METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

with Case Studies

by

Marc Pastre

Ecole Polytechnique Fédérale de Lausanne, Switzerland

and

Maher Kayal

Ecole Polytechnique Fédérale de Lausanne, Switzerland

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-4252-3 (HB) ISBN-13 978-1-4020-4252-2 (HB) ISBN-10 1-4020-4253-1 (e-book) ISBN-13 978-1-4020-4253-9 (e-book)

> Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

> > www.springeronline.com

Printed on acid-free paper

All Rights Reserved © 2006 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

Contents

List	of F	igures	xi
List of Tables		xvii	
1	IN	TRODUCTION	1
1.	1	Context	1
	2	Objectives	2
	2	Compensation methodology	2
	<u>л</u>	Applications of the compensation methodology	2
	4	Applications of the compensation methodology	2
	3	Book organization	3
2.	AU	JTOCALIBRATION AND COMPENSATION TECHNIQUES	5
	1	Introduction	5
	2	Matching	5
		2.1 Matching rules	6
		2.2 Matching parameters	6
	3	Chopper stabilization	7
		3.1 Principle	7
		3.2 Analysis 3.3 Implementation	8
	1	Autozoro	11
	4	4 1 Principle	11
		4.2 Analysis	12
		4.3 Noise	14
	5	Correlated double sampling	18
	6	Ping-pong	18
	7	Other techniques	20

	8	Classification	21	
	9	Conclusion	22	
3.	DIGITAL COMPENSATION CIRCUITS AND SUB-BINARY DIC TAL-TO-ANALOG CONVERTERS			
	1	Introduction	23	
	2	Digital compensation	23	
	3	Successive approximations	24	
		3.1 Principle	25	
		3.2 Working condition	28	
		3.3 Reverse successive approximations algorithm	29	
	4	3.4 Complexity	31	
	4	Sub-binary radix DACs	31 21	
		4.1 Use of sub-binary DACs for successive approximations	22	
		4.2 Characteristics 4.3 Resolution	32 34	
		4.4 Tolerance to radix variations	34	
	5	Component arrays	35	
		5.1 Sizing	36	
	6	Current sources	38	
		6.1 Current-mirror DAC	39	
	7	R/2R ladders	40	
	8	Linear current division using MOS transistors	41	
		8.1 Principle	41	
		8.2 Second-order effects	45	
		8.3 Parallel configuration	45	
		8.4 Series configuration	46	
	9	M/2M ladders	48	
		9.1 Principle	48	
		9.2 Complementary ladder	49 50	
		9.4 Trimming	50	
	10	R/xR ladders	51	
	10	10.1 Principle	51	
		10.2 Working condition	53	
		10.3 Terminator calculation	54	
		10.4 Terminator implementation	55	
		10.5 Ladder sizing	57	
		10.6 Terminator sizing	58	

Contents

4.

	10.7 Radix	60
11	$M/2^+M$ ladders	62
	11.1 M/3M ladders	62
	11.2 M/2.5M ladders	64 65
	11.4 Current collector design	67
	11.5 Complementary ladders	72
	11.6 Layout	72
	11.7 Measurements	73
12	Comparison	77
13	Linear DACs based on $M/2^+M$ converters	78
	13.1 Principle	78
	13.3 Radix conversion algorithm	84
	13.4 Digital circuit implementation	85
	13.5 Analog circuit implementation	87
	13.6 Compensation of temperature variations	90
	13.7 Comparison with other self-calibrated converters	90
14	Conclusion	91
M	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM	PENSA-
M TI	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS	PENSA- 93
M TI 1	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction	PENSA- 93 93
M TI 1 2	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier	PENSA- 93 93 93
M TI 1 2 3	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique	PENSA- 93 93 93 93
M TI 1 2 3	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration	PENSA- 93 93 93 96 97
M TI 1 2 3	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node	PENSA- 93 93 93 96 97 100
M TI 1 2 3	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution	PENSA- 93 93 93 96 97 100 105 113
M TI 1 2 3	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering	PENSA- 93 93 93 93 96 97 100 105 113 114
M TI 1 2 3	 ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 	PENSA- 93 93 93 96 97 100 105 113 114 115
M TI 1 2 3	ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 3.7 Up/down DAC	PENSA- 93 93 93 96 97 100 105 113 114 115 117
M. TI 1 2 3 3	 ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 3.7 Up/down DAC Simulation with digital compensation circuits 	PENSA- 93 93 93 96 97 100 105 113 114 115 117 124
M. TI 1 2 3 4	 ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 3.7 Up/down DAC Simulation with digital compensation circuits 4.1 Principle 	PENSA- 93 93 93 93 96 97 100 105 113 114 115 117 124 125
M. TI 1 2 3 4	 ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 3.7 Up/down DAC Simulation with digital compensation circuits 4.1 Principle 4.2 Automatic compensation component 4.3 Compensation component 	PENSA- 93 93 93 96 97 100 105 113 114 115 117 124 125 126 128
M. TI 1 2 3 4	 ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 3.7 Up/down DAC Simulation with digital compensation circuits 4.1 Principle 4.2 Automatic compensation component 4.3 Compensation component during adjustment 4.4 Compensation component during compensation 	PENSA- 93 93 93 96 97 100 105 113 114 115 117 124 125 126 128 130
M. TI 1 2 3 4	 ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 3.7 Up/down DAC Simulation with digital compensation circuits 4.1 Principle 4.2 Automatic compensation component 4.3 Compensation component during adjustment 4.4 Compensation component during compensation 4.5 Multiple digital compensation 	PENSA- 93 93 93 96 97 100 105 113 114 115 117 124 125 126 128 130 133
M. TI 1 2 3 4	 ETHODOLOGY FOR CURRENT-MODE DIGITAL COM ON OF ANALOG CIRCUITS Introduction Two-stage Miller operational amplifier Compensation current technique 3.1 Detection configuration 3.2 Detection node 3.3 Compensation node 3.4 DAC resolution 3.5 Low-pass decision filtering 3.6 Continuous-time compensation 3.7 Up/down DAC Simulation with digital compensation circuits 4.1 Principle 4.2 Automatic compensation component 4.3 Compensation component during adjustment 4.4 Compensation component during compensation 4.5 Multiple digital compensation 	PENSA- 93 93 93 93 96 97 100 105 113 114 115 117 124 125 126 128 130 133 134

		4.7 Offset compensation of the Miller amplifier	136
	5	Application to SOI 1T DRAM calibration	138
		5.1 1-transistor SOI memory cell	139
		5.2 Memory cell imperfections	140
		5.3 Sensing scheme	141
		5.4 Calibration principle	144
		5.5 Calibration algorithm	146
		5.6 Measurements	147
	6	Conclusion	148
5.	HA	ALL MICROSYSTEM WITH CONTINUOUS DIGITAL GAIN	
	CA	LIBRATION	151
	1	Introduction	151
	2	Integrated Hall sensors	151
		2.1 Hall effect	152
		2.2 Hall sensors	153
		2.3 Hall sensor models	155
	3	Spinning current technique	157
	4	Sensitivity calibration of Hall sensors	160
		4.1 Sensitivity drift of Hall sensors	161
		4.2 Integrated reference coils	162
		4.3 Sensitivity calibration	163
		4.4 State of the art	166
	5	Hall sensor microsystems	171
		5.1 Analog front-ends for current measurement	171
	6	Continuous digital gain calibration technique	173
		6.1 Principle	173
		6.2 Combined modulation scheme	175
		6.3 Demodulation schemes	176
		6.4 Gain compensation	179
		6.5 Offset compensation	183
		6.6 Noise filtering	184
		6.7 Delta-sigma analog-to-digital converter	189
		6.8 Rejection of signal interferences	193
	7	Conclusion	197
6.	IM	PLEMENTATION OF THE HALL MICROSYSTEM WITH CO	DN-
	ΤI	NUOUS CALIBRATION	199
	1	Introduction	199

Contents

	2	Hall sensor array	199
	3	 Preamplifier 3.1 Programmable gain range preamplifier 3.2 DDA 3.3 Operational amplifier 	201 201 202 207
	4	Demodulators 4.1 Switched-capacitor integrators 4.2 External signal demodulator 4.3 Reference demodulator 4.4 Offset demodulator	208 209 213 216 220
	5	Delta-sigma modulator	221
	6 7	 System improvements 6.1 Compensation of the reference demodulator offset 6.2 Coil-sensor capacitive coupling 6.3 External interferences 6.4 Alternate modulation/demodulation schemes System integration 7.1 Configuration and measurement possibilities 7.2 Integrated circuit 7.3 Measurement results 	224 224 225 226 227 230 230 231 233
	8	Conclusion	240
7.	CO	NCLUSION	241
	1	Highlights	241
	2	Main contributions	242
	3	Perspectives	242
Refe	renc	es	245
Index		255	

List of Figures

Figure 1.	Functional chopper amplifier	7
Figure 2.	Temporal analysis of a chopper amplifier	8
Figure 3.	Frequency analysis of a chopper amplifier	8
Figure 4.	Fully differential chopper amplifier	9
Figure 5.	Implementation of a modulator/demodulator using	10
Figure 6.	CMOS transmission gate	10
Figure 7.	Demodulator for single output chopper amplifier	11
Figure 8.	Autozero amplifier principle	12
Figure 9.	Analogically compensated autozero amplifier	13
Figure 10.	Digitally compensated autozero amplifier	13
Figure 11.	Autozero baseband and foldover noise transfer functions	15
Figure 12.	Resulting noise with autozero and small amplifier bandwidth	16
Figure 13.	Resulting noise with autozero and large amplifier bandwidth	17
Figure 14.	Effect of the 1/f corner frequency on the resulting noise	18
Figure 15.	Ping-pong amplifier system	19
Figure 16.	Operational amplifier swapping	20
Figure 17.	Digital compensation of the offset of an operational	24
Figure 18	Ideal 4-bits DAC input/output characteristics	24
Figure 19	Fauivalent offset	25
1 10410 17.	Equivalent officer	20

Figure 20.	Successive approximations algorithm	26
Figure 21.	Successive approximations algorithm timing	27
Figure 22.	Reverse successive approximations algorithm	30
Figure 23.	Reverse successive approximations algorithm timing	30
Figure 24.	Input/output characteristics of a radix 1.75 DAC	32
Figure 25.	Input/output characteristics of a radix 1.5 DAC	33
Figure 26.	Parallel capacitor array	36
Figure 27.	Series resistor array	36
Figure 28.	Sub-binary DAC based on current-mirrors	39
Figure 29.	Current-mode R/2R ladder	40
Figure 30.	Normalized drain current of the MOS transistor	43
Figure 31.	Current division circuit	43
Figure 32.	Current division without input current	44
Figure 33.	Current division with input	44
Figure 34.	Equivalent transistor of two transistors in parallel	46
Figure 35.	Equivalent transistor of two transistors in series	47
Figure 36.	M/2M ladder	48
Figure 37.	PMOS M/2M ladder	49
Figure 38.	Inverse M/2M ladder	50
Figure 39.	R/xR ladder	51
Figure 40.	Modified R/xR ladder	53
Figure 41.	2R terminator in a R/3R ladder	56
Figure 42.	Maximum allowable mismatch in function of xT	59
Figure 43.	Best-achievable radix with a sub-binary converter	61
Figure 44.	M/3M ladder	62
Figure 45.	M/2.5M ladder	64
Figure 46.	$M/2^+M$ ladder selection	66
Figure 47.	Current mirror as M/3M current collector	68
Figure 48.	Voltage/current characteristics of a diode-connected transistor	69
Figure 49.	Successive approximations with current mirrors as collectors	71
Figure 50.	Layout overview of one stage of a M/2.5M converter	72
Figure 51.	M/2 ⁺ M test-chip micrograph	73

List of Figures

Figure 52.	Standard deviation of the current division in M/2.5M ladders	75
Figure 53.	Standard deviation of ρ in each stage of the M/2.5M ₄ ladder	76
Figure 54.	Standard deviation of ρ in each stage of the M/3M ₁ ladder	77
Figure 55.	Input/output characteristics before calibration	79
Figure 56.	Input/output characteristics after calibration	80
Figure 57.	DAC system architecture	81
Figure 58.	DAC calibration principle	82
Figure 59.	DAC calibration algorithm	83
Figure 60.	DAC radix conversion algorithm	85
Figure 61.	Digital circuit implementation	86
Figure 62.	Transresistance current collector	87
Figure 63.	Regulated cascode current collector	88
Figure 64.	Single-input current comparator	89
Figure 65.	DAC micrograph	90
Figure 66.	Two-stage Miller operational amplifier	94
Figure 67.	Small-signal model of the two-stage amplifier	95
Figure 68.	Offset detection in the closed-loop configuration	98
Figure 69.	Offset detection in the open-loop configuration	100
Figure 70.	Offset measurement in the closed-loop configuration	101
Figure 71.	Offset measurement in the open-loop configuration	102
Figure 72.	Implementation of a comparator with a digital buffer	104
Figure 73.	Input/output characteristics of the CMOS inverter	104
Figure 74.	Compensation by current injection	105
Figure 75.	Offset correction by additional differential pair	107
Figure 76.	Offset correction by degenerated current mirror	107
Figure 77.	Offset correction by unilateral current injection	108
Figure 78.	Offset correction by improved unilateral current injection	110
Figure 79.	Offset correction by bilateral current injection	111
Figure 80.	Analog averaging of the offset measurement	114
Figure 81.	Digital averaging of the offset measurement	115
Figure 82.	Imperfection tracking with successive approximations	116
Figure 83.	Imperfection tracking with up/down	117

Figure 84.	Up/down current mirror principle	118
Figure 85.	Smooth transition during up/down step	119
Figure 86.	Up/down current mirror schematic	122
Figure 87.	Up/down current mirror micrograph	124
Figure 88.	2-pass simulation algorithm	125
Figure 89.	Single-ended compensation component in the schematic editor	126
Figure 90.	Differential compensation component in the schematic editor	127
Figure 91.	Single-ended compensation component netlist for the first pass	128
Figure 92.	Model of the analog feedback loop of the first pass	128
Figure 93.	Differential compensation component netlist for the first pass	130
Figure 94.	Single-ended compensation component netlist for the second pass	131
Figure 95.	Final value range of the successive approximations algorithm	132
Figure 96.	Differential compensation component netlist for the second pass	133
Figure 97.	Modified 2-pass simulation algorithm	134
Figure 98.	PSpice diode model	135
Figure 99.	Programmable current source	136
Figure 100.	Untrimmed offset of a typical Miller amplifier	137
Figure 101.	Miller amplifier offset with single-ended 8-bits trimming	138
Figure 102.	SOI 1T DRAM cell	139
Figure 103.	Read current dispersion of the 1T DRAM cell	140
Figure 104.	Retention characteristics of the 1T DRAM cell	141
Figure 105.	Reference current window as a function of time	141
Figure 106.	Sense amplifier for SOI 1T DRAM	142
Figure 107.	Sense amplifier model	143
Figure 108.	Automatic reference adjustment algorithm	145
Figure 109.	Optimized automatic reference adjustment algorithm	147
Figure 110.	Write/read cycles on 3 adjacent memory cells	148
Figure 111.	Hall effect	152

List of Figures

Figure 112.	Cross-like Hall sensor and symbol	153
Figure 113.	Cross-like Hall sensor implementation in P-substrate CMOS	154
Figure 114.	Purely resistive Hall sensor model	155
Figure 115.	Modelling of the offset of the Hall sensor	156
Figure 116.	Modelling of the offset and Hall effect	156
Figure 117.	Spinning current technique	157
Figure 118.	Sensor and preamplifier	158
Figure 119.	Typical thermal drift of the current-related sensitivity	161
Figure 120.	Integrated calibration coil	162
Figure 121.	Sensitivity calibration principle	164
Figure 122.	Influence of the calibration period on the variation of B_{ext}	166
Figure 123.	Calibration by dual signal \pm reference measurement paths	167
Figure 124.	Calibration by separate signal and reference measurement paths	169
Figure 125.	Calibration by frequency separation	170
Figure 126.	System architecture	174
Figure 127.	Gain adjustment feedback loop	180
Figure 128.	Gain adjustment feedback loop with ADC and digital comparison	181
Figure 129.	Compensation current injection	182
Figure 130.	Offset correction feedback loop	183
Figure 131.	Spectral representation of the modulated reference signal	185
Figure 132.	Band-limitation of the noise to increase the SNR	186
Figure 133.	Low-pass filtering after demodulation to increase the SNR	187
Figure 134.	Demodulator and delta-sigma filter transfer functions	188
Figure 135.	Delta-sigma used as an analog-to-digital integrator	189
Figure 136.	Typical signals in the delta-sigma modulator	190
Figure 137.	Low-pass filter function of the delta-sigma ADC	193
Figure 138.	High-pass parasitic transfer function of the reference demodulator	195
Figure 139.	Parasitic transfer function before and after filtering	196

Figure 140.	Hall sensor and reference coil array	200
Figure 141.	Preamplifier block diagram	201
Figure 142.	Sensor array and first stage of the preamplifier	202
Figure 143.	Model of the DDA with 5 differential inputs	203
Figure 144.	Schematic of the DDA	205
Figure 145.	Schematic of the operational amplifier	207
Figure 146.	Switched-capacitor integrator	209
Figure 147.	Addition principle	210
Figure 148.	Subtraction principle	211
Figure 149.	Switch timing for an addition	212
Figure 150.	Switch timing for a subtraction	212
Figure 151.	External signal demodulator switch timing	214
Figure 152.	Demodulator phase shift	215
Figure 153.	Reference demodulator	217
Figure 154.	Reference signal demodulator switch timing	218
Figure 155.	Offset signal demodulator switch timing	221
Figure 156.	Delta-sigma modulator	222
Figure 157.	Delta-sigma switch timing	223
Figure 158.	Offset compensation in the gain adjustment feedback loop	224
Figure 159.	Model of the coil-sensor capacitive coupling	225
Figure 160.	Micrograph of the current measurement microsystem	232
Figure 161.	Preamplifier and demodulator output for $B_{ext} = 0$	235
Figure 162.	Preamplifier and demodulator output for negative B_{ext}	236
Figure 163.	Preamplifier and demodulator output for positive Bext	237
Figure 164.	Nonlinearity measurement	238
Figure 165.	Offset drift measurement	239
Figure 166.	Sensitivity drift measurement	239

xvi

List of Tables

Table 1.	Characteristics of the compensation techniques	21
Table 2.	Successive approximations algorithm timing	28
Table 3.	Reverse successive approximations algorithm timing	31
Table 4.	Bit current values in the sub-binary DAC	39
Table 5.	Characteristics of the M/3M ladder	63
Table 6.	Characteristics of the M/2.5M ladder	65
Table 7.	2 ⁺ resistor implementation	67
Table 8.	M/2 ⁺ M test-chip ladder characteristics	74
Table 9.	M/2 ⁺ M current division measurement	74
Table 10.	Calibration table for the example of figure 55	84
Table 11.	Characteristics of the two-stage Miller operational amplifier	96
Table 12.	Closed-loop and open-loop offset measurement	103
Table 13.	Compensation currents for worst-case and Monte Carlo	131
Table 14.	Typical specifications of a current measurement	
	microsystem	172
Table 15.	Combined modulation scheme	176
Table 16.	Demodulation schemes	177
Table 17.	External signal, reference signal and noise levels	184
Table 18.	Sensor and coil characteristics	201
Table 19.	Characteristics of the DDA	206
Table 20.	Characteristics of the operational amplifier	208
Table 21.	External signal demodulation intermediate results	216
Table 22.	Reverse modulation scheme	228

Table 23.	Reverse demodulation schemes	228
Table 24.	Multiplexed modulation scheme	229
Table 25.	Multiplexed demodulation scheme	230
Table 26.	Capacitor values in the reference demodulator	231
Table 27.	Pin functions	233
Table 28.	Demodulator output for $B_{ext} = 0$	235
Table 29.	Demodulator output for negative Bext	236
Table 30.	Demodulator output for positive Bext	237
Table 31.	Microsystem characteristics	240

xviii

Chapter 1

Introduction

1 CONTEXT

Ever since the invention of the transistor in the late 50's, its fabrication technology has been evolving, allowing the device integration in a continuously shrinking area. High-performance integrated analog systems have always been difficult to design. Sometimes, calibration is used to gather the extra performance that the analog devices cannot provide intrinsically. But the evolution of the manufacturing technology renders even basic analog systems difficult to design today. With the size reduction, the intrinsic precision of the components degrades. In parallel, the supply voltage decreases, limiting the topologies which can be used. Many modern technologies are specifically suited for pure digital circuits, and some analog devices, like capacitors, are not available. In these conditions, analog design is a challenge even for experienced designers.

To relieve the extreme design constraints in analog circuits, digital calibration becomes a must. It allows a low-precision component to be used in highperformance systems. If the calibration is repeated, it can even cancel the effect of temperature drift and ageing.

The digital calibration is compatible with the evolution of fabrication technologies, which ever more facilitates the integration of digital solutions at the cost of a dramatic reduction of analog performances. Thanks to the reduction of the size of digital devices, even complex digital calibration solutions can be integrated and become a viable alternative to intrinsically precise analog designs.

Digital calibration allows to realize high-performance analog systems with modern technologies. This enables pure analog designs to be implemented even in fully digital processes. In existing mixed-signal designs, the full system realization also becomes possible with technologies providing higher integration density. Finally, because circuit performances rely on digital calibration, retargeting is simplified. The digital blocks can be synthesized automatically, whereas only a limited design effort is invested in the analog circuit.

2 OBJECTIVES

The first objective of this book is to provide a general methodology for the digital calibration of analog circuits. It ranges from the analog circuit analysis (to identify how imperfections are detected) to the implementation of the compensation. It presents systematic means for performing the compensation based on general correction blocks and algorithms. The opportunity of performing regular calibration is also analyzed, and a classification of analog systems allowing or disallowing this feature is developed. Finally, simulation tools permitting the verification of the efficiency of the calibration are presented.

The second objective is to use the defined methodology for correcting the imperfections of existing circuits. In this book, the application of the compensation technique and circuits to three different systems is proposed: a high-precision digital-to-analog converter, a SOI (silicon on insulator) 1T DRAM (single-transistor dynamic random access memory), and a Hall sensor-based microsystem for current measurement.

3 COMPENSATION METHODOLOGY

The compensation methodology is based on current-mode sub-binary radix converters used in conjunction with successive approximations algorithms. A complete analysis of an efficient implementation of sub-binary converters using MOS transistors is performed. In particular, it is demonstrated that these very low-area $M/2^+M$ converters can achieve arbitrarily high resolutions, which is advantageous to perform high-precision calibrations.

An adaptation of the compensation methodology to continuous-time processing systems is also studied. In particular, a way of using an adapted successive approximations algorithm and compensation converter which produce unity up and down compensation steps is presented.

4 APPLICATIONS OF THE COMPENSATION METHODOLOGY

The sub-binary converters are intrinsically non-linear and their direct use as conventional digital-to-analog converters is impossible. However, using two special calibration and radix conversion algorithms, this limitation is removed and the realization of high-precision DACs becomes possible, even with very low-precision components used in sub-binary converters.

The second application is a SOI 1T DRAM, for which an automatic reference calibration technique is proposed. Using the proposed compensation methodology, a sub-binary DAC controlled by a successive approximations algorithm generates the current reference necessary to read the memory. The reference compensates various circuit imperfections together, from the sense amplifier offset to the statistical dispersion of the memory cell currents.

The most important application of the digital compensation methodology is a current measurement microsystem based on a Hall sensor. Until now, the performances of current measurement ASICs have been highly limited by the sensitivity drift of integrated Hall sensors. A novel continuous sensitivity calibration technique is proposed, based on the digital compensation methodology. It combines chopper and autozero techniques, along with all the circuits and algorithms proposed in the first part for the general correction methodology.

5 BOOK ORGANIZATION

Chapter 2 is an introduction to common compensation techniques. The chopper and autozero techniques are presented, and the conditions of their use in continuous and sampled systems is discussed. Finally, both techniques are compared and a classification is performed.

Chapter 3 presents the digital compensation algorithm (successive approximations), and the current-mode sub-binary $M/2^+M$ digital-to-analog converters which are especially well-suited for digital compensation by current injection. Other sub-binary structures are also presented and compared. Finally, the special calibration and radix conversion algorithms, allowing the use of sub-binary converters as conventional DACs, are presented.

Chapter 4 proposes a complete digital compensation methology which allows the correction of circuit imperfections using the circuits and algorithms of chapter 2. The presentation includes specific simulation tools for automatic digital compensation. The application of the methodology to the SOI 1T DRAM reference calibration is presented.

Chapter 5 introduces a new sensitivity calibration technique for Hall microsystems, based on the methodology and circuits of chapters 3 and 4. After an introduction to Hall sensors and the state of the art in Hall sensorbased microsystems, the principle of the calibration technique is explained. The system-level issues are presented and the solutions explained.

Chapter 6 details the implementation of a complete Hall microsystem for current measurement using the sensitivity calibration technique proposed in chapter 5. Each block is presented, and the simulated and measured performances discussed.

Chapter 7 concludes this book by highlighting the most important results and proposing future improvement possibilities.

Chapter 2

Autocalibration and compensation techniques

This chapter presents techniques which are commonly used to compensate or hide imperfections of analog circuits. Some of them, like chopper modulation, use mostly analog circuitry to remove a disturbing effect. Others, like successive approximations, extensively use digital correction algorithms to trim analog components or circuits. First, the mostly used techniques are presented. Then, their performances are examined and a classification is made.

1 INTRODUCTION

The design of analog circuits is rendered difficult by the imperfections imparted by the manufacturing process to the component values. Physical parameters (e.g. oxide thickness, physical dimensions, doping profile) are subject to variations due to instabilities of the fabrication technology, and they reflect on component parameters. The best achievable tolerance of individual component values thus depends on the accuracy of the manufacturing process, and cannot be reduced below a minimum level.

Fortunately, analog design rarely relies on the *absolute value* of single components, but rather on *relative values* of several components. The relative values can be made arbitrarily close, i.e. with small tolerances, by using appropriate design techniques like matching. Thus, high-precision circuits can be realized even with poor manufacturing processes.

2 MATCHING

The most common technique for improving the precision of analog blocks is matching. If the layout of pairs/sets of components is performed carefully following the rules presented below, the statistical dispersion of their values can be reduced.

2.1 Matching rules

The following rules should be applied for optimum matching of integrated components [1]:

- 1. Same structure
- 2. Same temperature
- 3. Same shape, same size
- 4. Minimum distance
- 5. Common-centroid geometries
- **6.** Same orientation
- 7. Same surroundings
- 8. Non minimum size

When designing pairs/sets of components using these rules, one makes them all as similar as possible. Furthermore, as the components are split and mixed appropriately (common-centroid), they are statistically affected in a similar manner by external (e.g. temperature) and intrinsic (e.g. doping) parameter variations.

2.2 Matching parameters

If the rules presented in section 2.1 are correctly applied, the dispersion of the component values becomes an inverse function of the *area* occupied by the devices [2][3][4]. This means that by increasing the size of the features and by applying rigorously the matching rules, the relative mismatch of the device pairs/sets is reduced. The general model that describes the dependence of the matching of a parameter P on the area of two devices with area W \cdot L is:

$$\sigma^{2}(P) = \frac{A_{P}^{2}}{W \cdot L}$$
(2.1)

where A_P is the process-dependent matching parameter describing the area dependence. This model is applicable to capacitors, resistors, MOS transistors, etc.

The statistical dispersion is inversely proportional to the area of the device. Consequently, in order to achieve a given matching precision, one has to design components larger than the limit that is calculated using equation 2.1. Obviously, the designer faces an important trade-off between precision and circuit area when using only matching properties. But there are also other

techniques that allow for increasing the precision of poor circuit elements. Instead of focusing on building high-precision devices, one can build low-precision components and try to *adjust* them or *compensate* for their imperfections later on. There are wide varieties of such techniques, each one having its specific application fields. The new trade-off is then between the matching effort and the use of one or a combination of these compensation techniques. This chapter presents some of them, focusing on the additional circuitry needed to implement them and on the alternative design choices.

3 CHOPPER STABILIZATION

Many imperfections of operational amplifiers, e.g. 1/f noise and offset, are low-frequency or even DC. The idea of chopper stabilization [5][6] is to transpose the signal to a higher frequency where the effect of 1/f noise (and offset) is negligible, to amplify the modulated signal, and finally to demodulate the amplified signal back to the baseband.

3.1 Principle

Figure 1 presents a functional schematic of a chopper amplifier.

Figure 1. Functional chopper amplifier

A modulation signal m(t) periodically changes the polarity of the input signal V_{in} . The amplifier block A is ideal, having an infinite bandwidth and neither offset nor noise. However, an equivalent input offset V_{offset} and noise V_{noise} are added to the input V_A of the amplifier, generating an equivalent imperfect input signal V_B for the ideal amplifier. The amplified signal is demodulated by sign changes using the same signal as for input modulation, resulting in the system output V_{out} .

3.2 Analysis

Figure 2 presents an analysis of this chopper amplifier in the time domain, whereas figure 3 displays the frequency analysis.

Figure 2. Temporal analysis of a chopper amplifier

Figure 3. Frequency analysis of a chopper amplifier

In this functional system, the modulation signal m(t) is a square wave with a period T that is applied to both the modulator and demodulator. V_{in} is a band limited signal with frequency components up to at maximum 1/T. If this is not the case, the higher frequencies are aliased in the baseband, which is undesirable.

The modulation changes the sign of the amplifier input periodically, which corresponds in the frequency domain to a shift of the spectrum to the odd har-

monics of the modulation signal. This point is the key of the performances of a chopper amplifier. Indeed, the imperfections that are added to the shifted spectrum have important low-frequency components (offset and 1/f noise), whereas they are significantly lower at the frequencies where the signal is shifted. Ideally, the chopper frequency is chosen to be higher than the corner frequency of the 1/f noise in order to add only white noise to the signal.

Once the signal V_B is amplified, it is brought back to the baseband by the demodulator, which effectuates exactly the same operation as the input modulator. The effect is to shift the signal back around DC and even multiples of the chopper frequency, whereas the 1/f noise and offset are located at the odd harmonics. In the time domain, this signifies that the mean value is the amplified signal, whereas the modulated component is the offset.

Obviously, the output signal V_{out} cannot be exploited as is. The signal is correctly present in the baseband, but the higher frequency components should be removed. For this reason, the output of chopper amplifiers is usually low-pass filtered by an additional stage.

3.3 Implementation

To simplify the realization of a chopper amplifier, it is advantageous to use differential inputs and outputs for the amplifier. Indeed, since the inputs and the outputs of the amplifier are differential, changing their polarity is done simply by crossing the positive and negative lines. Such a fully-differential system is presented in figure 4.

Figure 4. Fully differential chopper amplifier

A schematic of a practical implementation of the modulator and demodulator is the circuit presented in figure 5. Four cross-coupled switches, connected to the modulation signal and its complement, are used for this purpose. When ϕ is active, the input signals are straightly transmitted to the output. When ϕ is inactive, the signals are crossed.

The switches in figure 5 can be realized as CMOS transmission gates, as presented in figure 6. The transmission gate consists of two complementary NMOS and PMOS transistors, which are controlled by complementary signals ϕ and $\overline{\phi}$. The circuit acts as a switch driven by ϕ . It has the advantage over the single-transistor switch of presenting a low-impedance between its terminals A and B, whatever the voltages in both these nodes are.

Figure 5. Implementation of a modulator/demodulator using cross-coupled switches

Figure 6. CMOS transmission gate

Using this approach, the implementation of the modulator and demodulator is simple. However, it implies the use of differential inputs and outputs for the amplifier, which is neither practical nor desirable always. Differential inputs are usually available, since most amplifier implementations rely on a differential pair as first stage.

If the amplifier has only one single output, the sign change in the demodulator is more difficult to realize. Figure 7 presents an example of circuit implementing the required function. When ϕ is active, the input signal is directly fed to the output. When ϕ is inactive, the amplifier changes the sign of the input since its gain is designed to be -1.

The main drawback of this solution is the difficulty to obtain precisely the -1 gain, because it depends on the quality of the matching of the two resistors. A second problem arises from the delay introduced by the additional amplifier, making the circuit asymmetrical for both phases. Finally, the imperfections of the additional amplifier, such as offset and noise, degrade the overall system performance. In this example, this is not problematic if the chopper amplifier gain A is high, because the input-referred offset and noise of the amplifier in the demodulator are divided by A. As one can see, single input and/or output chopper amplifiers are less straightforward to design. In some specific applications however, these circuits are more suitable than differential topologies.

Figure 7. Demodulator for single output chopper amplifier

4 AUTOZERO

Autozero is another common technique used to minimize offset and 1/f noise in amplifiers. The main idea [7] is to first sample the undesired effect and then to subtract it during the second phase when the input signal is processed by the imperfect amplifier.

4.1 Principle

Figure 8 presents the principle of an autozero amplifier [6], which is also applicable to comparators. The amplifier A is ideal, the real amplifier noise and offset being represented by the voltage source connected to the positive input.

During the first phase, the amplifier is disconnected from the input signal by switch S_{in} and the offset V_O and noise V_N voltages are sampled¹ on capacitor C_{AZ} across switch S_{FB} :

$$V_{\rm C} = \frac{A}{1+A} \cdot (V_{\rm O} + V_{\rm N}) \cong (V_{\rm O} + V_{\rm N})$$
 (2.2)

The assumption is made that the open-loop gain A of the amplifier is much larger than 1, which is correct in most cases.