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Preface

The distinction between geophysics and astronomy was once clear. Events
on Earth constituted the realm of geophysics, while astronomy encompassed
objects that are located many light years from the Sun and Earth. Interstellar
clouds were “out there”, where they could be observed from isolated obser-
vatories nestled under the starry skies of the world’s deserts. Geology relied
on shovels and drill bits to obtain samples of mud and ice that contained clues
to the paleoclimate. The space age changed all of this, with the discovery of
interstellar gas and dust inside of the heliosphere. Mankind now looks out on
the Universe from our vantage point on the spaceship Earth, and the scientific
continuum that starts with the mineral and isotope composition on Earth ex-
tends back to the creation of the elements and isotopes at the beginning of the
Universe. Through geological traces of radioisotopes and interplanetary ma-
terial with a cosmic origin, the planetary system of the Sun provides a living
record of the journey of the Sun through the Milky Way Galaxy. It is this living
record, of which we are a part, that makes the discussions of the influence of
interstellar matter on the heliosphere and Earth a compelling topic.

The Sun experiences many kinds of Galactic environments on its journey
through space. The solar wind bubble, or heliosphere, acts as a buffer between
the broad range of interstellar cloud types that are encountered, and the inner
portion of the solar system where the Earth is located. The goal of this book
is to show how changes in the galactic environment of the Sun affect the he-
liosphere, solar system, and Earth. It is partly motivated by what may be a
purely happenstance coincidence. When I first plotted the solar space trajec-
tory on a map of the Local Bubble,1 it occurred to me that it may not be a
coincidence that our Earth was in the deep vacuum of the Local Bubble during
the past ∼2.5 million years when the genus homo emerged.

Professor John A. Simpson gave me a desk with his group after we moved
to Chicago from Berkeley, and I learned about the heliosphere. Convinced that
the interstellar hydrogen and helium observed inside of the heliosphere were
part of the interstellar cloud seen towards Rasalhague, 14 pc away, I proposed
to use the ultraviolet spectrometers on the Copernicus satellite to acquire high-
resolution data on solar Lyman-alpha photons fluorescing off of interstellar

xxi



xxii Preface

hydrogen inside of the heliosphere2. In the world of astronomy, interstellar
matter was between distant stars such as Scorpius and Orion, so this may have
been the first observational effort to relate interstellar gas inside and outside of
the heliosphere.

This book is dedicated to the memory of Professor John Simpson, who
helped make the space age a reality. He played an important role in bring-
ing a full-fledged space physics program to fruition at NASA, and was a leader
in promoting healthy international scientific collaborations. John was the Prin-
cipal Investigator for instruments on 10 interplanetary spacecraft and twenty
Earth-orbiting satellites. He was an author or coauthor of over 330 scientific
papers published between the years 1940–2000. His group made many ma-
jor scientific contributions, including the discovery of the anomalous cosmic
ray component3. John also played a vital role in founding and supporting The
Bulletin of the Atomic Scientists, a periodical dedicated to the peaceful use of
nuclear energy. His influence on the world has been profound. This volume is
dedicated to John in honor of his scientific and policy contributions.

Notes
1. Frisch, P. and York, D. G. (1986). Interstellar Clouds Near the Sun. In The Galaxy and the Solar

System, pages 83–100. Eds. R. Smoluchowski, J. Bahcall, and M. Matthews (University of Arizona Press).
2. Adams, T. F. and Frisch, P. C. (1977). High-resolution Observations of the Lyman Alpha Sky

Background. Astrophys. J., 212:300–308.
3. Garcia-Munoz, M., Mason, G. M., and Simpson, J. A. (1973). A New Test for Solar Modula-

tion Theory: the 1972 May-July Low-Energy Galactic Cosmic-Ray Proton and Helium Spectra. Astro-
phys. J. Lett., 182:L81–L84.

PRISCILLA C. FRISCH



Foreword

“An unusual display of the Aurora Borealis was witnessed here on the
evening of Oct. 22, 1804...where a luminous cloud was formed, curling and
rolling like smoke, and soon after dissipated in quick and repeated corusca-
tions. .... On the 16th of June, 1806, there occurred a remarkable eclipse of
the sun, which, at Boston and places farther south, was total. ... This eclipse
formed an epoch among farmers, who used to date from it the commencement
of those cold seasons, which, with some exceptions, continued with increasing
severity, for 10 years.”

New England agricultural records during the Little Ice Age, from “Annals
of the Town of Warren”, by Cyrus Eaton (Hallowell, Masters, Smith & Co.)
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Chapter 1

INTRODUCTION:
PALEOHELIOSPHERE VERSUS PALEOLISM

Priscilla C. Frisch
University of Chicago
frisch@oddjob.uchicago.edu

Abstract Speculations that encounters with interstellar clouds modify the terrestrial cli-
mate have appeared in the scientific literature for over 85 years. The articles in
this volume seek to give substance to these speculations by examining the exact
mechanisms that link the pressure and composition of the interstellar medium
surrounding the Sun to the physical properties of the inner heliosphere at the
Earth.

Keywords: Heliosphere, interstellar clouds, interstellar medium, cosmic rays, magnetosphere,
atmosphere, climate, solar wind, paleoclimate

1.1 The Underlying Query
If the solar galactic environment is to have a discernible effect on events on

the surface of the Earth, it must be through a subtle and indirect influence on
the terrestrial climate. The scientific and philosophical literature of the 18th,
19th and 20th centuries all include discussions of possible cosmic influences
on the terrestrial climate, including the effect of cometary impacts on Earth
(Halley, 1724), and the diminished solar radiation from sunspots, which Her-
schel attributed to “holes” in the luminous fluid on the surface of the Sun1

(Herschel, 1795). The discovery of interstellar material in the 20th century led
to speculations that encounters with dense clouds initiated the ice ages (Shap-
ley, 1921), and many papers appeared that explored the implications of such
encounters, including the influence of interstellar material (ISM) on the inter-
planetary medium and planetary atmospheres (e.g. Fahr, 1968, Begelman and

1
P. C. Frisch (ed.), Solar Journey: The Significance of our Galactic Environment for the Heliosphere and
Earth, 1–22.
c© 2006 Springer.



2 The Significance of our Galactic Environment

Rees, 1976, McKay and Thomas, 1978, Thomas, 1978, McCrea, 1975, Talbot
and Newman, 1977, Willis, 1978, Butler et al., 1978). The ISM-modulated
heliosphere was also believed to affect climate stability and astrospheres (e.g.
Frisch, 1993, Frisch, 1997, Zank and Frisch, 1999). Recent advances in our
understanding of the solar wind and heliosphere (e.g. Wang and Richardson,
2005, Fahr, 2004) justify a new look at this age-old issue. This book addresses
the underlying question:

How does the heliospheric interaction with the interstellar medium
affect the heliosphere, interplanetary medium, and Earth?

The heliosphere is the cavity in the interstellar medium created by the dy-
namic ram pressure of the radially expanding solar wind, a halo of plasma
around the Sun and planets, dancing like a candle in the wind and regulating
the flux of cosmic rays and interstellar material at the Earth. Neutral interstel-
lar gas and large interstellar dust grains penetrate the heliosphere, but the solar
wind acts as a buffer between the Earth and most other interstellar material and
low energy galactic cosmic rays (GCR). Together the solar wind and interstel-
lar medium determine the properties of the heliosphere. In the present epoch
the densities of the solar wind and interstellar neutrals are approximately equal
outside of the Jupiter orbit. Solar activity levels drive the heliosphere from
within, and the physical properties of the surrounding interstellar cloud con-
strain the heliosphere from without, so that the boundary conditions of the
heliosphere are set by interstellar material. Figure 1.1 shows the Sun and he-
liosphere in the setting of the Milky Way Galaxy.

The answer to the question posed above lies in an interdisciplinary study
of the coupling between the interstellar medium and the solar wind, and the
effects that ISM variations have on the 1 AU environment of the Earth through
this coupling. The articles in this book explore different viewpoints, including
gedanken experiments, as well as data-rich summaries of variations in the solar
environment and paleoclimate data on cosmic ray flux variations at Earth.

The book begins with the development of theoretical models of the he-
liosphere that demonstrate the sensitivity of the heliosphere to the variations
in boundary conditions caused by the passage of the Sun through interstellar
clouds. A series of gedanken experiments then yield the response of planetary
magnetospheres to encounters with denser ISM. Variations in the galactic en-
vironment of the Sun, caused by the motions of the Sun and clouds through the
Galaxy, are shown to occur for both long and short timescales.

The heliosphere acts as a buffer between the Earth and interstellar medium,
so that dust and particle populations inside of the heliosphere, which have an
interstellar origin, vary as the Sun traverses interstellar clouds. These buffer-
ing mechanisms determine the interplanetary medium2. The properties of
these buffering interactions are evaluated for heliosphere models that have been
developed using boundary conditions appropriate for when the Sun traverses
different types of interstellar clouds.
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The consequences of Sun-cloud encounters are then discussed in terms of
the accretion of ISM onto the terrestrial atmosphere for dense cloud encoun-
ters, and the possibly extreme variations expected for cosmic ray modulation
when interstellar densities vary substantially. Radioisotope records on Earth
extending backwards in time for over ∼0.5 Myrs, together with paleoclimate
data, suggest that cosmic ray fluxes are related to climate. The galactic envi-
ronment of the Sun must have left an imprint on the geological record through
variations in the concentrations of radioactive isotopes.

The selection of topics in this book is based partly on scientific areas that
have already been discussed in the literature. The authors who were invited to
contribute chapters have previously studied the heliosphere response to vari-
able ISM conditions.

Figure 1.1 shows the heliosphere in our setting of the Milky Way Galaxy.
A postscript at the end of this chapter lists basic useful information. I in-
troduce the term “paleoheliosphere” to represent the heliosphere in the past,
when the boundary conditions set by the local interstellar material (LISM)
may have differed substantially from the boundary conditions for the present-
day heliosphere. The “paleolism” is the local ISM that once surrounded the
heliosphere.

1.2 Addressing the Query: The Heliosphere and Particle
Populations for Different Interstellar Environments

The solar wind drives the heliosphere from the inside, with the properties of
the solar wind varying with ecliptic latitude and the phase of the 11-year solar
activity cycle. The global heliosphere is the volume of space occupied by the
supersonic and subsonic solar wind. Interstellar material forms the boundary
conditions of the heliosphere, and the windward side of the heliosphere, or the
“upwind direction”, is defined by the interstellar velocity vector with respect
to the Sun. The leeward side of the heliosphere is the “downwind direction”.
Figure 1.1 shows a cartoon of the present-day heliosphere, with labels for the
major landmarks such as the termination shock, heliopause, and bow shock.

In the present-day heliosphere, the transition from solar wind to interstellar
plasma occurs at a contact discontinuity known as the “heliopause”, which is
formed where the total solar wind and interstellar pressures equilibrate (Holzer,
1989). For a non-zero interstellar cloud velocity in the solar rest frame, the so-
lar wind turns around at the heliopause and flows around the flanks of the he-
liosphere and into the downwind heliotail. Before reaching the heliopause, the
supersonic solar wind slows to subsonic velocities at the “termination shock”,
where kinetic energy is converted to thermal energy.

The subsonic solar wind region between the termination shock and he-
liopause is called the inner “heliosheath”. The outer heliosheath lies just beyond
the heliopause, where the pristine ISM is distorted by the ram pressure of the
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Figure 1.1. The solar location and vector motion are identified for the kiloparsec scale sizes
of the Milky Way Galaxy (large image), and for the ∼500 parsec scale size of the Local Bubble
(medium sized image, inset in upper left hand corner). A schematic drawing of the heliosphere
(small image, inset in lower right hand corner) shows the upwind velocity of the interstellar wind
(“ISM”) as observed in the rest frame of the Sun. Coincidently, this direction, which determines
the heliosphere nose, is close to the galactic center direction. The orientation of the plane in the
small inset differs from the planes of the large and medium figures, since the ecliptic plane is
tilted by 60◦ with respect to the galactic plane. The Sun is 8 kpc from the center of the Milky
Way Galaxy, and the solar neighborhood moves towards the direction � = 90◦ at a velocity of
225 km s−1. The spiral arm positions are drawn from Vallee (2005), except for the Orion spur.
The Local Bubble configuration is based on measurements of starlight reddening by interstellar
dust (Chapter 6). The lowest level of shading corresponds to color excess values E(B-V) =
0.051 mag, or column densities log N (H) (cm−2) = 20.40 dex. The dotted region shows
the widespread ionized gas associated with the Gum Nebula. The heliosphere cartoon shows
interstellar protons deflected in the plasma flow in the outer heliosheath regions, compared to
the interstellar neutrals that penetrate the heliopause.
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heliosphere. A bow shock, where the interstellar gas becomes subsonic, is ex-
pected to form ahead of the present-day heliosphere in the observed upwind
direction of the ISM flow through the solar system.

Large interstellar dust grains and interstellar atoms that remain neutral in-
side of the orbit of Earth, such as He, are gravitationally focused in the down-
wind direction. This “focusing cone” is traversed by the Earth every year in
early December, and extends many AU from the Sun in the leeward direction
(e.g. Landgraf, 2000, Möbius et al., 2004, Frisch, 2000). The heliotail itself
extends >103 AU from the Sun in the downwind direction, forming a cosmic
wake for the solar system.

Of significance when considering the interaction of the heliosphere with
an interstellar cloud is that neutral particles enter the heliosphere relatively
unimpeded, after which they are ionized and convected outwards with the solar
wind. Ions and small charged dust grains are magnetically deflected in the
heliosheath around the flanks of the heliosphere (see Figure 1.1).

Space and astronomical data now confirm the basic milestones of the outer
heliosphere. Voyager 1 crossed the termination shock at 94 AU on 16 De-
cember, 2004 (UT), and observed the signature of the termination shock on
low-energy particle populations, the solar wind magnetic field, low-energy
electrons and protons, and Langmuir radio emission (Stone et al., 2005, Burlaga
et al., 2005, Gurnett and Kurth, 2005, Decker et al., 2005). The present-day
termination shock appears to be weak, with a solar wind velocity jump ratio
(the ratio of upstream to downstream values) of ∼2.6 and a magnetic field com-
pression ratio of ∼3. The magnetic wall that is predicted for the heliosphere
(Linde, 1998, Ratkiewicz et al., 1998, Chapter 3 by Pogorelov and Zank) ap-
pears to have been detected through observations of magnetically aligned dust
grains (Frisch, 2005), and the offset between upwind directions of interstellar
H◦ and He◦ (Lallement et al., 2005). The compressed and heated H◦ in the
hydrogen wall region of the outer heliosheath has now been detected around a
number of stars (Wood et al., 2005).

The present-day solar wind is the baseline for evaluating the heliosphere
response to ISM variations in the following articles, so a short review of the
solar wind is first presented. The remaining part of §1.2 introduces the topics
in the following articles in terms of the underlying query of the book.

1.2.1 The Present Day Solar Wind
The solar wind originates in the million degree solar corona that expands

radially outwards, with a density ∼1/R2
S where RS is the distance to the Sun,

and contains both features that corotate with the Sun, and transient structures
(e.g. Gosling, 1996). The properties of the solar wind vary with the phase of
the solar magnetic activity cycle and with ecliptic latitude. The best historical
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indicator of solar magnetic activity levels is the number of sunspots, first de-
tected by Galileo in 1610, which are magnetic storms in the convective zone
of the Sun. Sunspot numbers indicate that the magnetic activity levels fluctu-
ate with a ∼11 year cycle, or the “solar cycle”, and solar maximum/minimum
corresponds to the maximum/minimum of sunspot numbers. The magnetic
polarity of the Sun varies with a ∼22 year cycle. During solar maximum, a
low-speed wind, with velocity ∼300–600 km s−1 and density ∼6–10 particles
cm−3 at 1 AU, extends over most of the solar disk. Open magnetic field lines3

are limited to solar pole regions. A neutral current sheet ∼0.4 AU thick forms
between the solar wind containing negative magnetic polarity fields and the
solar wind that contains positive magnetic polarity fields. The neutral current
sheet reaches its largest inclination (≥70◦) during solar maximum. During
the conditions of solar minimum, a high speed wind with velocity ∼600–
800 km s−1 and density ∼5 cm−3 is accelerated in the open magnetic flux
lines in coronal holes. During mininum, the high speed wind and open field
lines extend from the polar regions down to latitudes of ≤40◦ (Smith et al.,
2003, Richardson et al., 1995). The higher solar wind momentum flux asso-
ciated with solar minimum conditions produces an upwind termination shock
that is ∼5–40 AU more distant in the upwind direction than during solar maxi-
mum conditions (e.g. Scherer and Fahr, 2003, Zank and Müller, 2003, Whang,
2004).

During solar minimum conditions, the magnetic field is dominated by the
dipole and hexapole moments, with a small contribution from a quadrupole
moment. The alignment and strength of the multipoles depend on the phase
of the solar cycle (Bravo et al., 1998). The solar dipole moment is strongest
during solar minimum, when it is generally aligned with the solar rotation axis.
Sunspots migrate from high to low heliographic latitudes. The magnetic poles
follow the coronal holes to the solar equator as solar activity increases. During
the solar maximum period, the galactic cosmic rays undergo their maximum
modulation, the dipole component of the magnetic field is minimized, and the
polarity of the solar magnetic field reverses (Lockwood and Webber, 2005,
Figure 1.2). Over historic times, the cosmic ray modulation by the heliosphere
correlates better with the open magnetic flux line coverage than with sunspot
numbers (McCracken et al., 2004).

Variable cosmic ray modulation produced by a variable heliosphere may
be a primary factor in both solar and ISM forcing of the terrestrial climate.
The heliosphere modulation of cosmic rays is well established. John Simp-
son, to whom this book is dedicated, initiated a program 5 solar cycles ago
in 1951 to monitor cosmic ray fluxes on Earth using high-altitude neutron
detectors (Simpson, 2001). The results show a pronounced anticorrelation be-
tween cosmic ray flux levels and solar sunspot numbers, which trace the 11-
year Schwabe magnetic activity cycle, and which also show that the polarity
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of the solar magnetic field affects cosmic ray modulation (see Figure 1.2). The
articles in this book show convincingly that the ISM also modulates the he-
liosphere, and the effect of the solar wind on the heliosphere must be differen-
tiated from the influence of interstellar matter.

Variations in solar activity levels are also seen over ∼100–200 year
timescales, such as the absence of sunspots during the Maunder Minimum
in the 17th century. Modern climate records show that the Maunder Mini-
mum corresponded to extremely cold weather, and radioisotope records show
that the flux of cosmic rays was unusually high at this time (see Kirkby and
Carslaw, Chapter 12). Similar effects will occur from the modulation of galac-
tic cosmic rays by the passage of the Sun through an interstellar cloud.

These temporal and latitudinal variations in the solar wind momentum flux
produce an asymmetric heliosphere, which varies with time. Any possible
historical signature of the ISM on the heliosphere must first be distinguished
from variations driven by the solar wind itself.

1.2.2 Present Day Heliosphere and Sensitivity to ISM
The ISM forms the boundary conditions of the heliosphere, so that encoun-

ters with interstellar clouds will affect the global heliosphere, the interplan-
etary medium, and the inner heliosphere region where the Earth is located.
Today an interstellar wind passes through the solar system at –26.3 km s−1

(Witte, 2004). An entering parcel of ISM takes about 20 years to reach the
inner heliosphere, so that ISM near the Earth is constantly replenished with
new inflowing material. This warm gas is low density and partially ionized,
with temperature T∼ 6,300 K, and densities of neutral and ionized matter of
n(Ho)∼0.2 cm−3, and n(H+)∼0.1 cm−3.

An elementary perspective of the response of the heliosphere to interstellar
pressures is given by an analytical expression for the heliopause distance based
on the locus of positions where the solar wind ram pressure, PSW, and the total
interstellar pressure equilibrate (Holzer, 1989). The solar wind density ρ falls
off as ∼1/R2, where R is the distance to the Sun, while the velocity v is
relatively constant. At 1 AU the solar wind ram pressure is PSW,1AU∼ρ v2 so
the heliosphere distance, RHP, is given by:

PSW,1AU/R2
HP ∼ PB + PIons,thermal + PIons,ram + PDust + PCR

The interstellar pressure terms include the magnetic pressure PB, the thermal,
PIons,thermal, and the ram, PIons,ram, pressures of the charged gas, and the
pressures of dust grains, PDust, and cosmic rays, PCR, which are excluded
by heliosphere magnetic fields and plasma. Some interstellar neutrals convert
to ions through charge exchange with compressed interstellar proton gas in
heliosheath regions, adding to the confining pressure. An important response
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characteristic is that, for many clouds, the encounter will be ram-pressure dom-
inated, where Pram ∼ mv2 for interstellar cloud mass density m and relative
Sun-cloud velocity v, so that variations in the cloud velocity perturb the he-
liosphere even if the thermal pressures remain constant.

The multifluid, magnetohydrodynamic (MHD), hydrodynamic and hybrid
approaches used in the following chapters provide much more substantial mod-
els for the heliosphere, and include the coupling between neutrals and plasma,
and field-particle interactions. These sophisticated models predict variations
in the global heliosphere in the face of changing interstellar boundary condi-
tions, and for a range of different cloud types. Although impossible to model a
solar encounter with every type of interstellar cloud, the following articles in-
clude discussions of many of the extremes of the interstellar parameter space,
including low density gas with a range of velocities, very tenuous plasma, high
velocity clouds, dense ISM, and magnetized material for a range of field ori-
entations and strengths. The discussions in these chapters extrapolate from our
best theoretical understanding of the heliosphere boundary conditions today
to values that differ, in some cases dramatically, from the boundary condi-
tions that prevailed at the beginning of the third millennium in the Gregorian
calendar.

The Sun has been, and will be, subjected to many different physical envi-
ronments over its lifetime. Theoretical heliosphere models yield the properties
of the solar wind-ISM interaction for these different environments, which in
turn determine the nature and properties of interstellar populations inside of
the heliosphere for a range of galactic environments. These models form the
foundation for understanding the significance of our galactic environment for
the Earth.

The interstellar parameter space is explored by Zank et al. (Chapter 2),
where 28 sets of boundary conditions are evaluated with computationally effi-
cient multifluid models. Moebius et al. (Chapter 8), Fahr et al. (Chapter 9),
Florinski and Zank (Chapter 10), and Yeghikyan and Fahr (Chapter 11) also de-
velop heliosphere models for a range of interstellar conditions. Together these
models evaluate the heliosphere response to interstellar density, temperature,
and velocity variations of factors of ∼109, ∼105, and ∼102, respectively.

The interstellar magnetic field introduces an asymmetric pressure on the
heliosphere, affecting the heliosphere current sheet and cosmic ray modulation.
Pogorelov and Zank (Chapter 3) use MHD models to probe the heliosphere
response to the interstellar magnetic field, including charge exchange between
the neutrals and solar wind. The resulting asymmetry provides a test of the
magnetic field direction, and shows strong differences between cases where the
interstellar flow is parallel, instead of perpendicular, to the interstellar magnetic
field direction. Since the random component of the interstellar magnetic field
is stronger, on the average, than the ordered component, particularly in spiral


