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Chapter 1

Introduction

1 CONTEXT

Ever since the invention of the transistor in the late 50’s, its fabrication
technology has been evolving, allowing the device integration in a continu-
ously shrinking area. High-performance integrated analog systems have
always been difficult to design. Sometimes, calibration is used to gather the
extra performance that the analog devices cannot provide intrinsically. But the
evolution of the manufacturing technology renders even basic analog systems
difficult to design today. With the size reduction, the intrinsic precision of the
components degrades. In parallel, the supply voltage decreases, limiting the
topologies which can be used. Many modern technologies are specifically
suited for pure digital circuits, and some analog devices, like capacitors, are
not available. In these conditions, analog design is a challenge even for expe-
rienced designers.

To relieve the extreme design constraints in analog circuits, digital calibra-
tion becomes a must. It allows a low-precision component to be used in high-
performance systems. If the calibration is repeated, it can even cancel the
effect of temperature drift and ageing.

The digital calibration is compatible with the evolution of fabrication tech-
nologies, which ever more facilitates the integration of digital solutions at the
cost of a dramatic reduction of analog performances. Thanks to the reduction
of the size of digital devices, even complex digital calibration solutions can be
integrated and become a viable alternative to intrinsically precise analog
designs.

Digital calibration allows to realize high-performance analog systems with
modern technologies. This enables pure analog designs to be implemented
even in fully digital processes. In existing mixed-signal designs, the full sys-
tem realization also becomes possible with technologies providing higher
integration density. Finally, because circuit performances rely on digital cali-
bration, retargeting is simplified. The digital blocks can be synthesized
automatically, whereas only a limited design effort is invested in the analog
circuit.

1
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2 OBJECTIVES

The first objective of this book is to provide a general methodology for the
digital calibration of analog circuits. It ranges from the analog circuit analysis
(to identify how imperfections are detected) to the implementation of the
compensation. It presents systematic means for performing the compensation
based on general correction blocks and algorithms. The opportunity of per-
forming regular calibration is also analyzed, and a classification of analog
systems allowing or disallowing this feature is developed. Finally, simulation
tools permitting the verification of the efficiency of the calibration are
presented.

The second objective is to use the defined methodology for correcting the
imperfections of existing circuits. In this book, the application of the compen-
sation technique and circuits to three different systems is proposed: a high-
precision digital-to-analog converter, a SOI (silicon on insulator) 1T DRAM
(single-transistor dynamic random access memory), and a Hall sensor-based
microsystem for current measurement.

3 COMPENSATION METHODOLOGY

The compensation methodology is based on current-mode sub-binary
radix converters used in conjunction with successive approximations algo-
rithms. A complete analysis of an efficient implementation of sub-binary
converters using MOS transistors is performed. In particular, it is demon-
strated that these very low-area M/2+M converters can achieve arbitrarily
high resolutions, which is advantageous to perform high-precision
calibrations.

An adaptation of the compensation methodology to continuous-time pro-
cessing systems is also studied. In particular, a way of using an adapted
successive approximations algorithm and compensation converter which pro-
duce unity up and down compensation steps is presented.

4 APPLICATIONS OF THE COMPENSATION 
METHODOLOGY

The sub-binary converters are intrinsically non-linear and their direct use
as conventional digital-to-analog converters is impossible. However, using
two special calibration and radix conversion algorithms, this limitation is
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removed and the realization of high-precision DACs becomes possible, even
with very low-precision components used in sub-binary converters.

The second application is a SOI 1T DRAM, for which an automatic refer-
ence calibration technique is proposed. Using the proposed compensation
methodology, a sub-binary DAC controlled by a successive approximations
algorithm generates the current reference necessary to read the memory. The
reference compensates various circuit imperfections together, from the sense
amplifier offset to the statistical dispersion of the memory cell currents.

The most important application of the digital compensation methodology
is a current measurement microsystem based on a Hall sensor. Until now, the
performances of current measurement ASICs have been highly limited by the
sensitivity drift of integrated Hall sensors. A novel continuous sensitivity cal-
ibration technique is proposed, based on the digital compensation
methodology. It combines chopper and autozero techniques, along with all the
circuits and algorithms proposed in the first part for the general correction
methodology.

5 BOOK ORGANIZATION

Chapter 2 is an introduction to common compensation techniques. The
chopper and autozero techniques are presented, and the conditions of their use
in continuous and sampled systems is discussed. Finally, both techniques are
compared and a classification is performed.

Chapter 3 presents the digital compensation algorithm (successive
approximations), and the current-mode sub-binary M/2+M digital-to-analog
converters which are especially well-suited for digital compensation by cur-
rent injection. Other sub-binary structures are also presented and compared.
Finally, the special calibration and radix conversion algorithms, allowing the
use of sub-binary converters as conventional DACs, are presented.

Chapter 4 proposes a complete digital compensation methology which
allows the correction of circuit imperfections using the circuits and algorithms
of chapter 2. The presentation includes specific simulation tools for automatic
digital compensation. The application of the methodology to the SOI 1T
DRAM reference calibration is presented.

Chapter 5 introduces a new sensitivity calibration technique for Hall
microsystems, based on the methodology and circuits of chapters 3 and 4.
After an introduction to Hall sensors and the state of the art in Hall sensor-
based microsystems, the principle of the calibration technique is explained.
The system-level issues are presented and the solutions explained.
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Chapter 6 details the implementation of a complete Hall microsystem for
current measurement using the sensitivity calibration technique proposed in
chapter 5. Each block is presented, and the simulated and measured perfor-
mances discussed.

Chapter 7 concludes this book by highlighting the most important results
and proposing future improvement possibilities.



Chapter 2

Autocalibration and compensation techniques

This chapter presents techniques which are commonly used to 
compensate or hide imperfections of analog circuits. Some of 
them, like chopper modulation, use mostly analog circuitry to 
remove a disturbing effect. Others, like successive approxima-
tions, extensively use digital correction algorithms to trim analog 
components or circuits. First, the mostly used techniques are pre-
sented. Then, their performances are examined and a classifica-
tion is made.

1 INTRODUCTION

The design of analog circuits is rendered difficult by the imperfections
imparted by the manufacturing process to the component values. Physical
parameters (e.g. oxide thickness, physical dimensions, doping profile) are
subject to variations due to instabilities of the fabrication technology, and they
reflect on component parameters. The best achievable tolerance of individual
component values thus depends on the accuracy of the manufacturing process,
and cannot be reduced below a minimum level.

Fortunately, analog design rarely relies on the absolute value of single
components, but rather on relative values of several components. The relative
values can be made arbitrarily close, i.e. with small tolerances, by using
appropriate design techniques like matching. Thus, high-precision circuits can
be realized even with poor manufacturing processes.

2 MATCHING

The most common technique for improving the precision of analog blocks
is matching. If the layout of pairs/sets of components is performed carefully
following the rules presented below, the statistical dispersion of their values
can be reduced.

5
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2.1 Matching rules
The following rules should be applied for optimum matching of integrated

components [1]:

1. Same structure
2. Same temperature
3. Same shape, same size
4. Minimum distance
5. Common-centroid geometries
6. Same orientation
7. Same surroundings
8. Non minimum size

When designing pairs/sets of components using these rules, one makes
them all as similar as possible. Furthermore, as the components are split and
mixed appropriately (common-centroid), they are statistically affected in a
similar manner by external (e.g. temperature) and intrinsic (e.g. doping)
parameter variations.

2.2 Matching parameters
If the rules presented in section 2.1 are correctly applied, the dispersion of

the component values becomes an inverse function of the area occupied by
the devices [2][3][4]. This means that by increasing the size of the features
and by applying rigorously the matching rules, the relative mismatch of the
device pairs/sets is reduced. The general model that describes the dependence
of the matching of a parameter P on the area of two devices with area W ⋅ L is:

(2.1)

where AP is the process-dependent matching parameter describing the area
dependence. This model is applicable to capacitors, resistors, MOS transis-
tors, etc.

The statistical dispersion is inversely proportional to the area of the
device. Consequently, in order to achieve a given matching precision, one has
to design components larger than the limit that is calculated using equation
2.1. Obviously, the designer faces an important trade-off between precision
and circuit area when using only matching properties. But there are also other

σ2 P( )
AP

2

W L⋅
-------------=
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techniques that allow for increasing the precision of poor circuit elements.
Instead of focusing on building high-precision devices, one can build low-pre-
cision components and try to adjust them or compensate for their
imperfections later on. There are wide varieties of such techniques, each one
having its specific application fields. The new trade-off is then between the
matching effort and the use of one or a combination of these compensation
techniques. This chapter presents some of them, focusing on the additional
circuitry needed to implement them and on the alternative design choices.

3 CHOPPER STABILIZATION

Many imperfections of operational amplifiers, e.g. 1/f noise and offset, are
low-frequency or even DC. The idea of chopper stabilization [5][6] is to trans-
pose the signal to a higher frequency where the effect of 1/f noise (and offset)
is negligible, to amplify the modulated signal, and finally to demodulate the
amplified signal back to the baseband.

3.1 Principle
Figure 1 presents a functional schematic of a chopper amplifier.

A modulation signal m(t) periodically changes the polarity of the input
signal Vin. The amplifier block A is ideal, having an infinite bandwidth and
neither offset nor noise. However, an equivalent input offset Voffset and noise
Vnoise are added to the input VA of the amplifier, generating an equivalent
imperfect input signal VB for the ideal amplifier. The amplified signal is
demodulated by sign changes using the same signal as for input modulation,
resulting in the system output Vout.

Figure 1. Functional chopper amplifier

AVin

m(t)

Voffset + Vnoise

Vout
VA VB
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3.2 Analysis
Figure 2 presents an analysis of this chopper amplifier in the time domain,

whereas figure 3 displays the frequency analysis.

In this functional system, the modulation signal m(t) is a square wave with
a period T that is applied to both the modulator and demodulator. Vin is a
band limited signal with frequency components up to at maximum 1/T. If this
is not the case, the higher frequencies are aliased in the baseband, which is
undesirable.

The modulation changes the sign of the amplifier input periodically, which
corresponds in the frequency domain to a shift of the spectrum to the odd har-

Figure 2. Temporal analysis of a chopper amplifier

Figure 3. Frequency analysis of a chopper amplifier

Voffset + Vnoise Vinm(t)

VA VB Vout

+1

-1

t t t

t t t

T

Voffset + Vnoise Vinm(t)

VA VB Vout

fT fT fT

fT fT fT

1 2 3 4 1 2 3 4

1 2 3 41 2 3 4

1 2 3 4

1 2 3 4
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monics of the modulation signal. This point is the key of the performances of
a chopper amplifier. Indeed, the imperfections that are added to the shifted
spectrum have important low-frequency components (offset and 1/f noise),
whereas they are significantly lower at the frequencies where the signal is
shifted. Ideally, the chopper frequency is chosen to be higher than the corner
frequency of the 1/f noise in order to add only white noise to the signal.

Once the signal VB is amplified, it is brought back to the baseband by the
demodulator, which effectuates exactly the same operation as the input modu-
lator. The effect is to shift the signal back around DC and even multiples of
the chopper frequency, whereas the 1/f noise and offset are located at the odd
harmonics. In the time domain, this signifies that the mean value is the ampli-
fied signal, whereas the modulated component is the offset.

Obviously, the output signal Vout cannot be exploited as is. The signal is
correctly present in the baseband, but the higher frequency components
should be removed. For this reason, the output of chopper amplifiers is usu-
ally low-pass filtered by an additional stage.

3.3 Implementation
To simplify the realization of a chopper amplifier, it is advantageous to

use differential inputs and outputs for the amplifier. Indeed, since the inputs
and the outputs of the amplifier are differential, changing their polarity is
done simply by crossing the positive and negative lines. Such a fully-differen-
tial system is presented in figure 4.

A schematic of a practical implementation of the modulator and demodu-
lator is the circuit presented in figure 5. Four cross-coupled switches,
connected to the modulation signal and its complement, are used for this pur-
pose. When φ is active, the input signals are straightly transmitted to the
output. When φ is inactive, the signals are crossed.

The switches in figure 5 can be realized as CMOS transmission gates, as
presented in figure 6. The transmission gate consists of two complementary
NMOS and PMOS transistors, which are controlled by complementary sig-
nals φ and . The circuit acts as a switch driven by φ. It has the advantage
over the single-transistor switch of presenting a low-impedance between its
terminals A and B, whatever the voltages in both these nodes are.

Figure 4. Fully differential chopper amplifier

Vin Vout

φ
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Using this approach, the implementation of the modulator and demodula-
tor is simple. However, it implies the use of differential inputs and outputs for
the amplifier, which is neither practical nor desirable always. Differential
inputs are usually available, since most amplifier implementations rely on a
differential pair as first stage.

If the amplifier has only one single output, the sign change in the demodu-
lator is more difficult to realize. Figure 7 presents an example of circuit
implementing the required function. When φ is active, the input signal is
directly fed to the output. When φ is inactive, the amplifier changes the sign of
the input since its gain is designed to be -1.

The main drawback of this solution is the difficulty to obtain precisely the
-1 gain, because it depends on the quality of the matching of the two resistors.
A second problem arises from the delay introduced by the additional ampli-
fier, making the circuit asymmetrical for both phases. Finally, the
imperfections of the additional amplifier, such as offset and noise, degrade the
overall system performance. In this example, this is not problematic if the
chopper amplifier gain A is high, because the input-referred offset and noise
of the amplifier in the demodulator are divided by A.

Figure 5. Implementation of a modulator/demodulator using cross-coupled switches

Figure 6. CMOS transmission gate
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As one can see, single input and/or output chopper amplifiers are less
straightforward to design. In some specific applications however, these cir-
cuits are more suitable than differential topologies.

4 AUTOZERO

Autozero is another common technique used to minimize offset and 1/f
noise in amplifiers. The main idea [7] is to first sample the undesired effect
and then to subtract it during the second phase when the input signal is pro-
cessed by the imperfect amplifier.

4.1 Principle
Figure 8 presents the principle of an autozero amplifier [6], which is also

applicable to comparators. The amplifier A is ideal, the real amplifier noise
and offset being represented by the voltage source connected to the positive
input.

During the first phase, the amplifier is disconnected from the input signal
by switch Sin and the offset VO and noise VN voltages are sampled1 on capac-
itor CAZ across switch SFB:

(2.2)

Figure 7. Demodulator for single output chopper amplifier

1. The assumption is made that the open-loop gain A of the amplifier is much larger than 1, which is correct 
in most cases.
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