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The study of granular materials has always been a topic of considerable importance in
engineering. Historically, the mathematical formulation of the subject dates back to the
pioneering work of C.A. Coulomb in 1776 [1]. In his now famous memoir, Coulomb
postulated the conditions that should be satisfied for failure to occur in a granular mate-
rial. This postulate for failure still stands as a defining point in the mathematical study of
mechanics of granular materials. Coulomb largely focused on a topic of importance to that
time, namely the design of earth structures to avoid collapse. As a result, the study of the
deformations that lead to failure received less emphasis [2]. Recently, however, several sci-
entific disciplines, including geomechanics, mechanical, civil and chemical engineering, phys-
ics and applied mathematics, have shown renewed interest in accurately modelling granular
materials to examine, concurrently, both failure and deformations. The study of how gran-
ular materials or bulk solids flow and deform is also of practical importance for a num-
ber of industries, including mining and minerals processing, agricultural materials processing,
the construction industry, foodstuff production, pharmaceutical development and nanotech-
nology. In these applications the granular materials involved could be as diverse as crushed
ore, cereal grains, sugar, flour, tablets and nano-particulates. In each case, granular materials
frequently flow through devices such as bins, hoppers and chutes and a clear knowledge of
how they behave under these circumstances is invaluable for the efficient design and applica-
tion of related devices.

Granular materials form an important component in modern developments in geomechan-
ics. For the most part, geotechnical engineers are less interested in fully developed granular
flows, but the deformational aspects of granular materials are highly relevant in situations
that require assessment of settlements of foundations on granular media. The development of
mathematically correct and physically admissible theories to describe and predict the complex
behaviour of granular materials or bulk solids is therefore a topic of fundamental importance
to both the engineering sciences and applied mathematics.

Modelling the flow of granular materials has been extensively studied through the use of
continuum mechanics. Using this approach, one formulates governing equations for the stress
and velocity fields by coupling the equations of conservation of mass and linear momentum
with appropriate constitutive laws that govern the initiation of failure and the rules applica-
ble to the flow of the granular material subsequent to its failure. For rapid granular flows
that accompany a reduction in the bulk density, the behaviour of each granular particle is
determined primarily by inelastic collisions with neighbouring particles, in a way analogous
to colliding molecules in dense gases. In contrast, for slow dense granular flows, the dominant
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mechanisms are quite different; here, the neighbouring particles continually slide and roll past
each other, and friction between these particles becomes the dominant force.

The problem of modelling fully developed slow granular flows using continuum mechanics
is, and continues to be, both complex and challenging. There is general agreement that stress
fields within granular flows can be described by coupling the equations of linear momen-
tum with the Coulomb–Mohr yield condition, or other forms of yield condition applicable
to the myriad of granular materials that are encountered in engineering practice. However,
there is little or no agreement as to how the equations for the velocity fields, that describe the
deformations of fully developed flows, should be formulated, or even whether these equations
should be mathematically well-posed or ill-posed. The constitutive assumption that is perhaps
most widely employed by the engineering community is Saint-Venant’s hypothesis, which is
also referred to as the coaxiality condition. This condition states that the principal axes of
the stress and strain-rate tensors should coincide. Drucker and Prager [3] were the first to for-
mally adopt this hypothesis for the study of the mechanics of granular materials. They used
the Coulomb–Mohr yield condition as a plastic potential to derive an associated flow rule.
The condition of coaxiality must hold by virtue of material isotropy, and the rate-of-strain
tensor depends only on the Cauchy stress tensor.

While the work of Drucker and Prager [3] marks the resurgence of the application of
plasticity theories to mechanics of soils, these developments have limitations. Firstly, the the-
ory predicts that all granular flows are accompanied by dilation or volume change, notably
volume expansion, whereas in fact loose granular materials contract upon shearing, and oth-
ers undergo isochoric or volume-preserving deformations. Even in situations for which dila-
tion is appropriate, the predicted magnitude of volume increases is far in excess of those
observed in most real materials. The second limitation is that for cohesionless materials;
the theory predicts that the rate of specific mechanical energy dissipation is zero, which is
clearly unrealistic. More sophisticated approaches attempt to overcome these difficulties by
either including work-hardening/softening theories, similar to those proposed and developed
by Drucker et al. [4], Jenike and Shield [5], Schofield and Wroth [6] or the incorporation
of flow rules that are non-associated. In the former category of models, the yield condition
varies with a state parameter, such as the density. For the work-hardening/softening models,
the mathematical characteristics for the stress and velocity fields do not coincide, contrary to
what is commonly observed experimentally; this leads to the adoption of non-associated flow
rules. The subject matter in this area is extensive and no attempt will be made to provide an
exhaustive review of non-associated plasticity. It is worth noting that Hill [7] proposed veloc-
ity equations for incompressible materials based on the Saint-Venant hypothesis, but, again,
this theory has the undesirable property that the predicted stress and velocity characteristics
do not coincide.

By abandoning the assumption of coaxiality, an alternative family of models has been
derived based on a kinematic hypothesis involving the concepts of shearing motion paral-
lel to a surface, rotation of that surface, and dilation or contraction normal to the sur-
face. One such model is the double-shearing theory, originally proposed by Spencer [8, 9] for
incompressible flows, and extended to dilatant materials by Mehrabadi and Cowin [10] and
Butterfield and Harkness [11]. In this theory, the characteristic curves for the stresses and
velocities coincide, and every deformation is assumed to consist of simultaneous shears along
the two families of stress characteristics. These ideas build upon those of the double sliding,
free rotating model, developed by de Josselin de Jong [12–14], by fixing the rotation rate as
the temporal rate of change of the stress angle. To reiterate, an important advantage of the
double-shearing theory over the previous coaxial theories is that it retains the assumption of
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slip occurring along the stress characteristics, but does not give rise to unusually high levels
of dilatancy. Spencer’s [8, 9] original double-shearing theory is for incompressible materials,
which in the context of fully developed granular flow is often a reasonable and a realistic
assumption. Furthermore, when applied to gravity-driven flow problems [15, 16], the coaxial
theory is shown to yield physically unacceptable predictions in the velocity field, whereas the
double-shearing theory predicts results that are certainly reasonable. On the other hand, there
are experiments, which are not consistent with predictions of Spencer’s double-shearing the-
ory, but tend to support the double-sliding, free-rotating model of de Josselin de Jong [12–14].
Research in this area must recognize the fact that there is little possibility for developing a
mathematical theory of granular media for all eventualities: the materials are real and the cir-
cumstances diverse. A theory that shows promise for a given set of experimental conditions
can fail for others. In any event, at this moment no single theory is clearly most applicable for
describing the behaviour of fully developed flow of real granular materials. While the subject
requires more reproducible non-conventional experiments to help resolve these issues, there is
a serious need for in-depth mathematical and numerical analysis of the theories involved. This
might include the solution of relevant boundary-value problems and initial-boundary-value
problems that can allow the continuous transformation of a deformation-dominated process
to a flow-dominated one, the exploration of exact and numerical solutions to the equations,
and the comparison and contrasting of existing theories that will guide critical experiments of
the future.

In addition to the issues raised above, a major unresolved question with Spencer’s [8, 9]
double-shearing theory, and most other plasticity-based theories for fully developed granu-
lar flow, is that the equations are linearly ill-posed in the sense that small perturbations to
existing solutions may result in solutions that grow exponentially with time (see e.g. [17–
19]). This characteristic places doubt on whether or not steady solutions to the governing
equations actually describe real granular flows, and also leads to serious implications for
numerical schemes, which do not converge in the limit as the size of a mesh discretization
approaches zero. However, ill-posedness in itself is not necessarily an undesirable property for
equations that describe granular deformations. In fact, it is well known that under certain
circumstances granular materials exhibit unstable behaviour, in which case it is quite plau-
sible that ill-posedness should be the norm. An example is the onset of shear-banding. Per-
haps the ideal situation, as advocated by Harris [19], is a theory that contains a domain of
well-posedness, in which solutions may be stable or unstable, and also a domain of ill-posed-
ness, which corresponds to a definite physical instability. This motivation has led Harris [20,
21] to derive a single-slip model, which belongs to the class of models based upon the physi-
cal and kinematic considerations discussed above. This single-slip model is indeed well-posed
under well-defined conditions and ill-posed when these conditions fail [19]. In this case the ill-
posedness corresponds to the physical instability of grain separation, a process that invalidates
the assumption that friction between particles is the dominant mode of momentum transfer,
as opposed to inelastic collisions. There is much scope for further research in this complex
and challenging field.

We note that there have been several recent attempts to model the transitional region
between dense, slow granular flows and rapid, collisional flows (see, for example, [22–25].
These models combine traditional plasticity ideas with notions borrowed from the kinetic
theory of gases [26]. In general, the condition of coaxiality is enforced, and again it is not
entirely clear whether these theories are well-posed or ill-posed. Often in fully developed slow
granular flow, there are narrow layers, referred to as shear layers, in which the material experi-
ences intense shearing. While the models mentioned previously capture many features of fully
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developed flow to varying degrees, none have the ability to accurately predict the thickness
of the layers over which such intense shearing materializes. A reason for this limitation has
been attributed to the fact that classical continuum models have no intrinsic length scale built
into the constitutive equations. Attempts to rectify this deficiency probably date back to the
work of Voigt [27] and later expanded by Cosserat and Cosserat [28] who introduced the con-
cept of couple stresses for examining the mechanics of deformable media (see e.g. [29]). Here,
the Cauchy stress tensor is no longer symmetric, and the conservation of angular momentum
is no longer automatically satisfied but becomes a set of field equations that need to be sat-
isfied explicitly. There are two extra field variables for Cosserat materials, namely the angu-
lar velocity and the couple-stress tensor. As a consequence of the notion of couple stresses, a
length parameter or an intrinsic length scale naturally arises in the definition of constitutive
relationships. The work on both micromorphic and couple-stress theories was an active area
of research from the mid-1960s to the mid-1970s and the developments are summarized in
[30]. A number of authors have applied these concepts to the examination of problems associ-
ated with granular media and references to recent works are given by Vardoulakis and Sulem
[31]. The investigations by Mühlhaus [32], Tejchman and Wu [33], Bauer [34], Tejchman and
Bauer [35], Tejchman and Gudehus [36] and others also deal with the application of higher-
order formulations in elastoplasticity, in the context of the theory of hypoplasticity, which is
described below, and by Mohan et al. [37, 38] who use more traditional ideas from plastic-
ity. In each case, this improvement is achieved by modelling the granular material as a Coss-
erat (or micropolar) continuum. Mohan et al. [37, 38] apply an extended-associated flow rule,
with the yield condition depending on the bulk density, and apply the equations to model
flow through vertical channels and cylindrical Couette flow. These studies are successful in
that they predict the main qualitative features of the shear layers; however, the yield condition
and flow rule were chosen purely for illustrating the effectiveness of this approach.

In many civil and geotechnical engineering applications the constrained response of a
granular material, such as a soil or sand, under loading is most important [29]. Exam-
ples of such situations occur with the analysis of foundations, excavations and underground
structures, or simply in elemental tests. Here, the deformation of the material is contained by
a surrounding material, which prevents the development of a state of plastic flow or collapse.
Traditionally, a variety of elastoplastic models have been applied to problems of this nature.
The history of development of theories of geomaterial behaviour that account for contained
deformations of granular materials is quite extensive, and no attempt will be made here to
provide an all-encompassing review. More recently, however, the constitutive theory of hypo-
plasticity has been developed, and has proven to be an attractive alternative to the elastoplas-
tic models. Hypoplasticity is a natural extension of the theories of hypoelasticity developed
by Truesdell [40] and the connection between the theories of hypoelasticity and theories of
plasticity and of elastic-plastic flow has been discussed and investigated by Green [41, 42],
Truesdell and Noll [43] and Jaunzemis [44]. Hypoplasticity in a formal sense was extensively
investigated by Kolymbas [45] and many co-workers (see [46–48]). The characterizing feature
of all hypoplastic theories is that the constitutive law can be written in a single nonlinear
tensorial equation for the stress-rate as a function of the stress and the rate-of-deformation
tensor, without reference to a yield condition or a flow rule. With hypoplasticity there is no
need to decompose deformations into elastic and plastic regimes a priori, or to distinguish
between loading and unloading; all these notions are automatically built into the theory, and
arise as a consequence. Excellent reviews of hypoplasticity and its development are contained
in Kolymbas [49] and Wu and Kolymbas [50].
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The popularity of hypoplasticity among researchers and practitioners can be attributed to
its elegance and the fact that the theory is deeply rooted in experimental observations. It is,
nonetheless, a sophisticated constitutive theory, which involves complicated nonlinear constit-
utive relationships. When combined with the governing equations of continuum mechanics,
there are little prospects for the analytical solution of real-life boundary-value problems, and
progress is usually made via numerical schemes. As a result, it is often difficult to grasp the
underlying mathematical structure of the equations (see [51–54]).

As mentioned previously, for each particular hypoplastic law there is a yield surface and
a flow rule, but rather than being assigned in advance, they are consequences of the origi-
nal constitutive relationships. Thus hypoplasticity as a theory can, in principle, be used to
model fully developed granular flow. The explicit equations describing the yield condition
and the flow rule can be derived from the given hypoplastic law, as illustrated by Wu and
Niemunis [55] and von Wolffersdorff [56]. Von Wolffersdorff [56] has derived particular hypo-
plastic models that give the yield surfaces of Drucker and Prager [3] and Matsuoka and
Nakai [57] as limiting cases. It is not immediately clear whether a similar derivation can be
made to link hypoplasticity with other plasticity theories such as the double-shearing the-
ory [8–10] described above. This possibility is of considerable interest, especially in light of
the recent work of Spencer [58], who shows that in a strict sense, the double-shearing theory
can be regarded as a special form of hypoplasticity. There is an absence of understanding of
the strict connection between hypoplasticity and theories of plasticity that describe granular
flow.

Shear layers often occur in the vicinity of solid boundaries, but this is not generally
the case. An important property of granular materials is that shear-banding or shear lay-
ers can also occur within the bulk of the material. Shear bands are usually accompanied
by localised strains, spanning several grain diameters in thickness, and as discussed above,
classical continuum approaches fail to account for the dimensions of the shear bands due
to the absence of an intrinsic length-scale. Furthermore, although the onset of shear-band-
ing can be predicted [59], the ill-posedness of the governing equations prevents a complete
analysis. As discussed previously, the subject of layers with intense shearing or shear-band-
ing has received much attention by investigators who have developed approaches that incor-
porate Cosserat-type effects, and this is most prominent in hypoplasticity (see e.g. [34–36,
60]). Various hypoplastic theories have been developed and validated using finite-element tech-
niques. The topic of mechanics and mathematics of granular materials has a rich history of
involvement of researchers in the engineering sciences as well as those in the mechanics and
applied-mathematics communities. These contributions are too numerous to cite as a compre-
hensive and complete review; readers are referred to the following Edited volumes of Sympo-
sia and Conference Proceedings for more in-depth reviews of the historical developments and
the current state of advanced mathematical and mechanics approaches to the study of gran-
ular materials [61–78].

This Special Issue on the Mathematics and Mechanics of Granular Materials presents a
mix of mathematical and engineering contributions to the discipline. Some of the papers, but
not all, originate from four Mini-Symposia held at the 2003 ICIAM (International Congress
of Industrial and Applied Mathematics) in Sydney, Australia, June 7–11, 2003. This meet-
ing was jointly organised by the Guest Editors together with Drs. Claudio Tamagnini and
Antoinette Tordesillas. The papers presented in this Special Issue cover the full range of cur-
rent research activity in the area, and include general, analytical, hypoplastic, numerical and
engineering contributions, but appear as follows according to the alphabetical listing of the
first-named author:
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1. F. Alonso-Marroquin and H.J. Herrmann, Investigation of the incremental response of
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4. G.M. Cox, S.W. McCue, N. Thamwattana and J. M. Hill, Perturbation solutions for flow
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32. H.B. Mühlhaus, Shear band analysis in granular materials by Cosserat theory. Ing. Arch. 56 (1986) 389–399.
33. J. Tejchman and W. Wu, Numerical study of patterning of shear bands in a Cosserat continuum. Acta Mech.

99 (1993) 61–74.
34. E. Bauer, Calibration of a comprehensive constitutive equation for granular materials. Soils and Foundations

36 (1996) 13–26.
35. J. Tejchman and E. Bauer, Numerical simulation of shear band formation with a polar hypoplastic constit-

utive model. Computers and Geotechnics 19 (1996) 221–244.
36. J. Tejchman and G. Gudehus, Shearing of a narrow granular layer with polar quantities. Int. J. Numer. Anal.

Meth. Geomech. 25 (2001) 1–28.
37. L.S. Mohan, P.R. Nott and K.K. Rao, A frictional Cosserat model for the flow of granular materials

through a vertical channel. Acta Mech. 138 (1999) 75–96.
38. L.S. Mohan, K.K. Rao and P.R. Nott, A frictional Cosserat model for the slow shearing of granular mate-

rials. J. Fluid Mech. 457 (2002) 377–409.



8 J.M. Hill and A.P.S. Selvadurai

39. R.O. Davis and A.P.S. Selvadurai, Plasticity and Geomechanics. Cambridge: Cambridge University Press
(2002), 287 pp.

40. C. Truesdell, Hypo-elasticity. J. Rational Mech. Anal. 4 (1955) 83–133, 1019–1020.
41. A.E. Green, Hypo-elasticity and Plasticity. Proc. R. Soc. London A. 234 (1956) 46–59.
42. A.E. Green, Hypo-elasticity and Plasticity II. J. Rational Mech. Anal. 5 (1956) 637–642.
43. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Vol. III/3

(S. Flugge, Ed.). Berlin: Springer-Verlag (1965) 602 pp.
44. W. Jaunzemis, Continuum Mechanics. New York: The Macmillan Co (1967) 604 pp.
45. D. Kolymbas, A novel constitutive law for soils, In: C.S. Desai (eds.), Proceedings of the Second International

Conference on Constitutive Laws for Engineering Materials. Amsterdam: Elsevier (1987) pp. 319–326.
46. G. Gudehus, A comprehensive constitutive equation for granular materials. Soils and Foundations 36 (1996)

1–12.
47. W. Wu, Hypoplasticity as a Mathematical Model for the Mechanical Behaviour of Granular Materials. Pub-

lication Series of the Institute for Soil and Rock Mechanics, No. 129. Germany: University of Karlsruhe
(1992).

48. W. Wu, E. Bauer and D. Kolymbas, Hypoplastic constitutive model with critical state for granular materials.
Mech. Mater. 23 (1996) 45–69.

49. D. Kolymbas, Introduction to hypoplasticity. In: Advances in Geotechnical Engineering and Tunnelling, Vol. 1.
Rotterdam: A.A. Balkema (2000) 94 pp.

50. W. Wu and D. Kolymbas, Hypoplasticity, then and now. In: D. Kolymbas (ed.), Constitutive Modelling of
Granular Materials. Berlin: Springer Verlag (2000) pp. 57–105.

51. J.M. Hill and T.L. Katoanga, The velocity equations for dilatant granular flow and a new exact solution.
ZAMP 48 (1997) 1–8.

52. J.M. Hill, Similarity ‘hot-spot’ solutions for a hypoplastic granular material. Proc. R. Soc. London A 456
(2000) 2653–2671.

53. J.M. Hill, Some symmetrical cavity problems for a hypoplastic granular material. Q. J. Mech. Appl. Math.
53 (2000) 111–135.

54. J.M. Hill and K.A. Williams, Dynamical uniaxial compaction of a hypoplastic granular material. Mech.
Mater. 32 (2000) 679–691.

55. W. Wu and A. Niemunis, Failure criterion, flow rule and dissipation function derived from hypoplasticity.
Mech. Cohesive-Frict. Mater. 1 (1996) 145–163.

56. P.-A. von Wolffersdorff, A hypoplastic relation for granular materials with a predefined limit state surface.
Mech. Cohesive-Frict. Mater. 1 (1996) 251–271.

57. H. Matsuoka and T. Nakai, Stress-strain relationship of soil based on the SMP. In: Proceedings of Spe-
cialty Session 9, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo (1997)
pp. 153–162.

58. A.J.M. Spencer, Double-shearing theory applied to instability and strain localization in granular materials.
J. Engng. Math. 45 (2003) 55–74.

59. J.W. Rudnicki and J. Rice, Conditions for the localization of deformation in pressure sensitive dilatant mate-
rials. J. Mech. Phys. Solids 23 (1975) 371–394.

60. W. Huang and E. Bauer, Numerical investigations of shear localization in a micro-polar hypoplastic material.
Int. J. Numer. Anal. Meth. Geomech. 27 (2003) 325–352.

61. S.C. Cowin and M. Satake (eds.), Continuum Mechanical and Statistical Approaches in the Mechanics of Gran-
ular Materials, Proc. U.S.-Japan Seminar, Sendai. Tokyo: Gakujutsu Bunken Fukyu-Kai (1978) 350 pp.

62. P. Vermeer and H.J. Luger (eds.), Deformation and Failure of Granular Materials. Proc. IUTAM Symposium,
Delft. Rotterdam: A.A. Balkema (1982) 661 pp.

63. J.T. Jenkins and M. Satake (eds.), Mechanics of Granular Materials. New Models and Constitutive Relations.
Proc. U.S./Japan Seminar, Ithaca, N.Y. Studies in Applied Mechanics, Vol.7. Amsterdam: Elsevier (1983)
364 pp.

64. M. Shahinpoor (ed.), Advances in the Mechanics and Flow of Granular Materials. Reston, VA: Gulf Publ.
Co. (1983) 975 pp.

65. M. Satake (ed.), Micromechanics of Granular Materials. Proc. US-Japan Seminar, Sendai-Zao. Amsterdam:
Elsevier (1988) 366 pp.

66. B.L. Keyfitz and M. Shearer (eds.), Nonlinear Evolution Equations that Change Type. Berlin: Springer Verlag
(1991) 284 pp.



Mathematics and mechanics of granular materials 9

67. H. Shen, C.S. Campbell, M. Mehrabadi, C.S. Chang, and M. Satake (eds.), Advances in Micromechanics of
Granular Materials. Proc. 2nd US/Japan Seminar, Potsdam. Amsterdam: Elsevier (1992) 462 pp.

68. M. Mehrabadi (ed.), Mechanics of Granular Materials and Powder Systems. New York: ASME (1992) 152 pp.
69. C.S. Chang (ed.), Advances in Micromechanics of Granular Materials. Amsterdam: Elsevier (1992) 462 pp.
70. D. Bideau and A. Hansen (eds.), Disorder and Granular Media. Random Materials and Processes Series. The

Netherlands: North Holland (1993) 348 pp.
71. N.A. Fleck and A.F.C. Cocks (eds.), IUTAM Symposium on Mechanics of Granular and Porous Materials.

Dordrecht: Kluwer (1997) 450 pp.
72. H.J. Herrmann, J.-P. Hovi and S. Luding (eds.), Physics of Dry Granular Media. Dordrecht: Kluwer (1998)

710 pp.
73. D.A. Drew, D.D. Joseph and S. Passman (eds.), Particulate Flows. Processing and Rheology. Berlin: Springer-

Verlag (1998) 142 pp.
74. K.M. Golden, G.R. Grimmett, R.D. James, G.W. Milton and P.N. Sen (eds.), Mathematics of Multi-Scale

Materials. Berlin: Springer-Verlag (1998) 280 pp.
75. P. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding and E. Ramm (eds.), Continuous and Discon-

tinuous Modelling of Cohesive-Frictional Materials. Berlin: Springer-Verlag (2001) 307 pp.
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Abstract. The incremental stress-strain relation of dense packings of polygons is investigated by using molecular-
dynamics simulations. The comparison of the simulation results to the continuous theories is performed using
explicit expressions for the averaged stress and strain over a representative volume element. The discussion of the
incremental response raises two important questions of soil deformation: Is the incrementally nonlinear theory
appropriate to describe the soil mechanical response? Does a purely elastic regime exist in the deformation of
granular materials? In both cases the answer will be “no”. The question of stability is also discussed in terms
of the Hill condition of stability for non-associated materials. It is contended that the incremental response of
soils should be revisited from micromechanical considerations. A micromechanical approach assisted by discrete
element simulations is briefly outlined.

Key words: elastoplasticity, granular materials, hypoplasticity, incremental response

1. Introduction

For many years the study of the mechanical behavior of soils was developed in the framework
of linear elasticity [1, Chapter 1] and the Mohr-Coulomb failure criterion [2]. However, since
the start of the development of the nonlinear constitutive relations in 1968 [3], a great variety
of constitutive models describing different aspects of soils have been proposed [4]. A crucial
question has been brought forward: What is the most appropriate constitutive model to inter-
pret the experimental results, or to implement a finite-element code? Or more precisely, why
is the constitutive relation I am using better than that one of the fellow in the next lab?

In the last years, the discrete-element approach has been used as a tool to investigate the
mechanical response of soils at the grain level [5]. Several averaging procedures have been pro-
posed to define the stress [6–8] and the strain tensor [9,10] in terms of the contact forces and
displacements at the individual grains. These methods have been used to perform a direct cal-
culation of the incremental stress-strain relation of assemblies of disks [11] and spheres [12],
without any a priori hypothesis about the constitutive relation. Some of the results lead to the
conclusion that the nonassociated elastoplasticity theory is sufficient to describe the observed
incremental behavior [11]. However, some recent investigations using three-dimensional load-
ing paths of complex loading histories seem to contradict these results [12,13]. Since the sim-
ple spherical geometries of the grains overestimate the role of rotations in realistic soils [13],
it is interesting to evaluate the incremental response using arbitrarily shaped particles.

In this paper we investigate the incremental response in the quasistatic deformation of
dense assemblies of polygonal particles. The comparison of the numerical simulations with the
constitutive theories is performed by introducing the concept of Representative Volume Ele-
ment (RVE). This volume is chosen the smear out the strong fluctuations of the stress and the
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deformation in the granular assembly. In the averaging, each grain is regarded as a piece of
continuum. By supposing that the stress and the strain of the grain are concentrated at the
small regions of the contacts, we obtain expressions for the averaged stress and strain over
the RVE, in terms of the contact forces, and the individual displacements and rotations of
the grains. The details of this homogenization method are presented in Section 2. A short
review of incremental, rate-independent stress-strain models is presented in Section 3. We em-
phasize particularly the classical Drucker-Prager elastoplastic models and the recently elabo-
rated theory of hypoplasticity. The details of the particle model are presented in Section 4.
The interparticle forces include elasticity, viscous damping and friction with the possibility of
slip. The system is driven by applying stress-controlled tests on a rectangular framework con-
sisting of four walls. Some loading programs will be implemented in Section 5, in order to
deal with four basic questions on the incremental response of soils: (1) The existence of ten-
sorial zones in the incremental response, (2) the validity of the superposition principle, (3) the
existence of a finite elastic regime and (4) the question of stability according to the Hill condi-
tion. A micromechanical approach for soil deformation is outlined in the concluding remarks.

2. Homogenization

The aim of this section is to calculate the macromechanical quantities, the stress and strain
tensors, from micromechanical variables of the granular assembly such as contact forces, rota-
tions and displacements of individual grains.

A particular feature of granular materials is that both the stress and the deformation gra-
dient are very concentrated in small regions around the contacts between the grains, so that
they vary strongly over short distances. The standard homogenization procedure smears out
these fluctuations by averaging these quantities over a RVE. The diameter d of the RVE must
be such that δ� d�D, where δ is the characteristic diameter of the particles and D is the
characteristic length of the continuous variables.

We use this procedure here to obtain the averages of the stress and the strain tensors over
a RVE in granular materials, which will allow us to compare the molecular dynamics simu-
lations to the constitutive theories. We regard stress and strain to be continuously distributed

Figure 1. Representative volume element (RVE) used to calculate the incremental response.
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through the grains, but concentrated at the contacts. It is important to note that this aver-
aging procedure would not be appropriate to describe the structure of the chain forces or
the shear band because typical variations of the stress correspond to few particle diameters.
Different averaging procedures involving coarse-grained functions [8], or cutting the space in
slide-shaped areas [10,14] allow to perform averages, and at the same time maintain these
features.

We will calculate the averages around a point x0 of the granular sample taking a RVE cal-
culated as follows: at the initial configuration, we select the grains whose centers of mass are
less than d from x0. Then the RVE is taken as the volume V enclosed by the initial configu-
ration of the grains; see Figure 1. The diameter d is taken such that the averaged quantities
are not sensible to an increase of the diameter by one particle diameter.

2.1. Micromechanical stress

The Cauchy stress tensor is defined using the force acting on an area element situated on or
within the grains. Let f be the force applied on a surface element a whose normal unit vector
is n. Then the stress is defined as the tensor satisfying [1, pp. 12–35]:

σkjnk= lim
a→0

fj/a, (1)

where the Einstein summation convention is used. In absence of body forces, the equilibrium
equations in every volume element lead to [1]:

∂σij /∂xi =0. (2)

We will calculate the average of the stress tensor σ̄ over the RVE:

σ̄ = 1
V

∫
V

σdV. (3)

Since there is no stress in the voids of the granular media, the averaged stress can be written
as the sum of integrals taken over the particles [7]

σ̄ = 1
V

N∑
α=1

∫
Vα

σijdV , (4)

where Vα is the volume of the particle α and N is the number of particles of the RVE. By
use of the identity

∂(xiσkj )

∂xk
=xi

∂σkj

∂xk
+σij , (5)

Equation (2), and the Gauss theorem, Equation (4) leads to [6]

σ̄ij = 1
V

∑
α

∫
Vα

∂(xiσkj )

∂xk
dV = 1

V

∑
α

∫
∂Vα

xiσkjnkda. (6)

The right-hand side is the sum over the surface integrals of each grain. Further, ∂Vα rep-
resents the surface of the grain α and n is the unit normal vector to the surface element da.

An important feature of granular materials is that the stress acting on each grain
boundary is concentrated in the small regions near to the contact points. Then we can use
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the definition given in (1) to express this stress on particle α in terms of the contact forces
by introducing Dirac delta functions:

σkjnk=
Nα∑
β=1

f
αβ
j δ(x−xαβ), (7)

where xαβ and fαβ are the position and the force at the contact β, and Nα is the number of
contacts of the particle α. Inserting (7) into (6), we obtain

σ̄ij = 1
V

∑
αβ

x
αβ
i f

αβ
j . (8)

Now we decompose xαβ=xα+�αβ , where xα is the position of the center of mass and �αβ

is the branch vector, connecting the center of mass of the particle to the point of application
of the contact force. Imposing this decomposition in (8), and using the equilibrium equations
at each particle

∑
β fαβ =0, we have

σ̄ij = 1
V

∑
αβ

�
αβ
i f

αβ
j . (9)

From the equilibrium equations of the torques
∑

β(�
αβ
i f

αβ
j −�

αβ
j f

αβ
i )=0 one obtains that

this tensor is symmetric, i.e.,

σ̄ij − σ̄j i =0. (10)

Then, the eigenvalues of this matrix are always real. This property leads to some simplifi-
cations, as we will see later.

2.2. Micromechanical strain

In elasticity theory, the strain tensor is defined as the symmetric part of the average of the dis-
placement gradient with respect to the equilibrium configuration of the assembly. Using the
law of conservation of energy, one can define the stress–strain relation in this theory [1, Sec-
tion 2.2]. In granular materials, it is not possible to define the strain in this sense, because any
loading involves a certain amount of plastic deformation at the contacts, so that it is not pos-
sible to define the initial configuration to calculate the strain. Nevertheless, one can define a
strain tensor in the incremental sense. This is defined as the average of the displacement ten-
sor taken from the deformation during a certain time interval.

At the micromechanical level, the deformation of the granular materials is given by a dis-
placement field u= r′ − r at each point of the assembly. Here r and r′ are the positions of a
material point before and after deformation. The average of the strain and rotational tensors
are defined as [15]:

ε̄= 1
2
(F +FT ), (11)

ω̄= 1
2
(F −FT ). (12)

Here FT is the transpose of the deformation gradient F , which is defined as [6]

Fij = 1
V

∫
V

∂ui

∂xj
dV . (13)
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Using the Gauss theorem, we transform it into an integral over the surface of the RVE

Fij = 1
V

∫
∂V

uinjda, (14)

where ∂V is the boundary of the volume element. We express this as the sum over the bound-
ary particles of the RVE

Fij = 1
V

Nb∑
α=1

∫
∂Vα

uinjda, (15)

where Nb is the number of boundary particles. It is now convenient to make some approx-
imations. First, the displacements of the grains during deformation can be considered rigid,
except for small deformations near to the contacts, which can be neglected. Then, if the dis-
placements are small in comparison with the size of the particles, we can write the displace-
ment of the material points inside particle α as:

ui(x)≈	xαi + eijk	φ
α
j (xk−xαk ), (16)

where 	xα, 	φα and xα are displacement, rotation and center of mass of the particle α which
contains the material point x, and eijk is the antisymmetric unit tensor. Setting a parameteri-
zation for each surface of the boundary grains over the RVE, we can calculate the deformation
gradient explicitly in terms of grain rotations and displacements by substituting (16) in (15).

In the particular case of a bidimensional assembly of polygons, the boundary of the RVE
is given by a graph {x1,x2, . . . ,xNb+1=x1} consisting of all the edges belonging to the exter-
nal contour of the RVE, as shown in Figure 1. In this case, Equation (15) can be transformed
into a sum of integrals over the segments of this contour.

Fij = 1
V

Nb∑
β=1

∫ xβ+1

xβ

[
	x

β
i + eik	φ

β(xk−x
β
k )
]
n
β
j ds, (17)

where eik≡ei3k and the unit vector nβ is perpendicular to the segment
−−−−→
xβxβ+1. Here β corre-

sponds to the index of the boundary segment; 	xβ , 	φβ and xβ are displacement, rotation
and center of mass of the particle which contains this segment. Finally, by using the param-
eterization x=xβ + s(xβ+1−xβ), where (0<s<1), we can integrate (17) to obtain

Fij = 1
V

∑
β

(
	x

β
i + eik	φ

β�
β
k

)
N

β
j , (18)

where N
β
j =ej,k

(
x
β+1
k −x

β
k

)
and �= (xβ+1−xβ)/2−xα. We can calculate the stress tensor by

taking the symmetric part of this tensor using Equation (11). Contrary to the strain tensor
calculated for spherical particles [8,16], the individual rotations of the particles are included
in the calculation of this tensor. This is borne out by the fact that for nonspherical particles
the branch vector is not perpendicular to the contact normal vector, so that eik�

β
k N

β
j �=0.
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3. Incremental theory

Since the stress and the strain are symmetric tensors, it is advantageous to simplify the nota-
tion by defining these quantities as six-dimensional vectors:

σ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ̄11

σ̄22

σ̄33√
2σ̄23√
2σ̄31√
2σ̄13

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and ε̃=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε̄11

ε̄22

ε̄33√
2ε̄23√
2ε̄31√
2ε̄13

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

The coefficient
√

2 allows us to preserve the metric in this transformation: σ̃kσ̃k = σ̄ij σ̄ij .
The relation between these two vectors will be established in the general context of the rate-
independent incremental constitutive relations. We will focus on two particular theoretical
developments: the theory of hypoplasticity and the elastoplastic models. The similarities and
differences of both formulations are presented in the framework of the incremental theory
that follows.

3.1. General framework

In principle, the mechanical response of granular materials can be described by a func-
tional dependence of the stress σ̃ (t) at time t on the strain history {ε̃(t ′)}0<t ′<t . However,
the mathematical description of this dependence turns out to be very complicated due to the
nonlinearity and irreversible behavior of these materials. An incremental relation, relating the
incremental stress dσ̃ (t)= σ ′(t)dt to the incremental strain dε̃(t)= ε′(t)dt and some internal
variables κ that account for the deformation history, enable us to avoid these mathematical
difficulties [17]. This incremental scheme is also useful for solving geotechnical problems, since
the finite-element codes require that the constitutive relation be expressed incrementally.

Due to the large number of existing incremental relations, the necessity of a unified the-
oretical framework has been pointed out as an essential necessity to classify all the existing
models [18]. In general, the incremental stress is related to the incremental strain as follows:

Fκ(dε̃,dσ̃ ,dt)=0. (20)

Let us look at the special case where there is no rate-dependence in the constitutive rela-
tion. This means that this relation is not influenced by the time required during any loading
tests, as corresponds to the quasistatic approximation. In this case F is invariant with respect
to dt , and (20) can be reduced to:

dε̃=Gκ(dσ̃ ) (21)

In particular, the rate-independent condition implies that multiplying the loading time by
a scalar λ does not affect the incremental stress-strain relation:

∀λ, Gκ(λdσ̃ )=λGκ(dσ̃ ) (22)

The significance of this equation is that Gκ is an homogeneous function of degree one. In
this case, the application of the Euler identity shows that (21) leads to

dε̃=Mκ(σ̂ )dσ̃ , (23)
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where Mκ = ∂Gκ/∂(dσ̃ ) and σ̂ is the unitary vector defining the direction of the incremental
stress

σ̂ = dσ̃
|dσ̃ | . (24)

Equation (23) represents the general expression for the rate-independent constitutive rela-
tion. In order to determine the dependence of M on σ̂ , one can either perform experiments
by taking different loading directions, or postulate explicit expressions based on a theoretical
framework. The first approach will be considered in the Subsection 5.2, and the discussion
about some existing theoretical models will be presented in the following.

3.2. Elastoplastic models

The classical elastoplasticity theory was established by Drucker and Prager in the context if
metal plasticity [19]. Some extensions have been developed to describe sand, clays, rocks, con-
crete, etc. [2,20]. Here we present a short review of these developments in soil mechanics.

When a granular sample, subjected to a confining pressure, is loaded in the axial direction,
it displays a typical stress-strain response as shown in the left part of Figure 2. A continuous
decrease of the stiffness (i.e., the slope of the stress-strain curve) is observed during loading. If
the sample is unloaded, an abrupt increase in the stiffness is observed, leaving an irreversible
deformation. One observes that, if the stress is changed around some region below σA, which
is called the yield point, the deformation is almost linear and reversible. The first postulate of
the elastoplasticity theory establishes a stress region immediately below the yield point where
only elastic deformations are possible.
Postulate 1: For each stage of loading there exists a yield surface which encloses a finite region
in the stress space where only reversible deformations are possible.

The simple Mohr-Coulomb model assumes that the onset of plastic deformation occurs
at failure [2]. However, it has been experimentally shown that plastic deformation develops
before failure [21]. In order to provide a consistent description of these experimental results
with the elastoplasticity theory, it is necessary to assume that the yield function changes
with the deformation process [21]. This condition is schematically shown in Figure 2. Let
us assume that the sample is loaded until it reaches the stress σA upon which it is slightly
unloaded. If the sample is reloaded, it is able to recover the same stress-strain relation of the
monotonic loading once it reaches the yield point σA again. If one increases the load to the
stress σB , a new elastic regime can be observed after a loading reversal. In the elastoplasticity

StrainA B

A

B

St
re

ss

Elastic regime

New elastic regime
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2

1

(a) (b)

Figure 2. Evolution of the elastic regime (a) stress-strain relation (b) elastic regime in the stress space.
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theory, this result is interpreted by assuming that the elastic regime is expanded to a new
stress region below the yield point σB .
Postulate 2: The yield function remains when the deformations take place inside of the elastic
regime, and it changes as the plastic deformation evolves.

The transition from the elastic to the elastoplastic response is extrapolated for more gen-
eral deformations. Part (b) of Figure 2 shows the evolution of the elastic region when the
yield point moves in the stress space from σ̃A to σ̃B . The essential goal in the elastoplasticity
theory is to find the correct description of the evolution of the elastic regime with the defor-
mation, which is called the hardening law.

We will finally introduce the third basic assumption from elastoplasticity theory:
Postulate 3: The strain can be separated in an elastic (recoverable) and a plastic (unrecover-
able) component:

dε̃=dε̃e+dε̃p, (25)

The incremental elastic strain is linked to the incremental stress by introducing an elastic
tensor as

dσ̄ =D(σ̃ )dε̃e. (26)

To calculate the incremental plastic strain, we introduce the yield surface as

f (σ, κ)=0, (27)

where κ is introduced as an internal variable, which describes the evolution of the elastic
regime with the deformation. From experimental evidence, it has been shown that this var-
iable can be taken as a function of the cumulative plastic strain εp given by [2,20]

εp≡
∫ t

0

√
dεkdεkdt (28)

When the stress state reaches the yield surface, the plastic deformation evolves. This is
assumed to be derived from a scalar function of the stress as follows:

dεpj =
∂g

∂σj
, (29)

where g is the so-called plastic potential function. Following the Drucker-Prager postulates
we can show that g= f [19]. However, a considerable amount of experimental evidence has
shown that in soils the plastic deformation is not perpendicular to the yield surfaces [22]. It
is necessary to introduce this plastic potential to extend the Drucker-Prager models to the so-
called non-associated models.

The parameter  of (29) can be obtained from the so-called consistence condition. This
condition comes from the second postulate, which establishes that, after the movement of the
stress state from σ̃A to σ̃B = σ̃A+ d̃σ , the elastic regime must be expanded so that df =0, as
shown in Part (b) of Figure 2. Using the chain rule one obtains:

df = ∂f

∂σi
dσi + ∂f

∂κ

∂κ

∂ε
p
j

dεpj =0. (30)

Inserting (29) into (30), we obtain the parameter , viz.

=−
(
∂f

∂κ

∂κ

∂ε
p
j

∂g

∂σj

)−1
∂f

∂σi
dσi. (31)
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We define the vectors N
y
i =∂f/∂σi and N

f
i =∂g/∂σi and the unit vectors φ̂=Ny/|Ny | and

ψ̂ =Nf /|Nf | as the flow direction and the yield direction. In addition, the plastic modulus is
defined as

h=− 1
|Ny ||Nf |

∂f

∂κ

∂κ

∂ε
p
i

∂g

∂σi
. (32)

Substituting (31) in (29) and using (32), we obtain:

dε̃p= 1
h
φ̂ ·dσ̃ ψ̂ . (33)

Note that this equation has been calculated in the case where the stress increment takes
place outside the yield surface. If the stress increment occurs inside the yield surface, the sec-
ond Drucker-Prager postulate establishes that dε̃p=0. Thus, the generalization of (33) is given
by

dε̃p= 1
h
〈φ̂ ·dσ̃ 〉 ψ̂, (34)

where 〈x〉 = x when x > 0 and 〈x〉 = 0 otherwise. Finally, the total strain response can be
obtained from (25) and (34):

dε̃=D−1(σ̃ )dσ̃ + 1
h
〈φ̂ ·dσ̃ 〉 ψ̂. (35)

From this equation one can distinguish two zones in the incremental stress space where
the incremental relation is linear. They are the so-called tensorial zones defined by Darve
and Laouafa [17]. The existence of two tensorial zones and the continuity of the incremental
response at the boundary confirm that these two zones are essential features of the elastoplas-
tic models.

Although the elastoplasticity theory has been proved to work well for monotonically
increasing loading, it shows some deficiencies in the description of complex loading histories
[23, pp. 230–262]. There is also an extensive body of experimental evidence that shows that
the elastic regime is extremely small and that the transition from elastic to an elastoplastic
response is not as sharp as the theory predicts [24].

The bounding surface models have been introduced to generalize the classical elastoplastic
concepts [25]. Apart from the critical-state line, these models introduce the so-called bound-
ing surface in the stress space. For any given stress state within the surface, a proper mapping
rule associates a corresponding image stress point on this surface. A measure of the dis-
tance between the actual and the image stress points is used to specify the plastic modulus
in terms of a plastic modulus at the image stress state. Besides the versatility of this theory
to describe a wide range of materials, it has the advantage that the elastic regime can be con-
sidered as vanishingly small, so that this model can be used to give a realistic description of
unbounded granular soils. In the authors’ opinion, the most striking aspect of the bounding-
surface theory with vanishing elastic range is that it establishes a convergence point for two
different approaches of constitutive modeling: the elastoplastic approaches originated from the
Drucker-Prager theory, and the more recently developed hypoplastic theories.

3.3. Hypoplastic models

In recent years, an alternative approach for modeling soil behavior has been proposed, which
departs from the framework of the elastoplasticity theory [26–28]. The distinctive features of
this approach are:
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– The absence of the decomposition of strain in plastic and elastic components.
– The statement of a nonlinear dependence of the incremental response with the strain rate

directions.
The most general expression has been provided by the so-called second-order incremental
nonlinear models [27]. A particular class of these models which has received special atten-
tion in recent times is provided by the theory of hypoplasticity [26,28]. A general outline of
this theory was proposed by Kolymbas [26], leading to different formulations, such as the K-
hypoplasticity developed in Karlsruhe [29], and the CLoE-hypoplasticity originated in Greno-
ble [28]. In hypoplasticity, the most general constitutive equation takes the following form:

dσ̃ = L(σ̃ , ν)dε̃+ Ñ(σ̃ , ν)|dε̃|, (36)

where L is a second-order tensor and Ñ is a vector, both depending on the stress σ̃ and
the void ratio ν. Hypoplastic equations provide a simplified description of loose and dense
unbounded granular materials. A reduced number of parameters are introduced, which are
very easy to calibrate [30].

In the theory of hypoplasticity, the stress-strain relation is established by means of an
incremental nonlinear relation without any recourse to yield or boundary surfaces. This non-
linearity is reflected in the fact that the relation between the incremental stress and the incre-
mental strain given in (36) is always nonlinear. The incremental nonlinearity of the granular
materials is still under discussion. Indeed, an important feature of the incremental nonlinear
constitutive models is that they break away from the superposition principle:

dσ̃ (dε̃1+dε̃2) �=dσ̃ (dε̃1)+dσ̃ (dε̃2), (37)

which is equivalent to:

dε̃(dσ̃1+dσ̃2) �=dε̃(dσ̃1)+dε̃(dσ̃2) (38)

An important consequence of this feature is addressed by Kolymbas [31, pp. 213–223] and
Darve et al. [27]. They consider two stress paths; the first one is smooth and the second
results from the superposition of small deviations as shown in Figure 3. The superposition
principle establishes that the strain response of the stair-like path converges to the response
of the proportional loading in the limit of arbitrarily small deviations. More precisely, the
strain deviations 	ε and the steps of the stress increments 	σ satisfy lim	σ→0 	ε=0. For the
hypoplastic equations, and in general for the incremental nonlinear models, this condition is
never satisfied. For incremental relations with tensorial zones, this principle is satisfied when-
ever the increments take place inside one of these tensorial zones. It should be added that
there is no experimental evidence disproving or confirming this rather questionable superpo-
sition principle.

p

q

e

Figure 3. Smooth and stair-like stress paths and corresponding strain responses. p and q represent the pressure and
the deviatoric stress. e and γ are the volumetric and deviatoric strain components.
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4. Discrete model

We present here a two-dimensional discrete-element model which will be used to investigate
the incremental response of granular materials. This model consists of randomly generated
convex polygons, which interact via contact forces. There are some limitations in the use
of such a two-dimensional code to model physical phenomena that are three-dimensional in
nature. These limitations have to be kept in mind in the interpretation of the results and its
comparison with the experimental data. In order to give a three-dimensional picture of this
model, one can consider the polygons as a collection of bricks with randomly-shaped polyg-
onal basis. Alternatively, one could consider the polygons as three-dimensional grains whose
centers of mass all move in the same plane. In the authors’ opinion, it is more sensible to
consider this model as an idealized granular material that can be used to check the constitu-
tive models.

The details of the particle generation, the contact forces, the boundary conditions and the
molecular-dynamics simulations are presented in this section.

4.1. Generation of polygons

The polygons representing the particles in this model are generated by using the method of
Voronoi tessellation [32]. This method is schematically shown in Figure 4. First, a regular
square lattice of side � is created. Then, we choose a random point in each cell of the rect-
angular grid. Subsequently, each polygon is constructed by assigning to each point that part
of the plane that is nearer to it than to any other point. The details of the construction of
the Voronoi cells can be found in the literature [33,34].

By use of the Euler theorem, it has been shown analytically that the mean number of
edges of this Voronoi construction must be 6 [34, pp. 295–296]. The number of edges of
the polygons is distributed between 4 and 8 for 98·7% of the polygons. The orientational
distribution of edges is isotropic, and the distribution of areas of polygons is symmetric
around its mean value �2. The probabilistic distribution of areas follows approximately a
Gaussian distribution with variance of 0·36�2.

Figure 4. Voronoi construction used to generate the convex polygons. The dots indicate the point used in the tes-
sellation. Periodic boundary conditions were used.
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4.2. Contact forces

In order to calculate the forces, we assume that all the polygons have the same thickness L.
The force between two polygons is written as F= fL and the mass of the polygons is M=mL.
In reality, when two elastic bodies come into contact, they have a slight deformation in the
contact region. In the calculation of the contact force we assume that the polygons are rigid,
but we allow them to overlap. Then, we calculate the force from this virtual overlap.

The first step towards the calculation of the contact force is the definition of the line repre-
senting the flattened contact surface between the two bodies in contact. This is defined from
the contact points resulting from the intersection of the edges of the overlapping polygons.
In most cases, we have two contact points, as shown in the left part of Figure 5. In such
a case, the contact line is defined by the vector C=−−→C1C2 connecting these two intersection
points. In some pathological cases, the intersection of the polygons leads to four or six con-
tact points. In these cases, we define the contact line by the vector C=−−→C1C2+−−→C3C4 or C=−−→
C1C2+−−→C3C4+−−→C5C6, respectively. This choice guarantees a continuous change of the contact
line, and therefore of the contact forces, during the evolution of the contact.

The contact force is separated as fc= fe+ fv, where fe and fv are the elastic and viscous
contribution. The elastic part of the contact force is decomposed as fe=f e

n n̂
c+f e

t t̂
c. The cal-

culation of these components is explained below. The unit tangential vector is defined as t̂ c=
C/|C|, and the normal unit vector n̂c is taken perpendicular to C. The point of application
of the contact force is taken as the center of mass of the overlapping polygons.

As opposed to the Hertz theory for round contacts, there is no exact way to calculate the
normal force between interacting polygons. An alternative method has been proposed in order
to model this force [35]. The normal elastic force is given by f e

n =−knA/Lc, where kn is the
normal stiffness, A is the overlapping area and Lc is a characteristic length of the polygon
pair. Our choice of Lc is 1/2(1/Ri+1/Rj ) where Ri and Rj are the radii of the circles of the
same area as the polygons. This normalization is necessary to be consistent in the units of
force [32].

In order to model the quasistatic friction force, we calculate the elastic tangential force
using an extension of the method proposed by Cundall-Strack [5]. An elastic force f e

t =
−kt	xt proportional to the elastic displacement is included at each contact, where kt is the
tangential stiffness. The elastic displacement 	xt is calculated as the time integral of the tan-
gential velocity of the contact during the time when the elastic condition |f e

t |<µf e
n is sat-

isfied. The sliding condition is imposed, keeping this force constant when |f e
t | = µf e

n . The

C
C

t+1t

1
4

C3

C2

1C

C2

Figure 5. Contact points Ci before (left) and after the formation of a pathological contact (right). The vector
denotes the contact line; t represents the time step.
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straightforward calculation of this elastic displacement is given by the time integral starting
at the beginning of the contact:

	xet =
∫ t

0
vct (t

′)�(µf e
n −|f e

t |)dt ′, (39)

where � is the Heaviside step function and vct denotes the tangential component of the rela-
tive velocity vc at the contact:

vc= vi − vj +ωi×�i −ωj ×�j . (40)

Here vi is the linear velocity and ωi is the angular velocity of the particles in contact. The
branch vector �i connects the center of mass of particle i with the point of application of
the contact force.

Damping forces are included in order to allow for rapid relaxation during the preparation
of the sample, and to reduce the acoustic waves produced during the loading. These forces
are calculated as

fcv =−m(γnvcnn̂c+γtv
c
t t̂
c), (41)

m= (1/mi + 1/mj )
−1 being the effective mass of the polygons in contact; n̂c and t̂ c are the

normal and tangential unit vectors defined before, and γn and γt are the coefficients of vis-
cosity. These forces introduce time-dependent effects during the cyclic loading. However, we
will show that these effects can be arbitrarily reduced by increasing the loading time, which
corresponds to the quasistatic approximation.

4.3. Molecular-dynamics simulation

The evolution of the position xi and the orientation ϕi of the ith polygon is governed by the
equations of motion:

mi ẍi =
∑
c

fci +
∑
b

fbi ,

Ii ϕ̈i =
∑
c

�ci × fc
i +

∑
b

�bi × fbi . (42)

Here mi and Ii are the mass and moment of inertia of the polygon i. The first summation
goes over all particles in contact with this polygon. According to the previous section, these
forces fc are given by

fc=−(knA/Lc+γnmv
c
n)n

c− (	xct +γtmv
c
t )t

c, (43)

The second summation on the right hand of (42) goes over all the vertices of the polygons
in contact with the walls. This interaction is modeled by using a simple visco-elastic force.
First, we allow the polygons to penetrate the walls. Then, for each vertex of the polygon α

inside of the walls we include a force

fb=−knδn−γbmαvb, (44)

where δ is the penetration length of the vertex, n is the unit normal vector to the wall, and
vb is the relative velocity of the vertex with respect to the wall.

We use a fifth-order Gear predictor-corrector method for solving the equation of motion
[36, pp. 340–342]. This algorithm consists of three steps. The first step predicts position and
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velocity of the particles by means of a Taylor expansion. The second step calculates the forces
as a function of the predicted positions and velocities. The third step corrects the positions
and velocities in order to optimize the stability of the algorithm. This method is much more
efficient than the simple Euler approach or the Runge-Kutta method, especially for problems
where very high accuracy is a requirement.

The parameters of the molecular-dynamics simulations were adjusted according to the fol-
lowing criteria: (1) guarantee the stability of the numerical solution, (2) optimize the time of
the calculation, and (3) provide a reasonable agreement with the experimental data.

There are many parameters in the molecular-dynamics algorithm. Before choosing them, it
is convenient to make a dimensional analysis. In this way, we can maintain the scale invari-
ance of the model and reduce the parameters to a minimum of dimensionless constants. First,
we introduce the following characteristic times of the simulations: the loading time t0, the
relaxation times tn=1/γn, tt =1/γt , tb=1/γb and the characteristic period of oscillation ts =√
ρ�2/kn of the normal contact.

Using the Buckingham Pi theorem [37], one can show that the strain response, or any
other dimensionless variable measuring the response of the assembly during loading, depends
only on the following dimensionless parameters: α1= tn/ts , α2= tt /ts , α3= tb/ts , α4= t0/ts , the
ratio ζ = kt/kn between the stiffnesses, the friction coefficient µ and the ratio σi/kn between
the stresses applied on the walls and the normal stiffness.

The variables αi will be called control parameters. They are chosen in order to satisfy the
quasistatic approximation, i.e., the response of the system does not depend on the loading
time, but a change of these parameters within this limit does not affect the strain response.
Parameter values α2= 0·1 and α2= 0·5 were taken large enough to have a high dissipation,
but not too large to keep the numerical stability of the method. The value α3=0·001 is cho-
sen by optimizing the time of consolidation of the sample in the Subsection 4.4. The ratio
α4= t0/ts = 10,000 was chosen large enough in order to avoid rate-dependence in the strain
response, corresponding to the quasistatic approximation. Technically, this is performed by
looking for the value of α4 such that a reduction of it by half results in a change of the
stress–strain relation less than 5%.

The parameters ζ and µ can be considered as material parameters. They determine the con-
stitutive response of the system, so they must be adjusted to the experimental data. In this
study, we have adjusted them by comparing the simulation of biaxial tests of dense polygonal
packings with the corresponding biaxial tests with dense Hostun sand [38]. First, the initial
Young modulus of the material is linearly related to the value of normal stiffness of the con-
tact. Thus, kn=160 MPa is chosen by fitting the initial slope of the stress–strain relation in the
biaxial test. Then, the Poisson ratio depends on the ratio ζ = kt/kn. Our choice kt = 52·8MPa
gives an initial Poisson ratio of 0·2. This is obtained from the initial slope of the curve of
volumetric strains versus axial strain. The angles of friction and the dilatancy are increasing
functions of the friction coefficient µ. Taking µ=0·25 yields angles of friction of 30–40 degrees
and dilatancy angles of 10–20 degrees, which are similar to the experimental data of river sand
[39].

4.4. Sample preparation

The Voronoi construction presented above leads to samples with no porosity. This ideal case
contrasts with realistic soils, where only porosities up to a certain value can be achieved. In
this section, we present a method to create stable, irregular packings of polygons with a given
porosity.
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The porosity can be defined using the concept of void ratio. This is defined as the ratio
of the volume of the void space to the volume of the solid material. It can be calculated as:

ν= Vt

Vf −V0
−1. (45)

This is given in terms of the area enclosed by the walls Vt , the sum of the areas of the poly-
gons Vf and the sum of the overlapping areas between them V0.

Of course, there is a maximal void ratio that can be achieved, because it is impossible to
pack particles with an arbitrarily high porosity. The maximal void ratio νm can be detected by
moving the walls until a certain void ratio is reached. We find a critical value, above which the
particles can be arranged without touching. Since there are no contacts, the assembly cannot
support a load, and even applying gravity will cause it to compactify. For a void ratio below
this critical value, there will be particle overlap, and the assembly is able to sustain a certain
load. This maximal value is around 0·28.

The void ratio can be decreased by reducing the volume between the walls. The drawback
of this method is that it leads to significant differences between the inner and outer parts
of the boundary assembly and hence unrealistic overlaps between the particles, giving rise to
enormous pressures. Alternatively, one can confine the polygons by applying gravity to the
particles and on the walls. Particularly, homogeneous, isotropic assemblies, as shown in Fig-
ure 6 can be generated by a gravitational field g=−gr, where r is the vector connecting the
center of mass of the assembly to the center of the polygon.

When the sample is consolidated, repeated shear-stress cycles are applied from the walls,
superimposed to a confining pressure. The external load is imposed by applying a force [pc+
qc sin(2πt/t0)]W and [pc+qc cos(2πt/t0)]H on the horizontal and vertical walls, respectively.
Here W and H are the width and the height of the sample, respectively. If we take pc=16 kPa
and qc < 0·4pc, we observe that the void ratio decreases as the number of cycles increases.
Void ratios of around 0·15 can be obtained. It is worth mentioning that after some thousands
of cycles the void ratio is still slowly decreasing, making it difficult to identify this minimal
value.

5. Simulation results

In order to investigate different aspects of the incremental response, some numerical sim-
ulations were performed. Different polygonal assemblies of 400 particles were used in the
calculations. The loading between two stress states was controlled by applying forces [σ i1 +
(σ

f

1 − σ i1)r(t)]W and [σ i2 + (σ
f

2 − σ i2)r(t)]H . A smooth modulation r(t)= (1− cos(2πt/t0))/2
is chosen in order to minimize the acoustic waves produced during loading. The initial void
ratio is around ν=0·22.

The components of the stress are represented by p= (σ1+σ2)/2 and q= (σ1−σ2)/2, where
σ1 and σ2 are the eigenvalues of the averaged stress tensor on the RVE. Equivalently, the
coordinates of the strain are given by the sum γ = ε2− ε1 and the difference e=−ε1− ε2 of
the eigenvalues of the strain tensor. We use the convention that e>0 means compression of
the sample. The diameter of the RVE is taken as d=16� . All the calculations were taken in
the quasistatic regime.

5.1. Superposition principle

We start by exploring the validity of the superposition principle presented in Subsection 3.3.
Part (a) of Figure 7 shows the loading path during the proportional loading under constant
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Figure 6. Polygonal assembly confined by a rectangu-
lar frame of walls.
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Figure 7. Numerical responses obtained from MD
simulations of a rectilinear proportional loading
(with constant lateral pressure) and stair-like paths.
(a) Loading stress paths. (b) corresponding strain
responses.

lateral pressure. This path is also decomposed into pieces divided into two parts: one is an
incremental isotropic loading (	p =	σ and 	q = 0), the other an incremental pure-shear
loading (	q=	σ and 	p=0). The length of the steps 	σ varies from to 0·4p0 to 0·001p0,
where p0=640 kPa. Part (b) of Figure 7 shows that, as the steps decrease, the strain response
converges to the response of the proportional loading. In order to verify this convergence, we
calculate the difference between the strain response of the stair-like path γ (e) and the propor-
tional loading path γ0(e) as:

	ε≡max
e
|γ (e)−γ0(e)|, (46)

for different steps sizes. This is shown in Figure 8 for seven different polygonal assemblies.
The linear interpolation of this data intersects the vertical axis at 3×10−7. Since this value is
below the error given by the quasi-static approximation, which is 3×10−4, the results suggest
that the responses converge to that of the proportional load. Therefore we find that, within
our error bars, the superposition principle is valid.

Close inspection of the incremental response will show that the validity of the superposi-
tion principle is linked to the existence of tensorial zones in the incremental-stress space. Prior
to this, a short introduction to the strain envelope responses will be given.
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5.2. Incremental response

A graphical illustration of the constitutive models can be given by employing the so-called
response envelopes. They were introduced by Gudehus [18] as a useful tool to visualize
the properties of a given incremental constitutive equation. The strain-envelope response is
defined as the image {dε̃=G(dσ̃ , σ̃ )} in the strain space of the unit sphere in the stress space,
which becomes a potato-like surface in the strain space.

In practice, the determination of the stress-envelope responses is difficult because it
requires one to prepare many samples with identical material properties. Numerical simula-
tions result as an alternative to the solution of this problem. They allow one to create clones
of the same sample, and to perform different loading histories in each one of them.

In the case of a plane-strain test, where there is no deformation in one of the spatial
directions, the strain-envelope response can be represented in a plane. According to (36), this
response results in a rotated, translated ellipse in the hypoplastic theory, whereas it is given
by a continuous curve consisting of two pieces of ellipses in the elastoplasticity theory, as a
result of (35). It is then of obvious interest to compare these predictions with the stress-enve-
lope response of the experimental tests.

Figure 9 shows the typical strain response resulting from different stress-controlled load-
ings in a dense packing of polygons. Each point is obtained from the strain response in
a specific direction of the stress space, with the same stress amplitude of 10−4p0. We take
q0=0·45p0 and p0=160 kPa in this calculation. The best fit of these results in the envelopes
response of the elastoplasticity (two pieces of ellipses). For comparison the hypoplasticity (one
ellipse) is also shown in Figure 9.

From these results we conclude that the elastoplasticity theory is more accurate in describ-
ing the incremental response of our model. One can draw the same conclusion by tak-
ing different strain values with different initial stress values [40]. These results have shown
that the incremental response can be accurately described using the elastoplastic relation of
Equation (35). The validity of this equation is supported by the existence of a well-defined
flow rule for each stress state [41].

5.3. Yield function

In Subsection 3.2, we showed that the yield surface is an essential element in the formulation
of the Drucker-Prager theory. This surface encloses a hypothetical region in the stress space
where only elastic deformations are possible [19]. The determination of such a yield surface
is essential to determine the dependence of the strain response on the history of the deforma-
tion.

We attempt to detect the yield surface by using a standard procedure proposed in experi-
ments with sand [24]. Figure 10 shows this procedure. Initially the sample is subjected to an
isotropic pressure. Then the sample is loaded in the axial direction until it reaches the yield-
stress state with pressure p and deviatoric stress q. Since plastic deformation is found at this
stress value, the point (p, q) can be considered as a classical yield point. Then, the Druc-
ker-Prager theory assumes the existence of a yield surface containing this point. In order to
explore the yield surface, the sample is unloaded in the axial direction until it reaches the
stress point with pressure p−	p and deviatoric stress q−	p inside the elastic regime. Then
the yield surface is constructed by re-loading in different directions in the stress space. In each
direction, the new yield point must be detected by a sharp change of the slope in the stress-
strain curve, indicating plastic deformations.


