
1

m(wm − 1)

m−1∑

k=0

f(wk
m)(wk+1

m − wk
m)

wk
m − z

+
zn

m

m−1∑

k=0

f(wk
m)w−(n−1)k

m

wk
m − z

= S1 + S2.

We notice that as n → ∞

|S2| = O(|z|n) = o(1) uniformly for |z| ≤ δ < 1.

Since m > n, and lim
n→∞ m(wm − 1) = 2πi we have proved

Theorem 4. If f(z) is R-integrable on Γ and if Qn−1(f ; z) is the unique

polynomial which minimizes (2.1), then

lim
n→∞Qn−1(f ; z) =

1
2πi

∫

Γ

f(t)
t − z

dt, |z| < 1 (2.3)

uniformly for |z| ≤ δ < 1.

The above theorems have a corresponding analogue for Laurent development.
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Theorem 5. Let f(z) be R-integrable on the unit circle Γ and let Qn,n(z)
be the polynomial in z and 1

z of degree n in each, which interpolates f(z) in the

zeros of z2n+1 − 1. If Qn,n(z) = qn(z) + rn(z−1), where

qn(z) = a0 + a1z + · · · + anzn, rn(z−1) = a−1z
−1 + a−2z

−2 + · · · + a−nz−n,

then 




lim
n→∞qn(z) = 1

2πi

∫
Γ

f(t)
t−z dt, |z| < 1

lim
n→∞rn(z−1) = 1

2πi

∫
Γ

f(t)
t−z dt, |z| > 1.

(2.4)

The convergence is uniform in 1
δ ≤ |z| ≤ δ < 1.

If f(z) is analytic in an annulus ρ−1 < |z| < ρ, ρ > 1 then the equations (2.4)
are valid respectively for |z| < ρ and for |z| > 1

ρ and uniformly for |z| ≤ R < ρ

and |z| ≥ 1
R > 1

ρ . Moreover

qn(z) + rn(z−1) → f(z) for
1
ρ

< |z| < ρ,

and uniformly in
1
R

≤ |z| ≤ R < ρ.

1.3. Functions Analytic in Γρ = {z : |z| = ρ}Γρ = {z : |z| = ρ}Γρ = {z : |z| = ρ}
We shall now consider functions which are analytic in the disc of radius

ρ (ρ > 1) but not in Γρ. We shall denote this class of functions by Aρ. It is
known that if f(z) ∈ Aρ and if

f(z) =
∞∑

k=0

akzk

is the power-series expansion of f(z), then the right side converges in |z| < ρ

and

lim
n→∞ |an|1/n =

1
ρ

.

If we set pn−1(f ; z) =
n−1∑

k=0

akzk, the Taylor expansion of f then pn−1(f ; z) con-

verges to f(z) for |z| < ρ, if f(z) ∈ Aρ. Similarly Ln−1(f ; z) (the Lagrange
interpolant to f on the zeros of zn − 1) also converges to f(z) only for |z| < ρ.

However the difference of Ln−1(f ; z) and pn−1(f ; z) converges to 0 for |z| < ρ2.

This beautiful observation is formulated as
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Theorem 6. Let f(z) ∈ Aρ (ρ > 1) and let Ln−1(f ; z) be the Lagrange

interpolant to f on the zeros of zn − 1. Then the sequence Ln−1(f ; z) converges

geometrically to f(z) in any closed subdomain of |z| < ρ. Moreover if pn−1(f ; z)
is the Taylor section of f(z) of degree n − 1, then

lim
n→∞ [Ln−1(f ; z) − pn−1(f ; z)] = 0, (3.1)

geometrically for any closed subdoamin of |z| < ρ2.

Proof. Since f(z) = 1
2πi

∫
ΓR

f(t)
t−z dt where R < ρ, and since

Ln−1(f ; z) =
1

2πi

∫

ΓR

f(t)(tn − zn)
(tn − 1)(t − z)

dt,

we obtain

f(z) − Ln−1(f ; z) =
1

2πi

∫

ΓR

(zn − 1)f(t)
(tn − 1)(t − z)

dt, |z| < R.

We see from the above that

limn→∞|f(z) − Ln−1(f ; z)|1/n ≤ |z|
R

,

which proves the geometric convergence for closed subdomains of |z| < ρ (since
R < ρ was arbitrary). Similarly, we have

Ln−1(f ; z) − pn−1(f ; z) =
1

2πi

∫

ΓR

(tn − zn)f(t)
tn(tn − 1)(t − z)

dt. (3.2)

Hence

limn→∞|Ln−1(f ; z) − pn−1(f ; z)|1/n ≤ max{R, |z|}
R2

, R < ρ.

The result follows from this immediately. �

The quantity ρ2 is the best possible, in the sense that for any point z on
|z| = ρ2, there is a function f(z) ∈ Aρ for which (3.1) does not hold. The
function f(z) = 1

z−ρ is a natural example since in this case

Ln−1(f ; z) − pn−1(f ; z) =
ρn − zn

ρn(ρn − 1)(z − ρ)

when z = ρ2, and we see that this difference becomes 1/(ρ − ρ2) . Many exten-
sions of Theorem 6 have recently been given. We begin with a straightforward
extension. Let us set

pn−1,j(f ; z) :=
n−1∑

k=0

ak+jnzk, j = 0, 1, 2, . . . (3.3)

where the function f(z) ∈ Aρ has the Taylor-series expansion
∞∑

0
akzk. We shall

prove below the following
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Theorem 7. If f(z) ∈ Aρ and if � ≥ 1 is any given integer, then

lim
n→∞ max

|z|≤µ

∣
∣
∣Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
∣
∣
∣
1/n

≤ µ

ρ�+1
, µ < ρ�+1 (3.4)

i.e. the convergence is uniform and geometric for all |z| ≤ µ < ρ�+1. Moreover

the region |z| < ρ�+1 is best possible in the sense that for any point z0 with

|z0| = ρ�+1, there exists a function f0(z) ∈ A0 for which (3.4) does not hold for

z = z0.

Thus if we take z0 = ρ, and f0(z) = (ρ − z)−1, then

pn−1,j(f0, z) =
ρn − zn

(ρ − z)ρ(j+1)n

and
�−1∑

j=0

pn−1,j(f0, z) =
(ρn − zn)(ρ�n − 1)
(ρ − z)ρ�n(ρn − 1)

.

It is easy to see that

lim
n→∞ min

|z|=ρ�+1

∣
∣
∣Ln−1(f0; z) −

�−1∑

j=0

pn−1,j(f0; z)
∣
∣
∣
1/n

≥ 1
ρ�+1 + ρ

> 0.

Proof. As in the proof of Theorem 6, we can express the difference on the
left in (3.4) as a contour integral

1
2πi

∫

ΓR

f(t)(tn − zn)
(t − z)(tn − 1)t�n

dt. (3.5)

For |t| = R and for all |z| ≤ µ < R < ρ�+1 (µ ≥ ρ), we have

∣
∣ t

n − zn

t − z

∣
∣ ≤ µn + Rn

R − µ
,

so that the above integral is bounded above in modulus by

MR(µn + Rn)
(R − µ)(Rn − 1)R�n

where M := maxz∈ΓR
|f(z)|. Taking nth roots we see that

limn→∞





max
|z|≤µ

∣
∣
∣
∣
∣
∣
Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)

∣
∣
∣
∣
∣
∣






1/n

≤ µ

R�+1
,



10 WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

which proves the desired uniform and geometric convergence of (2.3). �

On letting � → ∞ in (3.4), we see that

Ln−1(f ; z) =
∞∑

j=0

pn−1,j(f ; z)

which shows that if Ln−1(f ; z) =
n−1∑

ν=0
cνzν , then, it can be verified that

cν =
∞∑

λ=0

aν+λn.

In Theorems 6 and 7, we compared two processes of interpolation each of which
separately converges to f(z) only for |z| < ρ, while their difference converges to
zero in a larger region. In view of this, the above phenomenon is often termed as
“overconvergence” or “equiconvergence.” It is natural to ask whether the Taylor
polynomial pn−1(f ; z) can be replaced by the polynomial p̂n−1(f ; z) which is the
polynomial of best uniform approximation to f(z) in |z| ≤ 1. If f0(z) = (ρ−z)−1,

then

p̂n−1(f0; z) =
ρn−1 − zn−1

(ρ − z)ρn−1
+

zn−1

(ρ2 − 1)ρn−2

for all n ≥ 2. Then

Ln−1(f0; z) − p̂n−1(f0; z) =
ρn−1 − zn−1

(ρ − z)(ρn − 1)ρn−1
− zn−1(ρn−2 − 1)

(ρn − 1)(ρ2 − 1)ρn−2

and

p̂n−1(f0; z) − pn−1(f0; z) =
1

ρ(ρ2 − 1)
(z

ρ

)n−1

which converges to zero only for |z| < ρ. If f(z) ∈ Aρ and is also continuous
in Dρ := {z : |z| ≤ ρ}, it is natural to ask if this stronger hypothesis on the
function would make the equiconvergence region larger. The answer to this
question is given by

Theorem 8. Let f(z) ∈ Aρ ∩ C(Dρ). Then for each positive integer �, we

have

lim
n→∞

{
Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
}

= 0, |z| ≤ ρ�+1,

the convergence being uniform for all |z| ≤ ρ�+1 and geometric for all |z| ≤ r <

ρ�+1.
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Proof. For any f(z) ∈ Aρ∩C(Dρ), let sn−1(f ; z) be the polynomial of best
approximation to f from πn−1 on the circle Dρ = {z : |z| ≤ ρ}. Then

En−1(f) := inf
q∈πn−1

‖f − q‖Dn = ‖f − sn−1‖Dρ

and it is known that lim
n→∞En−1(f) = 0. From the linearity of the Lagrange and

Taylor polynomials, we have

Ln−1(f ; z) −
�−1∑

j=0

pn−1,j(f ; z) = Ln−1(f − sn−1; z) −
�−1∑

j=0

pn−1,j(f − sn−1; z),

so that from (3.4), we obtain for R < ρ

Ln−1(f ; z) −
�−1∑

j=0

pn−1,j(f ; z) =
1

2πi

∫

ΓR

(
f(t) − sn−1(f ; t)

) · (tn − zn)
(t − z)(tn − 1)t�n

dt.

This shows that

max
|z|≤ρ�+1

∣
∣
∣Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
∣
∣
∣ ≤ En−1(f)(ρn(�+1) + Rn)R

(ρ�+1 − R)(Rn − 1)R�n
.

Since the left side is independent of R, we get on letting R tend to ρ,

max
|z|≤ρ�+1

∣
∣
∣Ln−1(f ; z) −

�−1∑

j=0

pn−1,j(f ; z)
∣
∣
∣ ≤ En−1(f)(1 + ρ−n�)

ρ�(1 − ρ−�)(1 − ρ−n)
.

But the right side tends to zero as n → ∞, which proves the result. Uniform
and geometric convergence for |z| ≤ r < ρ�+1 follows as in Theorem 7.

1.4. An extension of Walsh’s Theorem

We claim that the sum
�−1∑

j=0

pn−1,j(f ; z)

in (3.3) (Theorem 7) is the Lagrange interpolant in the nth roots of unity of the

polynomial p�n−1(f ; z) =
�n−1∑

k=0

akzk. This is easily seen since

p�n−1(f ; z) =
�−1∑

λ=0

n−1∑

k=0

ak+λnzk+λn =
�−1∑

λ=0

n−1∑

k=0

ak+λn(zλn − 1)zk

+
�−1∑

λ=0

n−1∑

k=0

ak+λnzk
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so that

Ln−1(p�n−1; z) =
�−1∑

λ=0

n−1∑

k=0

ak+λnzk =
�−1∑

λ=0

pn−1,λ(f ; z).

With this simple observation, one can write the formula (3.3) in the equivalent
form

lim
n→∞

[
Ln−1(f ; z) − Ln−1

(
p

�n−1(f ; z); z
)]

= 0 for |z| < ρ�+1. (4.1)

If we denote by Ln−1(f ; α, z) the Lagrange interpolant in the zeros of zn − αn,

when α �= 0, and the Hermite interpolant of order n at 0 when α = 0, then (4.1)
is also equivalent to

lim
n→∞

[
Ln−1(f ; 1, z) − Ln−1

(
L�n−1(f ; 0, z); 1, z)

]
= 0, |z| < ρ�+1.

This train of ideas amply justifies the following

Theorem 9. If m = rn + q, s ≤ q
n < 1 and q

n = s + O( 1
n ) then for each

f(z) ⊂ Aρ and for each α, β ∈ Dρ (α �= β), we have

lim
n→∞∆α,β

n,m(f ; z) := lim
n→∞[Ln−1(f, α, z) − Ln−1

(
Lm−1(f, β, z), α, z

)]
= 0 (4.2)

for |z| < σ, where

σ := ρ/ max
(( |α|

ρ

)r

,

( |β|
ρ

)r+s )
. (4.3)

More precisely, for any µ with ρ < µ < ∞, we have

lim
n→∞ {max

z∈Dµ

|∆α,β
n,m(f ; z)|}1/n ≤ µ

σ
.

Moreover if α, β, m satisfy neither α = β = 0 nor αr = βr when m = rn,

then (4.3) is best possible in the sense that for any z0 with |z0| = σ, there is a

function f0 ∈ Aρ such that (4.2) fails to hold for f0 at z0.

When α = 1, β = 0 and m = �n, (4.2) yields Theorem 7.

Proof. Since α, β ∈ Dρ, we may write

Lm−1(f, β, z) =
1

2πi

∫

ΓR

f(t)(tm − zm)
(t − z)(tm − βm)

dt.

In order to find a similar representation for Ln−1

(
Lm−1(f, β, z), α, z

)
, it is

enough to evaluate

Ln−1

(
tm − zm

t − z
, α, z

)

.
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Since m = rn + q, we have

tm − zm

t − z
=

trn+q − zrn+q

t − z

=
tnr − zrn

t − z
tq + zrn tq − zq

t − z

= tq · trn − zrn

tn − zn
· tn − zn

t − z
+ zrn · tq − zq

t − z
.

From this it is clear that the Lagrange interpolant of (tm − zm)/(t − z) in the
zeros of zn − αn will be given as below:

Ln−1

(
tm − zm

t − z
, α, z

)

= tq
(

trn − αrn

tn − αn

)
tn − zn

t − z
+αrn·

(
tq − zq

t − z

)

, as q < n.

Hence

Ln−1(f, α, z) =
1

2πi

∫

ΓR

f(t)(tn − zn)
(t − z)(tn − αn)

dt,

Ln−1

(
Lm−1(f, β, z), α, z

)
=

1
2πi

∫
f(t)

tm − βm
Ln−1

(
tm − zm

t − z
, α, z

)

dt.

From this we obtain the representation

∆α,β
n,m(f ; z) =

1
2πi

∫

ΓR

f(t)K(t, z)dt (4.4)

where

K(t, z) : =
1

trn+q − βrn+q

[

tq · trn − αrn

tn − αn
· tn − zn

t − z
+ αrn tq − zq

t − z

]

− tn − zn

tn − αn
· 1
t − z

=
βrn+q − αrn · tq

(trn+q − βrn+q)(tn − αn)
· tn − zn

t − z

+
αrn

tnr+q − βrn+q
· tq − zq

t − z
.

Since

|K(t, z)| ≤ c
Rn − |z|n
R − |z| ·max(|β|rn+q, |α|rnRq)

Rrn+qRn
+c

|α|rn

Rrn+q
·R

q − |z|q
R − |z| (|z| < R),

it follows that (4.2) will be proved if

|z|n max(|β|rn+q, |α|rnRq)
Rrn+q+n

< 1 and
|z|q|α|rn

Rrn+q
< 1,
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where q = sn + O(1). In other words taking the nth roots of both sides above,
and letting n → ∞, we see that (4.2) is proved if

|z| < ρ/ max
(( |β|

ρ

)r+s

,
( |α|

ρ

)r
)

=: σ1 and |z| < ρ/

( |α|
ρ

)r/s

=: σ.

Since |α|
ρ < 1 and s < 1, we have

( |α|
ρ

)r/s

>
( |α|

ρ

)r

so that σ1 < σ and this completes the proof. �

Corollary. Let m = rn+ q, s ≤ q
n < 1 and q

n = s+O( 1
n ). If pn,m(n)(f ; z)

denotes the polynomial of degree n − 1 which minimizes

m−1∑

k=0

|f(βwk
m) − p(βwk

m)|2, β ∈ Dρ,

over all polynomials p(z) ∈ πn−1, then

pn,m(n)(f ; z) − Sn−1(f ; z) → 0 for |z| < ρ/

( |β|
ρ

)r+s

and the bound for |z| above is best possible in the same sense as in Theorem 9.

This corollary follows from Theorem 8 on taking α = 0, β = 1.

1.5. Multivariate Extensions of Walsh’s Theorem

In the multivariate case the domain of analyticity of a function f(zzz), where
zzz = (z1, . . . , zm) ∈ Cm, can be defined in two different ways. One possibility is to

consider the ball, i.e., the set defined by
m∑

j=1

|zj |2 < ρ2. The other possibility is to

take the polydisc |zj | < ρj , j = 1, . . . ,m. These two definitions lead to entirely
different theories, since there is no equivalence (i.e. holomorphic mapping)
between the ball and the polydisc. For our purposes, the setup based on a
polydisc is more suitable and convenient. We begin with some fundamental
definitions. Let

1 < ρ1 ≤ ρ2 ≤ · · · ≤ ρm, ρρρ = (ρ1, ρ2, . . . , ρm); (5.1)

we remark that the ordering in (5.1) can be achieved, without loss of generality,
by simply renumbering the components of ρρρ. Then, denote by A(ρρρ) the set of
functions analytic in the polydisc

D(ρρρ) := {zzz = (z1, . . . , zm) : |zj | < ρj , j = 1, . . . ,m}.
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where each such function has a singularity on each of the circles |zj | = ρj ,

j = 1, . . . ,m. (Here singularity may involve either poles or branchpoints on the
circle |zzz| = ρρρ.) The multivariate Cauchy formula

f(zzz) =
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

(tj − zj)
dttt, zzz ∈ D(ρρρ) (5.2)

where the integration is taken over a polydisc D in D(ρρρ) which contains the point
zzz and, with dttt := dt1 . . . dtm, is valid for all f(zzz) ∈ A(ρρρ). Let Γm

n denote set of
all complex polynomials p(zzz) of m variables which are of degree at most n in
each of the variables zj , j = 1, . . . , m. (This set differs from the usual definition
of a polynomial of several variables, having degree at most n, which means that
the total degree of each term is at most n, but our definition here serves a more
useful purpose later.) The (n − 1)th Taylor section of an f(zzz) ∈ A(ρρρ) is then
defined as

Sn−1(f ;zzz) :=
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj

tnj (zj − tj)
dttt (5.3)

which, in the sense of the above definition, is an element of Γm
n−1.

Theorem 10. For any f(zzz) ∈ A(ρρρ), the Taylor sections Sn−1(f ;zzz) of (5.3)
converge to f(zzz), uniformly and geometrically in each closed subset of D(ρρρ).

Proof. We have from (5.2) and (5.3) that

f(zzz) − Sn−1(f ;zzz) =
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

(tj − zj)

[
1 −

m∏

j=1

(
1 − zn

j

tnj

)]
dttt.

Here,
∣
∣
∣1 −

m∏

j=1

(
1 − zn

j

tnj

)∣
∣
∣ ≤ C max

1≤j≤m

∣
∣
∣
zj

tj

∣
∣
∣
n

→ 0 as n → ∞

in any closed subset of D, and this proves the theorem. �

We now turn to the definition of the interpolation operator. The problem
of interpolation in the multivariate case is more difficult (in general, existence
and uniqueness are not guaranteed), but, with our definition of the set Γm

n , the
situation simplifies. Consider the polynomial

Ln−1(f ;zzz) =
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj

(tnj − 1)(zj − tj)
dttt ∈ Γm

n−1 (5.4)
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where Ln1(f ;zzz) ∈ Γm
n−1, for any f(zzz) ∈ A(ρρρ). As usual, let ω be a primitive

nth root of unity. From the representation (5.4) we can see that, at the points
zzz = (ωk1 , . . . , ωkm) where 0 ≤ kj ≤ n − 1, j = 1, . . . , m, are arbitrary integers,
the polynomial (5.4) has the same values as f(zzz). It will follow from the next
lemma that this interpolation polynomial Ln−1(f ;zzz) is uniquely determined

Lemma 2. If p(zzz) ∈ Γm
n−1 has nm z 1 m) such that

each zj z

Proof. We use induction on m. For m = 1, the statement follows from the
fundamental theorem of algebra. Assume it is true for m−1, and represent p(zzz)
in the form

p(zzz) =
n−1∑

k=0

zk
1pk(zzz∗) (5.5)

where zzz∗ = (z2, . . . , zp) ∈ Cm−1 and pk(zzz∗) ∈ Γm−1
n−1 . Fixing an arbitrary zzz∗ =

(z′2, . . . , z
′
m) where z′j , j = 2, . . . , m − 1, are coordinates of the roots of p(zzz),

then according to our assumption (5.5) vanishes for n different values of z1. But
then

pk(zzz∗) = 0, k = 0, . . . , n − 1.

Here, by our assumption, zzz∗ takes nm−1 different values, and thus, by the
induction hypothesis, the pk are identically zero for k = 0, . . . , n − 1. This
proves the statement for m. �

Since the interpolation points for the polynomial (5.4) satisfy the condition
of Lemma 2, Ln−1(f,zzz) is uniquely determined. The uniform convergence of
Ln−1(f,zzz) to f(zzz) in every closed subset of D(ρρρ) will follow from Theorem 10
and the following overconvergence theorem:

Theorem 11. We have

lim
n→∞ |Ln−1(f,zzz) − Sn−1(f,zzz)|1/n ≤ 1

ρ1

∏

|zj |>ρj

|zj |
ρj

(5.6)

for all f(zzz) ∈ A(ρρρ) and z ∈ Cm

Remarks. 1. In particular if zzz ∈ D(ρρρ), then, as the product is unity in
(5.6), the right hand side of (5.6) is 1/ρ1 < 1 which, coupled with Theorem 10,
yields the uniform convergence of Ln−1(f ;zzz) to f(zzz).

2. If
∏

|zj |>ρj

|zj |
ρj

< ρ1, (5.7)

different roots zz = (z , . . . , z

takes n different values, then p(zz) ≡ 0.

. (Here, the empty product is defined as unity.)
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then we have the overconvergence of the difference Ln−1 − Sn−1. Condition
(5.7) gives an intrinsic relation between the coordinates z1, . . . , zm. The larger
we choose some |zj |’s, the smaller we have to make the remaining |zj |’s. In order
to see more clearly how this works, consider the special case ρ1 = · · · = ρm := ρ.

Then note that (5.7) allows us to select either

|zj | < ρ1+ 1
m , j = 1, . . . , m,

or
|z1| = · · · = |zm−1| = ρ, |zm| < ρ2.

In the first case, one has overconvergence in each coordinates (but with a smaller
radius), while the second case gives no overconvergence in m− 1 variables, but
optimal overconvergence in the final coordinate. Of course, other choices are
also possible.

Proof of Theorem 11. Equations (5.3) and (5.4) imply

∆n−1(f ;zzz) := Ln−1(f ;zzz) − Sn−1(f ;zzz)

=
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj
zj − tj

( m∏

j=1

1
tnj − 1

−
m∏

j=1

1
tnj

)
dttt.

(5.8)

Here,

m∏

j=1

1
tnj − 1

−
m∏

j=1

1
tnj

=
m∏

j=1

1
tnj

[ m∏

j=1

(
1 +

1
tnj − 1

)
− 1
]

= O







1

(ρ1 − ε)n
n∏

j=1

(ρj − ε)n







where ε > 0 is an arbitrary small fixed number. Thus, we obtain from (5.8)
that

∆n−1(t;zzz) = O














m∑

j=1

max(|zj |, ρj − ε)

(ρ1 − ε)
m∏

j=1

(ρj − ε)







n






,

i.e.,

lim
n→∞ |∆n−1(f ;zzz)|1/n ≤ 1

ρ1 − ε

∏

|zj |>ρj−ε

|zj |
ρj − ε

whence, the statement of the theorem follows, since ε > 0 was arbitrary. �
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The estimate in (5.6) of Theorem 11 is sharp in the following sense. Consider
the function

f0(zzz) =
m∏

j=1

1
zj − ρj

∈ A(ρρρ).

Evidently

Ln−1(f0;zzz) =
m∏

j=1

zm
j − ρn

j

(1 − ρn
j )(zj − ρj)

,

and from (5.3)

Sn−1(f0;zzz) =
m∏

j=1

zn
j − ρn

j

ρn
j (ρj − zj)

.

Thus

∆n−1(f0;zzz) =
m∏

j=1

zn
j − ρn

j

ρj − zj

( m∏

j=1

1
ρn

j − 1
−

m∏

j=1

1
ρn

j

)

=
m∏

j=1

zn
j − ρn

j

(ρj − zj)ρn
j

O

(
1

ρ2n
1 ρn

2 · · · ρn
m

)

,

whence by (5.1)

lim
n→∞ |∆n−1(f ;zzz)|1/n =

1
ρ1

∏

|zj |>ρj

|zj |
ρj

.

Thus for some functions in A(ρρρ), the result of (5.6) is sharp. However, we can
ask for the following stronger version of sharpness: is it true that

lim
n→∞ max

|zj |=rh

j=1,...,m

|∆n−1(f ;zzz)|1/n =
1
ρ1

∏

rj>ρj

rj

ρj

for any rj > 0, j = 1, . . . ,m and f(z) ∈ A(ρρρ)? The answer to this question is
no, and this is in sharp contrast to the univariate case (cf. Chapter 4). This
can be seen from the following example.

Example. Let m = 2, 1 < ρ1 < ρ2, and consider the function

f1(zzz) =
∞∑

k=0

( z1

ρ1

)3k ∞∑

k=0

( z2

ρ2

)3k

∈ A(ρρρ).

We shall examine the overconvergence case of |z1| = r1 > ρ1, |z2| = r2 > ρ2.
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Formula (5.8) in this case gives

∆n−1(f1;zzz) =
1

(2πi)2

∫

D

f1(ttt)
2∏

j=1

zn
j − tnj

(zj − tj)tnj

[ 1
tn1

+ O
( 1

(ρ1 − ε)2n
+

1
(ρ2 − ε)n

)]
dttt

=
1

(2πi)2

∫

D

2∏

j=1

[ ∞∑

k=0

( tj
ρj

)3k n−1∑

k=0

zk
j

tk+1
j

] 1
tn1

dttt

+ O

((
r1r2

(ρ1 − ε)3(ρ2 − ε)
+

r1r2

(ρ1 − ε)(ρ2 − ε)2

)n
)

=
∑

n≤3k≤2n−1

z3k−n
1

ρ3k

1

·
∑

3k≤n−1

( z2

ρ2

)3k

+ o

((
r1r2

ρ2ρ2

)n)

,

provided ε > 0 is small enough. Now, assume that the integers λn, µn satisfy

3λn < 2n < 3λn+1 and 3µn < n ≤ 3µn+1. (5.9)

Evidently, in the sum
∑

n≤3k≤2n−1 above there is at most one term (for k = λn ;
otherwise it may be empty). Then we can write

|∆n−1(f1;zzz)| = O

(
r3λn−n

1 r3µn

2

ρ3λn

1 ρ3µn

2

)

+ o

((
r1r2

ρ2ρ2

)n)

. (5.10)

By (5.9), µn ≤ λn − 1, and therefore 3µn ≤ 3λn−1 < 2n
3 , whence

r3λn−n

1 r3µn

2

ρ3λn

1 ρ3µn

2

≤
(

r1r
2/3
2

ρ2
1ρ

2/3
2

)n

= o

((
r1r2

ρ2ρ2

)n)

.

Thus, (5.10) yields

|∆n−1(f1;zzz)| = o

((
r1r2

ρ2ρ2

)n)

,

i.e., for this function the error estimate in case r1 > ρ1, r2 > ρ2 is indeed better
than the one provided by Theorem 11.

If we iterate interpolation operators and Taylor series, we can obtain different
types of overconvergence results. (For a detailed account on this subject in the
univariate case, see Ch. 2.) Here we restrict ourselves to one particular case.
Instead of the interpolating polynomial (5.4), let us introduce the operator

Ln−1(f ;ααα;zzz) :=
1

(2πi)m

∫

D

f(ttt)
m∏

j=1

zn
j − tnj

(tnj − αn
j )(zj − tj)

dttt ∈ Γm
n−1, (5.11)
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where ααα = (α1, . . . , αm) ∈ D(ρρρ), αj > 0, j = 1, . . . , m, for any f(zzz) ∈ A(ρρρ).
(5.11) interpolates f at the points zzz = (α1ω

k1 , . . . , αmωkm), where 0 ≤ kj ≤
n − 1, j = 1, . . . , m, are arbitrary integers. This polynomial, just like (5.4), is
uniquely determined. Using also the notation (5.3), we now state

Theorem 12.

lim sup
n→∞

|Ln−1(f − Sλn−1(f);ααα;zzz)|1/n ≤ max
1≤j≤m

(
αj

ρj

)λ

·
m∏

j=1

|zj |
αj

for any f ∈ A(ρρρ) and any zzz = (z1, . . . , zm).

The result shows that we have convergence if

m∏

j=1

|zj | <

∏m
j=1 αj

max1≤j≤m

∣
∣
∣
αj

ρj

∣
∣
∣
λ
.

In particular, if 0 < α1 = · · · = αm = α < ρ1 = · · · = ρm = ρ, then this
condition takes the form

|zj | <
ρλ/m

αλ/m−1
, j = 1, . . . , m,

i.e. we have overconvergence provided λ > m.

Proof of Theorem 12. (5.2), (5.3) and (5.11) yield

Ln−1(f − Sλn−1(f);ααα;zzz) =
1

(2πi)2m

∫

D2

∫

D1

f(uuu)
∏m

j=1(uj − tj)
×

×


1 −
m∏

j=1

(

1 − tλn
j

uλn
j

)

 duuu

m∏

j=1

zm
j − tmj

(tnj − αn
j )(zj − tj)

dttt

=
1

(2πi)2m

∫

D1

f(uuu)
∫

D2

m∏

j=1

zn
j − tnj

(tnj − αn
j )(uj − tj)(zj − tj)

×

×


1 −
m∏

j=1

(

1 − tλn
j

uλn
j

)

 dtttduuu,

where
D1 = {(t1, . . . , tm) : |tj | = αj + ε, j = 1, . . . , m}

and
D2 = {(u1, . . . , um) : |uj | = ρj − ε, j = 1, . . . , m}

If λ > 1 is a fixed integer, then we have


