Photosystem I
The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase
The scope of our series, beginning with volume 11, reflects the concept that photosynthesis and respiration are intertwined with respect to both the protein complexes involved and to the entire bioenergetic machinery of all life. Advances in Photosynthesis and Respiration is a book series that provides a comprehensive and state-of-the-art account of research in photosynthesis and respiration. Photosynthesis is the process by which higher plants, algae, and certain species of bacteria transform and store solar energy in the form of energy-rich organic molecules. These compounds are in turn used as the energy source for all growth and reproduction in these and almost all other organisms. As such, virtually all life on the planet ultimately depends on photosynthetic energy conversion. Respiration, which occurs in mitochondrial and bacterial membranes, utilizes energy present in organic molecules to fuel a wide range of metabolic reactions critical for cell growth and development. In addition, many photosynthetic organisms engage in energetically wasteful photorespiration that begins in the chloroplast with an oxygenation reaction catalyzed by the same enzyme responsible for capturing carbon dioxide in photosynthesis. This series of books spans topics from physics to agronomy and medicine, from femtosecond processes to season long production, from the photophysics of reaction centers, through the electrochemistry of intermediate electron transfer, to the physiology of whole organisms, and from X-ray crystallography of proteins to the morphology or organelles and intact organisms. The goal of the series is to offer beginning researchers, advanced undergraduate students, graduate students, and even research specialists, a comprehensive, up-to-date picture of the remarkable advances across the full scope of research on photosynthesis, respiration and related processes.

The titles published in this series are listed at the end of this volume and those of forthcoming volumes on the back cover.
Photosystem I
The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase

Edited by
John H. Golbeck
The Pennsylvania State University, USA

Springer
Cover Figure Image. The trimeric structure of Photosystem I from cyanobacteria; the view direction is from the stromal side onto the membrane plane. The 12 proteins are shown in a backbone representation (PsaA, blue; PsaB, red; PsaC, pink; PsaD, turquoise; PsaE, light blue; PsaF, yellow; PsaL, dark pink; PsaJ, green; PsaK, gray; PsaL, brown; PsaM, orange and PsaX, light pink). The head groups of the chlorophylls are shown in yellow, their phytol-tails have been omitted for clarity; the carotenoids are depicted in gray and the lipids in dark turquoise. Figure courtesy of Petra Fromme.
I am delighted to announce the publication, in Advances in Photosynthesis and Respiration (AIPH) Series, of Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, a book integrating biochemistry, biophysics and molecular biology of this photosystem that provides the necessary reducing power for carbon fixation in plants, algae and cyanobacteria. This volume was edited by a leading World authority John H. Golbeck of The Pennsylvania State University, University Park, PA, USA. Several earlier AIPH volumes (particularly Volume 10, authored by Bacon Ke) did include a good discussion of Photosystem I; however, the current book integrates all known aspects of this system, including its evolution. The current volume follows the 23 volumes listed below.

Published Volumes (1994–2005)

- **Volume 1: Molecular Biology of Cyanobacteria** (28 Chapters; 881 pages; 1994; edited by Donald A. Bryant, from USA);
- **Volume 2: Anoxygenic Photosynthetic Bacteria** (62 Chapters; 1331 pages; 1995; edited by Robert E. Blankenship, Michael T. Madigan and Carl E. Bauer, from USA);
- **Volume 3: Biophysical Techniques in Photosynthesis** (24 Chapters; 411 pages; 1996; edited by the late Jan Amesz and the late Arnold J. Hoff, from The Netherlands);
- **Volume 4: Oxygenic Photosynthesis: The Light Reactions** (34 Chapters; 682 pages; 1996; edited by Donald R. Ort and Charles F. Yocum, from USA);
- **Volume 5: Photosynthesis and the Environment** (20 Chapters; 491 pages; 1996; edited by Neil R. Baker, from UK);
- **Volume 6: Lipids in Photosynthesis: Structure, Function and Genetics** (15 Chapters; 321 pages; 1998; edited by Paul-André Siegenthaler and Norio Murata, from Switzerland and Japan);
- **Volume 7: The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas** (36 Chapters; 733 pages; 1998; edited by Jean David Rochaix, Michel Goldschmidt-Clermont and Sabeeha Merchant, from Switzerland and USA);
- **Volume 8: The Photochemistry of Carotenoids** (20 Chapters; 399 pages; 1999; edited by Harry A. Frank, Andrew J. Young, George Britton and Richard J. Cogdell, from USA and UK);
- **Volume 9: Photosynthesis: Physiology and Metabolism** (24 Chapters; 624 pages; 2000; edited by Richard C. Leegood, Thomas D. Sharkey and Susanne von Caemmerer, from UK, USA and Australia);
- **Volume 10: Photosynthesis: Photobiochemistry and Photobiophysics** (36 Chapters; 763 pages; 2001; authored by Bacon Ke, from USA);
- **Volume 11: Regulation of Photosynthesis** (32 Chapters; 613 pages; 2001; edited by Eva-Mari Aro and Bertil Andersson, from Finland and Sweden);
- **Volume 12: Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism** (16 Chapters; 284 pages; 2002; edited by Christine Foyer and Graham Noctor, from UK and France);
- **Volume 13: Light Harvesting Antennas** (17 Chapters; 513 pages; 2003; edited by Beverley Green and William Parson, from Canada and USA);
- **Volume 14: Photosynthesis in Algae** (19 Chapters; 479 pages; 2003; edited by Anthony Larkum, Susan Douglas and John Raven, from Australia, Canada and UK);
- **Volume 15: Respiration in Archaea and Bacteria: Diversity of Prokaryotic Electron Transport Carriers** (13 Chapters; 326 pages; 2004; edited by Davide Zannoni, from Italy);
- **Volume 16: Respiration in Archaea and Bacteria 2: Diversity of Prokaryotic Respiratory Systems**
(13 chapters; 310 pages; 2004; edited by Davide Zannoni, from Italy);

Volume 17: *Plant Mitochondria: From Genome to Function* (14 Chapters; 325 pages; 2004; edited by David A. Day, A. Harvey Millar and James Whelan, from Australia);

Volume 18: *Plant Respiration: From Cell to Ecosystem* (13 Chapters; 250 pages; 2005; edited by Hans Lambers, and Miquel Ribas-Carbo, 2005; from Australia and Spain);

Volume 19: *Chlorophyll a Fluorescence: A Signature of Photosynthesis* (31 Chapters; 817 pages; 2004; edited by George C. Papageorgiou and Govindjee, from Greece and USA);

Volume 20: *Discoveries in Photosynthesis* (111 Chapters; 1304 pages; 2005; edited by Govindjee, J. Thomas Beatty, Howard Gest and John F. Allen, from USA, Canada and Sweden (& UK));

Volume 21: *Photoprotection, Photoinhibition, Gene Regulation and Environment Photosynthesis* (21 Chapters; 380 pages; 2005; edited by Barbara Demmig-Adams, Willam Adams III and Autar K. Mattoo, all from USA);

Volume 22: *Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase* (34 Chapters; 786 pages; 2005; edited by Thomas J. Wydrzynski and Kimiyuki Satoh, from Australia and Japan, respectively);

Volume 23: *Structure and Function of the Plastids* (27 Chapters; 576 pages; 2005; edited by Robert Wise and J. Kenneth Hoober, both from USA)

The next volume in the AIPH Series, also scheduled for publication in 2006, is:

Volume 25: *Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications* (37 Chapters; number of pages not yet available; edited by Bernhard Grimm, Robert Porra, Wolfram Rüdiger and Hugo Scheer, from Germany and Australia)

Further information on these books and ordering instructions can be found at <http://www.springeronline.com> under the Book Series ‘Advances in Photosynthesis and Respiration’. Table of Contents of the earlier volumes (1–19) may be found at <http://www.life.uiuc.edu/govindjee/photosynSeries/tocs.html>. Special discounts are available to members of the International Society of Photosynthesis Research, ISPR (<http://www.photosyn-thesisresearch.org/>).

About Volume 24: Photosystem I: The Light-Driven Plastocyanin:Ferredoxin Oxidoreductase

This book summarizes, in 40 authoritative chapters, the advances made in the last decade in the biophysics, biochemistry, and molecular biology of the enzyme known as Photosystem I, the light-driven plastocyanin:ferredoxin oxidoreductase. Photosystem I participates along with Photosystem II in harvesting solar energy to supply photosynthetic organisms with stored chemical energy in the form of ATP and stored reducing power in the form of NADPH for processes such as metabolism, growth, and reproduction. This volume is a unique compilation of chapters that include information on molecular architecture, protein-pigment interactions, excitation and electron transfer dynamics, protein-cofactor interactions, kinetics of electron transfer and bioassembly of proteins and cofactors. The volume begins with a series of historical perspectives that provide a solid background to the field, and ends with information on modelling of light-harvesting and electron transfer reactions, and the evolution of the reaction center. Particular attention is paid to spectroscopy, including the theory of the measurement and the interpretation of the data. The book is intended to be a comprehensive and up-to-date source of background information on the Photosystem I reaction center for seasoned researchers, those who are just entering the field, Ph.D. students, researchers and undergraduates in the fields of biophysics, biochemistry, microbiology, agriculture, and ecology.

This book complements “Photosystem II: The Light-Driven Water: Plastoquinone Oxidoreductase” edited by Thomas J. Wydrzynski and Kimiyuki Satoh. Electrons are transferred from water to plastoquinone by Photosystem II. Plastoquinol transfers electrons to Photosystem I via the cytochrome b$_6$f complex, and Photosystem I then reduces NADP$^+$.

Photosystem I: The Light-Driven, Plastocyanin:Ferredoxin Oxidoreductase is divided into the following topics: Historical Perspectives (4 chapters); Molecular Architecture (4 chapters); Pigment-Protein Interactions (3 chapters); Excitation Dynamics and Electron Transfer Processes (2 chapters); Modification of the Cofactors and their Environments (2 chapters); Spectroscopic Studies of the Cofactors (8 chapters); Kinetics of Electron Transfer (6 chapters); Biosynthetic Processes (3 chapters); Modeling of Photosystem I Reactions (4 chapters); Cyclic Photophosphorylation (1 chapter); Photoinhibition (1 chapter); and Evolution
This book is written by 80 international authorities from 13 countries. It is my privilege to publicly express my thanks to all of them (listed in alphabetical order):

Mikhail Antonkine; James Barber; Roberto Bassi; Adam Ben-Shem; Thomas Bibby; Robert Blankenship; Egbert Boekema; Jacques Berton; Donald Bryant; Sergey K. Chamorovsky; Roberta Croce; Jan Dekker; Bruce A. Diner; Fredrich Drepper; James Duncan; P. Leslie Dutton; Alexander Fish; Petra Fromme; John H. Golbeck; Carlos Gómez–Moreno; Ingo Grothjann; Anna Haldrup; Toshiharu Hase; Gary Hastings; Manuel Hervás; Michael Hippler; John K. Hurley; Poul Erik Jensen; Giles Johnson; Anne Joliot; Pierre Joliot; Navassard Karapetyan; Bacon Ke; David Knafl; Konstantin Kogan; Gerd Kothe; Roman Kouřil; Wolfgang Lubitz; Richard Malkin; Mahir D. Mamedov; Paul Mathis; David Mauzerall; Milagros Medina; Fernando P. Molina-Heredia; Thomas Morosinotto; Christopher C. Moser; José A. Navarro; Rachel Nechush-tai; Nathan Nelson; Jon Nield; Oleg Poluektov; Velupillaimani M. Ramesh; Fabrice Rappaport; Jason Raymond; Kevin Redding; Thomas Renger; Jean-David Rochaix; Miguel de la Rosa; Yumiko Sakurai; Anthony San Pietro; Kenneth Sauer; Sergei Savikhin; Henrik Vibe Scheller; Eberhard Schlodder; Peter Schürmann; Alexey Yu. Semenov; Pierre Sétif; Gaozhong Shen; Vladimir Shinkarev; Anatoli Ya. Shkurovapot; Vladimir A. Shuvalov; Kintake Sonoiike; Dietmar Stehlik; Marion Thurnauer; Gordon Tollin; Arthur van der Est; Rienk van Grondelle; L. G. Vasilieva; Andrew Webber; and Andrei G. Yakovlev

The URL for this book is at: http://www.life.uiuc.edu/Govindjee/newbook/Volume%2024.html

A Bit of History – From there to here

Just to give a flavor of history, I list below some discoveries. [For historical perspectives, I refer the readers to chapters 1–4 (Anthony San Pietro; Richard Malkin; Bacon Ke; and Paul Mathis & Kenneth Sauer) in this volume.]

- Discovery of P700, reaction center of Photosystem I (PS I) in The Netherlands. Bessel Kok (1918–1978; see Kok, Biochim. Biophys. Acta 22: 399–401, 1956), while in Wageningen, The Netherlands, discovered, in several photosynthetic organisms, a light-induced absorbance decrease that had its highest long-wavelength peak at 700 nm (labeled as P700).

- Naming of Photosystem I in Leiden, The Netherlands. Louis N. M. Duyssens et al. (Nature, 190: 510–511, 1961) provided the crucial evidence for the two light reaction two-pigment system scheme, working in series. In the red alga Porphyridium cruentum, red light absorbed by chlorophyll a oxidized a cytochrome. When green light, absorbed by phycoerythrin, was superimposed, the oxidized cytochrome became reduced. Duyssens et al. called the red light ‘light 1,’ and the chlorophyll a-containing system, ‘system 1.’ The other light, they had called ‘light 2,’ was absorbed by ‘system 2.’

- Crystal structure of Photosystem I in Berlin, Germany. P. Jordan et al. (Nature, 411: 909–917, 2001) were the first to resolve the X-ray crystallographic structure of Photosystem I of a thermophilic cyanobacterium for a 3D structure at 2.5 Å resolution.

(For a time-line on oxygenic photosynthesis, see Govindjee and David Krogmann (2004) Photosynthesis Research 80: 15-57.)

Future AIPH Books

The readers of the current series are encouraged to watch for the publication of the forthcoming books (not necessarily arranged in the order of future appearance):

- Biophysical Techniques in Photosynthesis II (Editors: Thijs J. Aartsma and Jörg Matisyk);
Acknowledgments

I take this opportunity to thank and congratulate John H. Golbeck for his outstanding and painstaking editorial work. I thank all the 80 authors (see the list above) of volume 24 of the AIPH Series: without their authoritative chapters, there would be no such volume. We owe thanks to Jacco Flipsen, Noeline Gibson and André Tournois (both of Springer) for their friendly working relation with us that led to the production of this book. I thank Seema Koul (of Techbooks, New Delhi) for her outstanding work on this book; she communicated wonderfully well at every step of the process. Thanks are also due to Jeff Haas (Director of Information Technology, Life Sciences, University of Illinois at Urbana-Champaign, UIUC), Evan DeLucia (Head, Department of Plant Biology, UIUC) and my dear wife Rajni Govindjee for their constant support.

January 26, 2006
Govindjee
Series Editor, Advances in Photosynthesis and Respiration
University of Illinois at Urbana-Champaign,
Department of Plant Biology
Urbana, IL 61801-3707, USA
E-mail: gov@uiuc.edu;
URL: http://www.life.uiuc.edu/govindjee
Govindjee, the Series Editor of ‘Advances in Photosynthesis and Respiration’, uses only one name; he was born on October 24, 1932, in Allahabad, India. His father, along with other reformers of that time, belonging to the ‘Arya Samaj Movement’, dropped their family names, since they reflected the ‘caste’ of the person. The family name was ‘Asthana’, a member of the ‘Kayastha’, who were mostly professionals, including being teachers. Govindjee (whose name was then written as Govind Ji) obtained his B.Sc. (Chemistry, Biology) and M.Sc. (Botany, Plant Physiology) in 1952 and 1954, from the University of Allahabad, India, both in the first division. He came to USA in September, 1956 to work with Robert Emerson; after Emerson’s death on February 4, 1959, he became a graduate student of Eugene Rabinowitch, receiving his Ph.D. (Biophysics), in 1960, from the University of Illinois at Urbana-Champaign (UIUC), IL, U.S.A. He has since focused his research mainly on the function of “Photosystem II” (PS II, the water:plastoquinone oxidoreductase), particularly primary photochemical events, the unique role of bicarbonate on the acceptor side of PS II, and the mechanism of ‘photoprotection’ in plants and algae, using lifetime of chlorophyll a fluorescence measurements. His research on Photosystem I (the topic of this book) has included low temperature fluorescence spectroscopy (1963–1970), and one of the first measurements on its primary photochemistry (J.M. Fenton, M.J. Pellin, Govindjee, and K. Kaufmann (1979) Primary Photochemistry of the Reaction Center of Photosystem I. FEBS Lett. 100: 1–4.; and M.R. Wasielewski, J.M. Fenton, and Govindjee (1987) The Rate of Formation of $\text{P}700^{+}\text{-Ao}^{-}$ in Photosystem I Particles from Spinach as Measured by Picosecond Transient Absorption Spectroscopy. Photosynth. Res. 12: 181–190.). For further details, on his discoveries and research, see his biography in earlier Advances in Photosynthesis and Respiration volumes. His current focus, however, is on the “History of Photosynthesis Research” and in ‘Photosynthesis Education’. He has served the UIUC as an Assistant Professor, Associate Professor and Professor (1961–1999). Since 1999, he has been Professor Emeritus of Biochemistry, Biophysics and Plant Biology at the UIUC. His honors include: Fellow of the American Association of Advancement of Science (1976); Distinguished Lecturer of the School of Life Sciences, UIUC (1978); Fellow and Life Member of the National Academy of Sciences (Allahabad, India, 1978); President of the American Society for Photobiology (1980–1981); Fulbright Senior Lecturer (1996–1997); and Honorary President of the 2004 International Photosynthesis Congress (Montréal, Canada).
Contents

Editorial v
Contents xi
Preface xxv
Dedication: A Tribute to Lee McIntosh xxix
Author Index xxxi
Color Plates CP1–CP16

Part I: Historical Perspectives

1 A Personal Historical Introduction to Photosystem I: Ferredoxin + FNR, the Key to NADP⁺ Reduction 1–8
 Anthony San Pietro
 Summary 1
 I. Prologue 1
 II. Ferredoxin 2
 III. Ferredoxin:NADP⁺ Oxidoreductase 6
 IV. Epilogue 7
 V. Addendum Role of Non-Heme Proteins in Energy Conversion 7
 References 8

2 The Discovery of Bound Iron–Sulfur Clusters in Photosystem I by EPR Spectroscopy 9–14
 Richard Malkin
 Summary 9
 I. Ferredoxins and Laccase 9
 II. Photosynthesis and Fe/S Clusters 10
 Acknowledgments 13
 References 14

3 The Discovery of P430 and Work on Photosystem I Electron Acceptors FeS-X and A₀ at the Charles F. Kettering Research Laboratory 15–29
 Bacon Ke
 Summary 15
 I. Introduction 15
 II. The Discovery of P430, the Optic-Spectroscopic Form of FeS-Å/B 16
III. The Iron–Sulfur Center FeS-X 20
IV. Early Optic-Spectroscopic Studies of A₀ 25
Acknowledgments 28
References 28

4 Historical Introduction to Photosystem I: The Discovery of the A₁ and A₂ (Fₓ?) Acceptors by Time-Resolved Optical Spectroscopy 31–40
Paul Mathis and Kenneth Sauer

Summary 31
I. Introduction 31
II. Status of Knowledge of PS I in 1976 32
III. Motivation and Rationale for Our Work 32
IV. A Brief Account of Our Results 33
V. A Brief Description of the Present View of PS I Electron Acceptors 35
VI. Our 3–10 msec Phase: The Triplet State of P700? 36
VII. Two Electrons in P430 37
VIII. Origin of Our 250 μsec Phase 37
IX. Concluding Remarks 38
References 38

Part II: Molecular Architecture

5 Association of Photosystem I and Light-Harvesting Complex II during State Transitions 41–46
Egbert J. Boekema, Roman Kouřil, Jan P. Dekker and Poul Erik Jensen

Summary 41
I. Introduction 41
II. Structure of the PS I–LHCII Complex 42
III. Role of Small PS I Subunits in State Transitions 43
IV. Origin of LHCII Bound to PS I 44
V. State Transitions in C. reinhardtii 44
Acknowledgments 45
References 45

6 Structural Analysis of Cyanobacterial Photosystem I 47–69
Petra Fromme and Ingo Grotjohann

Summary 47
I. Introduction 48
II. General Architecture of PS I 48
III. The Protein Subunits 52
IV. The Electron Transport Chain 60
V. The Antenna System 63
VI. The Lipids 65
References 65

xii
10 **LHCI: The Antenna Complex of Photosystem I in Plants and Green Algae**
Roberta Croce, Tomas Morosinotto and Roberto Bassi

- Summary 120
 - I. Introduction: LHCI Within the PS I Supercomplex 120
 - II. Characterization of LHCI 122
 - III. Models of LHCI Polypeptides 127
 - IV. Dimerization of Lhca Proteins 130
 - V. PS I–LHCI Stoichiometry 130
 - VI. Energy Transfer 131
 - VII. On the Origin of Red Absorption Forms 131
 - VIII. Lhca Proteins in *Chlamydomonas reinhardtii* 133
- Acknowledgments 134
- References 134

11 **The Low Molecular Mass Subunits in Higher Plant Photosystem I**
Anna Haldrup, Poul Erik Jensen and Henrik Vibe Scheller

- Summary 139
 - I. Introduction 140
 - II. The Acceptor Side of PS I: PS I-C, -D, -E, and Electron Donation from PS I to Ferredoxin 141
 - III. The Donor Side of PS I: PS I-F, -J, -N, and Electron Donation from Plastocyanin to P700 144
 - IV. PS I-G and -K and Interaction with LHCI 146
 - V. The PS I-H, -I, -L, -O side of PS I 148
 - VI. Concluding Remarks 151
- Acknowledgments 151
- References 151

Part IV: Excitation Dynamics and Electron Transfer Processes

12 **Ultrafast Optical Spectroscopy of Photosystem I**
Sergei Savikhin

- Summary 155
 - I. Introduction 155
 - II. Ultrafast Optical Spectroscopy Techniques 158
 - III. Ultrafast Spectroscopy of PS I Core Complexes 160
 - IV. Ultrafast Spectroscopy of PS I–LHCI Supercomplexes 170
 - V. Concluding Remarks 170
- Acknowledgments 171
- References 172
13 The Long Wavelength Chlorophylls of Photosystem I 177–192
Navassard V. Karapetyan, Eberhard Schlodder, Rienk van Grondelle and Jan P. Dekker

Summary
I. Introduction 177
II. Spectral Characteristics of Long Wavelength Chlorophyll in PS I 179
III. Localization of Long Wavelength Chlorophyll in Antenna 183
IV. Dissipation of Excess Energy in PS I via Long Wavelength Chlorophyll 185
V. Energy Transfer and Trapping in PS I 186
Acknowledgments 189
References 189

Part V: Modification of the Cofactors and their Environments

14 Mutagenesis of Ligands to the Cofactors in Photosystem I 193–204
Andrew N. Webber and Velupillaimani M. Ramesh

Summary
I. Introduction 193
II. Chlorophylls of the Electron Transfer Chain 193
III. The Quinone Acceptors, A_1 200
IV. The Iron–sulfur Center, F_X 201
V. The Iron–sulfur Centers, F_A and F_B 202
References 202

15 Genetic Manipulation of Quinone Biosynthesis in Cyanobacteria 205–222
Yumiko Sakuragi and Donald A. Bryant

Summary
I. Introduction 205
II. The Phylloquinone Biosynthetic Pathway 207
III. Genetic Manipulation of the A_1 Quinone 212
IV. The Plastoquinone Biosynthetic Pathway 215
V. The α-Tocopherol Biosynthetic Pathway 217
Acknowledgments 219
References 219

Part VI: Spectroscopic Studies of the Cofactors

16 Optical Measurements of Secondary Electron Transfer in Photosystem I 223–244
Fabrice Rappaport, Bruce A. Diner and Kevin Redding

Summary
I. Introduction 224
II. Secondary Electron Transfer: Are the Two Phylloquinones Involved? 224
III. Uni-Directional or Bi-Directional Electron Transfer in Reaction Centers 226
IV. A Mutagenesis Survey of the Two Phases Ascribed to A_1^- Reoxidation 227
V. Spectroscopic Features Specific to the Spectra of the Fast and Slow Phase in the 320–540 nm Region 234
VI. Energetic Picture of Quinone Reoxidation via Forward or Backward Electron Transfer 238
VII. Conclusions 241
Acknowledgments 241
References 241

17 EPR Studies of the Primary Electron Donor P700 in Photosystem I 245–269
Wolfgang Lubitz
Summary 245
I. Introduction 246
II. The Primary Donor Radical Cation P700$^+$ 248
III. The Primary Donor Triplet State 3^pP700 259
IV. MO Calculations of the Electronic Structure of P700$^+$ 261
V. Conclusion: Electronic Structure of the Primary Donor and Implications for its Function 264
Acknowledgments 266
References 266

18 FTIR Studies of the Primary Electron Donor, P700 271–289
Jacques Breton
Summary 271
I. Introduction 272
II. FTIR Studies of P700 Prior to the High-Resolution X-Ray Structure of PS I 272
III. FTIR Studies of P700 Following the High-Resolution X-Ray Structure of PS I 278
IV. Other FTIR Studies of P700 284
V. Comparison of the Results of FTIR and of Magnetic Resonance Spectroscopy 285
VI. Addendum 287
References 288

19 Primary Charge Separation Between P700* and the Primary Electron Acceptor Complex A-A$_0$: A Comparison with Bacterial Reaction Centers 291–300
Vladimir A. Shuvalov, Andrei G. Yakovlev, L. G. Vasilieva and Anatoly Ya. Shkuropatov
Summary 291
I. Introduction 291
Part VII: Kinetics of Electron Transfer

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Transient EPR Spectroscopy as Applied to Light-Induced Functional Intermediates Along the Electron Transfer Pathway in Photosystem I</td>
<td>361–386</td>
</tr>
<tr>
<td>Dietmar Stehlik</td>
<td>Summary</td>
<td>361</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>II. Materials and Methods</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>III. Experimental Results in PS I</td>
<td>367</td>
<td></td>
</tr>
<tr>
<td>IV. Concluding Remarks</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>383</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>383</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Electron Transfer Involving Phylloquinone in Photosystem I</td>
<td>387–411</td>
</tr>
<tr>
<td>Art van der Est</td>
<td>Summary</td>
<td>387</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>II. Techniques for Studying Electron Transfer Through Phylloquinone</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>III. Recent Structure Based Results</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>IV. Concluding Remarks</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>407</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>The Directionality of Electron Transport in Photosystem I</td>
<td>413–437</td>
</tr>
<tr>
<td>Kevin Redding and Art van der Est</td>
<td>Summary</td>
<td>414</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>II. Models for the Use of the Two Branches in PS I</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>III. Strategies for Studying Directionality</td>
<td>418</td>
<td></td>
</tr>
<tr>
<td>IV. Summary of Recent Spectroscopic Data Under Different Conditions</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>V. Theoretical Work</td>
<td>431</td>
<td></td>
</tr>
<tr>
<td>VI. Main Unresolved Issues, Final Thoughts, and Speculations</td>
<td>432</td>
<td></td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>434</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>434</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Electron Transfer from the Bound Iron–Sulfur Clusters to Ferredoxin/Flavodoxin: Kinetic and Structural Properties of Ferredoxin/Flavodoxin Reduction by Photosystem I</td>
<td>439–454</td>
</tr>
<tr>
<td>Pierre Sétif</td>
<td>Summary</td>
<td>439</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>439</td>
<td></td>
</tr>
<tr>
<td>II. Electron Transfer from PS I to Ferredoxin in Wild Type Systems</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>III. Electron Transfer from PS I to Flavodoxin in Wild Type Systems</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td>IV. Ionic Strength Dependence of Ferredoxin/Flavodoxin Reduction</td>
<td>444</td>
<td></td>
</tr>
<tr>
<td>V. The Ferredoxin Docking Site</td>
<td>446</td>
<td></td>
</tr>
<tr>
<td>VI. Ferredoxin and Flavodoxin Mutants</td>
<td>449</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>452</td>
<td></td>
</tr>
</tbody>
</table>
27 Electron Transfer From Ferredoxin and Flavodoxin to Ferredoxin: NADP⁺ Reductase 455–476

John K. Hurley, Gordon Tollin, Milagros Medina and Carlos Gómez-Moreno

Summary 456
I. Introduction 456
II. Ferredoxin Structure and Properties 456
III. Ferredoxin:NADP⁺ Reductase Structure and Properties 459
IV. Flavodoxin Structure and Properties 460
V. The Catalytic Cycle 460
VI. Structure–Function Studies of Ferredoxin and Ferredoxin:NADP⁺ Reductase 461
VII. Structure–Function Studies of Flavodoxin and Ferredoxin:NADP⁺ Reductase 470
Acknowledgments 472
References 472

28 The Interaction of Ferredoxin with Ferredoxin-Dependent Enzymes 477–498

Toshiharu Hase, Peter Schürmann and David B. Knaff

Summary 477
I. Introduction 478
II. Ferredoxin:NADP⁺ Oxidoreductase 478
III. Nitrogen Assimilation 481
IV. Sulfite Reductase 489
V. Ferredoxin:Thioredoxin Reductase 490
VI. Conclusion 494
Acknowledgments 494
References 494

29 Electron Transfer Between Photosystem I and Plastocyanin or Cytochrome c₆ 499–513

Michael Hippler and Friedel Drepper

Summary 499
I. Donor Side of PS I 500
II. Kinetic Analysis of Electron Transfer Between Soluble Donors and PS I 508
References 510

Part VIII: Biosynthetic Processes

30 Genetic Dissection of Photosystem I Assembly and Turnover in Eukaryotes 515–527

Jean-David Rochaix

Summary 515
I. Introduction 516
II. Synthesis and Assembly of PS I 516
III. PS I Assembly Factors 522
IV. Adaptation of the PS I–LHCI Complex to Fe-Deficiency 524
V. Degradation of PS I 525
VI. Conclusions 525
Acknowledgments 525
References 525

31 Assembly of the Bound Iron–Sulfur Clusters in Photosystem I 529–547
Gaozhong Shen and John H. Golbeck
Summary 530
I. Introduction 530
II. PS I Biogenesis and the Bound Fe/S Clusters 531
III. Two Fe/S Biogenesis Systems in Oxygenic Photosynthetic Organisms 532
IV. Function of Suf proteins and Assembly of Fe/S Clusters 536
V. Mechanism of the SUF System in Oxygenic Photosynthetic Organisms 541
VI. Regulation of the SUF System 542
VII. Concluding Remarks 543
Acknowledgments 544
References 544

32 The Assembly of Photosystem I Reducing Site 549–569
Alexander Fish, Konstantin Kogan and Rachel Nechushtai
Summary 549
I. Introduction 550
II. The Composition of the Reducing Site: Protein Subunits and Co-Factors 551
III. The Function of the Reducing Site: ET from PS I to Fd/Fld 553
IV. The Organization of the Reducing-Site Subunits 556
V. Other Proteins Involved in the Assembly of the PS I Reducing Site 563
VI. Concluding Remarks 564
Acknowledgments 565
References 565

Part IX: Modeling of Photosynthetic Processes

33 Thermodynamics of Photosystem I 571–581
David Mauzerall
Summary 571
I. Introduction 572
II. Components of Photosystem I 572
III. Methods of Determining Redox Potentials 573
IV. Decomposition of ΔG into ΔH and ΔS 575
V. Efficiency 579
VI. Conclusions 579
Acknowledgment 580
References 580
34 Application of Marcus Theory to Photosystem I Electron Transfer 583–594
Christopher C. Moser and P. Leslie Dutton

Summary 583
I. Electron Tunneling Parameters 583
II. Symmetric PS I Redox Cofactor Geometry 585
III. Asymmetric PS I Electron Transfer Kinetics 586
IV. Temperature Dependence of Electron Tunneling 589
V. Plastoquinone/Phyloquinone Substitution and Fe/S Removal 590
VI. PS I Robustness 592
Acknowledgments 593
References 593

35 Modeling of Optical Spectra and Light Harvesting in Photosystem I 595–610
Thomas Renger and Eberhard Schlodder

Summary 595
I. Introduction 596
II. Interactions in Pigment–Protein Complexes 598
III. Theory of Excitation Energy Transfer 601
IV. Application to Photosystem I 602
V. Exciton Relaxation Within Aggregates of Strongly Coupled Pigments 604
VI. Outlook 606
Acknowledgments 609
References 609

36 Functional Modeling of Electron Transfer in Photosynthetic Reaction Centers 611–637
Vladimir Shinkarev

Summary 612
I. Introduction 612
II. Simple Analytical Models for Single-Turnover Reaction Center Transitions 618
III. Simple Analytical Models for Multiple-Turnover RC Transitions 623
IV. Dark Relaxation in PS I After Flash Activation 626
V. Conclusions 634
Acknowledgments 634
References 634

Part X: Related Processes

37 Cyclic Electron Transfer Around Photosystem I 639–656
Pierre Joliot, Anne Joliot and Giles Johnson

Summary 639
I. Introduction 640
II. Early Observations of Cyclic Electron Transfer 640
III. Plastocyanin and Cytochrome c₆: Two Structurally Unrelated Proteins 686
IV. Evolution of the Reaction Mechanism of PS I Reduction 689
V. Evolution of the Donor Proteins in Plants 692
VI. Addendum 694
Acknowledgments 694
References 694

Subject Index 697
Organism Index 707
Mutant Index 709
Gene and Gene Product Index 711
Preface

Photosystem I: The Light-Driven, Plastocyanin:Ferredoxin Oxidoreductase is the 24th volume in the series Advances in Photosynthesis and Respiration (Series Editor, Govindjee). It is one of the two volumes that deal with the photosynthetic reaction centers in oxygenic photosynthetic organisms. The other, Volume 22, is Photosystem II: The Light-Driven Water:Plastoquinone Oxidoreductase, edited by Thomas J. Wydrzynski and Kimiyuki Satoh.

The realization that two independent photochemical reactions are required in oxygenic photosynthesis came about through a series of biophysical observations, particularly with the discovery of the Enhancement Effect in oxygen evolution by Robert Emerson in 1957 that culminated in the codification of the ‘Z-scheme’ by Robin Hill and Fay Bendall in 1960. The terminology in use today was coined by Lou Duyssens, who, in 1961, proposed a hypothetical scheme for photosynthesis composed of two photochemical pigment systems that were termed ‘system I’ and ‘system II’. In the banner year of 1956, three components of what we know as Photosystem I were discovered: Bessel Kok found an absorption change at 700 nm that is now attributed to the oxidation of the primary donor, P700; Mordhay Avron and André Jagendorf isolated a TPNH2 diaphorase, a soluble enzyme that is now known as NADP+:ferredoxin oxidoreductase; and Anthony San Pietro and Helga Lang purified a soluble protein termed PPNR (photosynthetic pyridine nucleotide reductase), a soluble enzyme that is now known as ferredoxin (or flavodoxin). This book is arranged into 11 sections. Following a section on ‘Historical Perspectives’, the book is divided into sections that deal with ‘Molecular Architecture’, ‘Pigment-Protein Interactions’, ‘Excitation Dynamics and Electron Transfer Processes’, ‘Modification of the Cofactors’, ‘Spectroscopic Studies of the Cofactors’, ‘Kinetics of Electron Transfer’, ‘Biosynthetic Processes’, ‘Modeling of Photosystem I Reactions’, ‘Related Processes’, and ‘Evolution of Photosystem I’.

The volume covers Photosystem I in sufficient depth so that it is useful not only for molecular biologists, biochemists and biophysicists, but also for plant physiologists, ecologists and those interested in applying lessons learned from natural photosynthesis to artificial photosynthetic systems. I had asked each author to provide an in-depth introduction so that each topic is accessible to the beginners. I had also asked that each author provide sufficient depth so that each of the topics is of value to seasoned researchers. I fully expect that the book will be a source of information not only for undergraduate and graduate students but also for postdoctoral scientists and those who are entering the field for the first time.

I have made no attempt, beyond the most cursory, to enforce a common nomenclature of the proteins or cofactors that comprise Photosystem I. Conventions establish themselves by consensus over time, and to large degree this has happened in this field. Nevertheless there are sub-discipline norms, and a note is made in the ‘nomenclature’ footnote of those chapters where the nomenclature differs from convention. This volume is not meant to be a textbook in the sense that authors of textbooks strive to give the final word, and to achieve closure, on a topic. On the contrary, no attempt is made to achieve a forced reconciliation or synthesis of controversial issues. Instead, the reader is shown exactly where the points of disagreement lie, and hence, where the boundary of the research frontier is drawn. Such is the nature of a thriving, dynamic discipline. Indeed, it is my hope that this book will stimulate not only the research necessary to solve these problems, but for others to enter this exciting field.
I would like to take this opportunity to acknowledge the authors for providing uniformly excellent chapters. Each author is a leading authority in his/her field, and each has generously offered the time and effort to make this book a success. I thank Petra Fromme for the striking view of the X-ray crystal structure of cyanobacterial Photosystem I which appears on the front cover. I would like to thank my mentors, Anthony San Pietro and Bessel Kok, and my closest colleagues and collaborators, Joseph Warden, Parag Chitnis, Lee McIntosh, Alyosha Semenov, Art van der Est, Dietmar Stehlik and (especially) Don Bryant, all of whom have contributed to the field as well as to my development as a research scientist. I wish to thank my students and postdoctoral scientists for their hard work on Photosystem I over the past 20 years. In particular, I would like to single out Ilya Vassiliev, with whom I have published 30 papers. Ilya was tragically struck by a car and died as this book was being sent to press. Finally, I very much appreciate the support my wife, Carolyn Wilhelm, who (as always) provides assistance and encouragement in all of my endeavors.

I also acknowledge the help received from Noeline Gibson and Jacco Flipson (of Springer, Dordrecht, The Netherlands), from Seema Koul (of TechBooks, New Delhi, India) and from Govindjee (of the University of Illinois at Urbana-Champaign).

John H. Golbeck
Department of Biochemistry and Molecular Biology and Department of Chemistry
The Pennsylvania State University
University Park, PA 16802, USA
E-mail: jhg5@psu.edu
John H. Golbeck is Professor of Biochemistry and Biophysics and Professor of Chemistry at The Pennsylvania State University (Penn State), University Park, PA. John’s research interests lie in the assembly, structure, function, and modification of Type I reaction centers. John was born in Wisconsin in 1949. He received his Ph.D. in Biological Chemistry from Indiana University, Bloomington IN, under the supervision of Anthony San Pietro for work related to the bound Fe/S clusters in Photosystem I. His postdoctoral studies at Martin Marietta Laboratories, Baltimore, MD, with Bessel Kok centered around the identification of F_{X} (A_{2}) as a third bound Fe/S cluster in Photosystem I. After a five year (ad)venture into industrial research, John went back to university life as Professor in the Chemistry Dept. at Portland State University, Portland, OR, where he focused on isolating the P700-F_{X} core and on the resolution and reconstitution of the stromal ridge proteins, PsaC, PsaD and PsaE. In 1990, he moved to the Biochemistry Department at the University of Nebraska, Lincoln, NE, where he worked to identify the ligands to the F_{A} and F_{B} clusters of PsaC. Six years later, he accepted a position in the Dept. of Biochemistry and Molecular Biology at Penn State, where he studied quinone biosynthetic pathway mutants as a means to biologically introduce novel quinones into Photosystem I. Since 2004, he has held an appointment in the Department of Chemistry at Penn State. John spent sabbatical leaves at Rensselaer Polytechnic Institute (1984), the Centre d’Etudes Nucléaires de Saclay (1992), and most recently at the Freie Universität, Berlin (2002/2003). He has published 120 articles in refereed journals and 10 invited reviews and book chapters. His current research interests involve the genes and proteins that assemble the bound Fe/S clusters, the protein factors that confer redox potentials to organic and inorganic cofactors, and the structural makeup of Type I reaction centers from anaerobic bacteria. His long-term goal lies in modifying Photosystem I to produce H_{2}. John is a member of the American Society for Biochemistry and Molecular Biology, the Biophysical Society of America, and the International Society for Photosynthesis Research. He presently serves as Secretary for the International Society for Photosynthesis Research. Further information on him and his work can be found at his web site: http://www.bmb.psu.edu/faculty/golbeck/golbeck.html
Dedication: A Tribute to Lee McIntosh

With the death of Lee McIntosh on June 18, 2004, the scientific community lost an esteemed and valued colleague. Lee’s passion for science was apparent to whomever he met, and it never wavered, even through the 5 years that he suffered from chronic lymphocytic leukemia. Lee was born in Los Angeles in 1950. He received his Ph.D. from the University of Washington, Seattle, WA, with Bastiaan J.D. Meeuse and he performed postdoctoral research at Harvard University, Boston, MA, with Laurie Bogorad, where he was a Maria Moors Cabot Postdoctoral Research Fellow. In 1983, Lee worked at the University of Geneva, Switzerland, under a European Molecular Biology Fellowship, and in 1981, he joined the Plant Research Laboratory at Michigan State University, East Lansing, MI. Lee received the Distinguished Faculty award in 2002. At the time of his passing, he was a Distinguished Professor of Biochemistry and Molecular Biology.

Lee’s scientific accomplishments were many and varied. He was one of the pioneers in applying the techniques of modern molecular biology to understanding the biochemical mechanisms of photosynthesis. In a wonderful achievement at the time, Lee and his collaborators used directed mutagenesis to identify the electron donor to P680+ as Tyr161 on the D1 polypeptide. Lee’s primary interest was focused on plant mitochondria, particularly in the genetics and function of the alternative oxidase (AOX) in plant respiration. His work on Photosystem I involved modifying the ligands to the bound Fe/S clusters as a means of establishing the pathway of electron transfer through Fx, Fb, and Fa. A suppressor mutation of a cysteine mutant to Fa led to his last scientific paper, the identification of a gene that codes for a transcriptional repressor that controls the biosynthesis of Fe/S clusters in cyanobacteria.

Lee’s long-term goal was to determine how organelles communicated with each other, particularly how signals were transduced from the mitochondrion to the nucleus as a way of regulating mitochondrial energy and carbon metabolism. His discoveries were always made in the context of the larger picture, which was to understand at the molecular level the control of energy and carbon flow in plants. His approach was to modify specific proteins and to create new transgenic plant lines in the attempt to dissect the pathways by which nuclear genes are regulated by organelles. These transgenic plants allowed him to study the function of specific nuclear-encoded mitochondrial genes as well as the means by which the mitochondrion signals the nucleus.

Lee was a scientist of uncommon skill and uncompromising integrity. He never tired of pointing out that genetics (and not biochemistry or biophysics) is the engine for making new discoveries in biology. His favorite saying (uttered when a particularly bad idea was put forward) was ‘you know, you really don’t want to go down that path’. Lee enjoyed his farm, Walnut Rise, where he and his son Angus Robin raised 30 to 40 Shetland sheep as breeding stock, and for their fleece.

His loss is mourned by all of us who had the pleasure of working with him.
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonkine, Mikhail L.</td>
<td>79–98</td>
</tr>
<tr>
<td>Barber, James</td>
<td>99–117</td>
</tr>
<tr>
<td>Bassi, Roberto</td>
<td>119–137</td>
</tr>
<tr>
<td>Ben-Shem, Adam</td>
<td>71–77</td>
</tr>
<tr>
<td>Bibby, Thomas S.</td>
<td>99</td>
</tr>
<tr>
<td>Blankenship, Robert E.</td>
<td>669–681</td>
</tr>
<tr>
<td>Boekema, Egbert J.</td>
<td>41–46</td>
</tr>
<tr>
<td>Breton, Jacques</td>
<td>271–289</td>
</tr>
<tr>
<td>Bryant, Donald A.</td>
<td>205–222</td>
</tr>
<tr>
<td>Chamorovsky, Sergey K.</td>
<td>319–338</td>
</tr>
<tr>
<td>Croce, Roberta</td>
<td>119–137</td>
</tr>
<tr>
<td>De La Rosa, Miguel A.</td>
<td>683–696</td>
</tr>
<tr>
<td>Dekker, Jan P.</td>
<td>41–46; 177–192</td>
</tr>
<tr>
<td>Diner, Bruce A.</td>
<td>223–244</td>
</tr>
<tr>
<td>Drepper, Friedel</td>
<td>499–513</td>
</tr>
<tr>
<td>Duncan, James</td>
<td>99–117</td>
</tr>
<tr>
<td>Dutton, P.</td>
<td>583–594</td>
</tr>
<tr>
<td>Fish, Alexander</td>
<td>549–569</td>
</tr>
<tr>
<td>Fromme, Petra</td>
<td>47–69</td>
</tr>
<tr>
<td>Golbeck, John H.</td>
<td>79–98; 529–547</td>
</tr>
<tr>
<td>Gómez-Moreno, Carlos</td>
<td>455–476</td>
</tr>
<tr>
<td>Grotojohann, Ingo</td>
<td>47–69</td>
</tr>
<tr>
<td>Haldrup, Anna</td>
<td>139–154</td>
</tr>
<tr>
<td>Hase, Toshiharu</td>
<td>477–498</td>
</tr>
<tr>
<td>Hastings, Gary</td>
<td>301–318</td>
</tr>
<tr>
<td>Hervás, Manuel</td>
<td>683–696</td>
</tr>
<tr>
<td>Hippler, Michael</td>
<td>499–513</td>
</tr>
<tr>
<td>Hurley, John K.</td>
<td>455–476</td>
</tr>
<tr>
<td>Jensen, Poul Erik</td>
<td>41–46; 139–154</td>
</tr>
<tr>
<td>Johnson, Giles</td>
<td>639–656</td>
</tr>
<tr>
<td>Joliot, Anne</td>
<td>639–656</td>
</tr>
<tr>
<td>Joliot, Pierre</td>
<td>639–656</td>
</tr>
<tr>
<td>Karapetyan, Navassard V.</td>
<td>177–192</td>
</tr>
<tr>
<td>Ke, Bacon</td>
<td>15–29</td>
</tr>
<tr>
<td>Knaff, David B.</td>
<td>477–498</td>
</tr>
<tr>
<td>Kogan, Konstantin</td>
<td>549–569</td>
</tr>
<tr>
<td>Kothe, Gerd</td>
<td>339–360</td>
</tr>
<tr>
<td>Kofil, Roman</td>
<td>41–46</td>
</tr>
<tr>
<td>Lubitz, Wolfgang</td>
<td>245–269</td>
</tr>
<tr>
<td>Malkin, Richard</td>
<td>9–14</td>
</tr>
<tr>
<td>Mamedov, Mahir D.</td>
<td>319–338</td>
</tr>
<tr>
<td>Mathis, Paul</td>
<td>31–40</td>
</tr>
<tr>
<td>Mauzerall, David</td>
<td>571–581</td>
</tr>
<tr>
<td>Molina-Heredia, Fernando P.</td>
<td>683–696</td>
</tr>
<tr>
<td>Morosinotto, Tomas</td>
<td>119–137</td>
</tr>
<tr>
<td>Moser, Christopher C.</td>
<td>583–594</td>
</tr>
<tr>
<td>Navarro, José A.</td>
<td>683–696</td>
</tr>
<tr>
<td>Nechushtai, Rachel</td>
<td>549–569</td>
</tr>
<tr>
<td>Nelson, Nathan</td>
<td>71–77</td>
</tr>
<tr>
<td>Nield, Ios</td>
<td>99–117</td>
</tr>
<tr>
<td>Polucktov, Oleg G.</td>
<td>339–360</td>
</tr>
<tr>
<td>Ramesh, Velupillaimani M.</td>
<td>193–204</td>
</tr>
<tr>
<td>Rappaport, Fabrice</td>
<td>223–244</td>
</tr>
<tr>
<td>Raymond, Jason</td>
<td>669–681</td>
</tr>
<tr>
<td>Redding, Kevin</td>
<td>223–244; 413–437</td>
</tr>
<tr>
<td>Renger, Thomas</td>
<td>595–610</td>
</tr>
<tr>
<td>Rochaix, Jean-David</td>
<td>515–527</td>
</tr>
<tr>
<td>Sakuragi, Yumiko</td>
<td>205–222</td>
</tr>
<tr>
<td>San Pietro, Anthony</td>
<td>1–7</td>
</tr>
<tr>
<td>Sauer, Kenneth</td>
<td>31–40</td>
</tr>
<tr>
<td>Savikhin, Sergei</td>
<td>155–175</td>
</tr>
<tr>
<td>Scheller, Henrik Vibe</td>
<td>139–154</td>
</tr>
<tr>
<td>Schlödter, Eberhard</td>
<td>177–192; 595–610</td>
</tr>
<tr>
<td>Schürmann, Peter</td>
<td>477–498</td>
</tr>
<tr>
<td>Semenov, Alexey Yu</td>
<td>319–338</td>
</tr>
<tr>
<td>Sétif, Pierre</td>
<td>439–454</td>
</tr>
<tr>
<td>Shen, Gaozhong</td>
<td>529–547</td>
</tr>
<tr>
<td>Shinkarev, Vladimir</td>
<td>611–637</td>
</tr>
<tr>
<td>Shkurpatov, Anatoly Y.</td>
<td>291–300</td>
</tr>
<tr>
<td>Shuvalov, Vladimir A.</td>
<td>291–300</td>
</tr>
<tr>
<td>Sonoscie, Kintake</td>
<td>657–668</td>
</tr>
<tr>
<td>Strehlik, Dietmar</td>
<td>361–386</td>
</tr>
<tr>
<td>Thurnauer, Marion C.</td>
<td>339–360</td>
</tr>
<tr>
<td>Tollin, Gordon</td>
<td>455–476</td>
</tr>
<tr>
<td>Van der Est, Art</td>
<td>387–411; 413–437</td>
</tr>
<tr>
<td>Van Grondelle, Rienk</td>
<td>177–192</td>
</tr>
<tr>
<td>Vasiliev,I.A.G.</td>
<td>291–300</td>
</tr>
<tr>
<td>Webber, Andrew</td>
<td>193–204</td>
</tr>
<tr>
<td>Yakovlev, Andrei G.</td>
<td>291–300</td>
</tr>
</tbody>
</table>
Fig. 1. Model of the PSI-LHCII complex. Assignment of the supercomplex by fitting of the high-resolution structures of PS I (yellow) and trimeric LHCII (green). One LHCII monomer is indicated in blue-green, blue dots mark the spots where the ends of the helices A and B are closest to PS I in projection and the center of the trimer is indicated by a triangle. The part of subunits PSI-A, -H, -I, -K and -L closest to the LHCII trimer has been indicated. Open space in the interfaces of PS I and LHCII is marked by crosses. (Modified from Kouřil et al., 2005.) See Chapter 5, p. 43.

Fig. 2. Photosystem I. PS I with all cofactors as seen from within the membrane plane. The view leads from the distal side into the trimerization site. PsaA is shown in blue, PsaB in red, the small subunits with transmembrane helices in yellow, the stromal subunits in white, chlorophylls in green, carotenoids in grey, lipids in mauve, and Fe/S clusters with yellow/blue spheres. (P. Fromme and I. Grotjohann, unpublished.) See Chapter 6, p. 50.
Fig. 2. (cont.) Photosystem I. View of the transmembrane helices of the protein backbone with all cofactors as seen from the stroma. The trimerization site can be found on the top of the picture. PsaA is shown in blue, PsaB in red, the small subunits with transmembrane helices in yellow, the stromal subunits in white, chlorophylls in green, carotenoids in grey, lipids in mauve, and Fe/S clusters with yellow/blue spheres. (P. Fromme and I. Grotjohann, unpublished.) See Chapter 6, p. 51.
Fig. 1. The stromal subunits of Photosystem I. View from the stromal side of the thylakoid membrane. The subunits PsaC, PsaD, and PsaE form a protein cluster on the stromal side of PS I, which harbors the terminal part of the electron transfer chain. PsaC coordinates the Fe/S clusters F_A and F_B. PsaC is depicted in mauve, PsaD in cyan, and PsaE in lime. The docking site for ferredoxin is indicated. (P. Fromme and I. Grotjohann, unpublished.) See Chapter 6, p. 54.

Fig. 2. The Cα backbone model of plant Photosystem I at 4.4 Å resolution. View from the stromal side of the thylakoid membrane. The four light-harvesting proteins are in green (Lhca1–4). Novel structural elements within the RC (core) not present in the cyanobacterial counterpart are colored red, the conserved features of the RC are in grey. The three [4Fe-4S] clusters are depicted as red (Fe) and green (S) balls. Subunits A, B, F, G, H, I, J and K of the RC are indicated. The assignment of the four different Lhca proteins is shown. (Modified from Ben-Shem et al., 2003.) See Chapter 7, p. 73.