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Preface

The methods of (Co-) Homological Algebra provide a framework for Al-
gebraic Geometry and Algebraic Analysis. The following two books were
published during the late 1950’s:

[CE] Cartan, H., Eilenberg, S., Homological Algebra, Princeton University Press
(1956), and

[G]  Godement, R., Topologie Alg´ebraique et Th´eorie des Faisceaux, Hermann,
Paris (1958).

If you are capable of learning from either of these two books, I am afraid that
The Heart of Cohomology, referred to hereafter as [THOC], is not for you. One
of the goals of [THOC] is to provide young readers with elemental aspects of
the algebraic treatment of cohomologies.

During the 1990’s

[GM] Gelfand, S.I., Manin, Yu., I., Methods of Homological Algebra, Springer–
Verlag, (1996), and

[W]  Weibel, C.A., An Introduction to Homological Algebra, Cambridge Univer-
sity Press, (1994)

were published. The notion of a derived category is also treated in [GM] and
[W].

In June, 2004, the author was given an opportunity to give a short course ti-
tled “Introduction to Derived Category” at the University of Antwerp, Antwerp,
Belgium. This series of lectures was supported by the European Science Foun-
dation, Scientific Programme of ESF. The handwritten lecture notes were dis-
tributed to attending members. [THOC] may be regarded as an expanded ver-
sion of the Antwerp Lecture Notes. The style of [THOC] is more lecture-like
and conversational. Prof. Fred van Oystaeyen is responsible for the title “The

ix



Heart of Cohomology”. In an effort to satisfy the intent of the title of this book,
a more informal format has been chosen.

After each Chapter was written, the handwritten manuscript was sent to
Dr. Daniel Larsson in Lund, Sweden, to be typed. As each Chapter was typed,
we discussed his suggestions and questions. Dr. Larsson’s contribution to
[THOC] is highly appreciated.

We will give a brief introduction to each Chapter. In Chapter I we cover some
of the basic notions in Category Theory. As general references we recommend

[BM] Mitchell, B., The Theory of Categories, Academic Press, 1965, and

[SH] Schubert, H., Categories, Springer-Verlag, 1972.

The original paper on the notion of a category

[EM] Eilenberg, S., MacLane, S., General Theory of Natural Equivalences, Trans.
Amer. Math. Soc. 58, (1945), 231–294

is still a very good reference. Our emphasis is on Yoneda’s Lemma and the
Yoneda Embedding. For example, for contravariant functors F and G from a
category C to the category Set of sets, the Yoneda embedding

˜ : C � Ĉ := SetC
◦

gives an interpretation for the convenient notation F (G) as

F̃ (G) = HomĈ (G, F )

(See Remark 5.)
We did not develop a cohomology theory based on the notion of a site.

However, for a covering {Ui → U} of an object U in a site C , the higher
Čech cohomology with coefficient F ∈ Ob(AbC ◦

) is the derived functor of the
kernel of ∏

F (Ui)
d0

−→
∏

F (Ui × Uj).

This higher Čech cohomology associated with the covering of U is the coho-
mology of the Čech complex

Cj({Ui → U}, F ) =
∏

F (Ui0 ×U · · · ×U Uij ).

One can continue the corresponding argument as shown in 3.4.3.
In Chapter II, the orthodox treatment of the notion of a derived functor for

a left exact functor is given. In 2.11 through Note 15, a more general invariant
than the cohomology is introduced. Namely for a sequence of objects and
morphisms in an abelian category, when the composition d2 = 0 need not
hold, we define two complexifying functors on the sequence. The cohomology
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of the complexified sequence is the notion of a precohomology generalizing
cohomology. The half-exactness and the self-duality of precohomologies are
proved. As a general reference for this Chapter,

[HS] Hilton, P.J., Stammbach, U., A Course in Homological Algebra, Graduate
Texts in Mathematics, Springer-Verlag, 1971

is also recommended.
In Chapter III, we focus on the spectral sequences associated with a dou-

ble complex, the spectral sequences of composite functors, and the spectral
sequences of hypercohomologies. For the theory of spectral sequences, in

[LuCo] Lubkin, S., Cohomology of Completions, North-Holland, North-Holland
Mathematics Studies 42, 1980

one can find the most general statements on abutments of spectral sequences.
In [THOC], the interplay of the above three kinds of spectral sequences and
their applications to sheaf cohomologies are given.

In Chapter IV, an elementary introduction to a derived category is given.
Note that diagram (3.14) in Chapter IV comes from [GM]. The usual octahedral
axiom for a triangulated category is replaced by the simpler (and maybe more
natural) triangular axiom:

C ′

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

[1]

���
��

��
��

��
��

��
��

��
A′[1]��� � � � � � � � � � � � � � � � � � � � �

[1]
������

����
����

����
����

B

����������������������

���
��

��
��

�

A

����������
�� C

		�����������������



		
		
		
		
		
		
		
		
		
		
		
		

B′

[1]

��

























���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Preface xi



A schematic picture for the derived functors RF between derived categories
carrying a distinguished triangle to distinguished triangle may be expressed as

• •

• • • •

C(f)[1] •

• B[1] RF ���������� • RFB[1]

C(f) RFC(f)

A[1] B RFA[1] RFB

A RFA .

As references for Chapter IV,

[HartRes] Hartshorne, R., Residues and Duality, Lecture Notes Math.

[V] Verdier, J.L., Catégories triangulées, in Cohomologie Étale, SGA4 1
2
, Lec-

ture Notes Math. 569, Springer-Verlag, 1977, 262–312.

need to be mentioned.
In Chapter V, applications of the materials in Chapters III and IV are given.

The first half of Chapter V is focused on the background for the explicit com-
putation of zeta invariances associated with the Weierstrass family. We wish
to compute the homologies with compact supports of the closed fibre of the
hyperplane

ZY 2 = 4X3 − g2XZ2 − g3Z
3

in P
2(A), A := Ẑp[g2, g3], where X, Y, Z are homogeneous coordinates (or the

open subfamily, i.e., the pre-image of Spec((Z/pZ)[g2, g3]∆), i.e., localized
at the discriminant ∆ := g3

2 − 27g2
3 , p �= 2, 3). Let U be the affine open

family in the above fibre, i.e., “Z = 1”. Then we are interested in a set of
generators and relations for the A†⊗Z Q-module H1

c(U, A†⊗Z Q). For p in the
base Spec((Z/pZ)[g2, g3]) (or Spec((Z/pZ)[g2, g3]∆), the universal spectral
sequence is induced so as to compute the zeta function of the fibre over p (or
elliptic curve over p).

We also decided to include a letter from Prof. Dwork in 5.2.4 in Chapter V
since we could not find the contents of this letter elsewhere.

In the second half of Chapter V, only some of the cohomological aspects of
D-modules are mentioned. None of the microlocal aspects of D-modules are

Verlag, 1966, and
20, Springer-
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treated in this book. One may consider the latter half materials of Chapter V
as examples and exercises of the spectral sequences and derived categories in
Chapters III and IV.

Lastly, I would like to express my gratitude to my mathematician friends in
the U.S.A., Japan and Europe. I will not try to list the names of these people
here fearing that the names of significant people might be omitted. However,
I would like to mention the name of my teacher and Ph.D. advisor, Prof. Saul
Lubkin. I would like to apologize to him, however, because I was not able to
learn as much as he exposed me to during my student years in the late 1970’s.
(I wonder where my Mephistopheles is.) In a sense, this book is my humble
delayed report to Prof. Lubkin.

Tomo enpouyori kitari
mata tanoshi karazuya. . .

Goro Kato

Thanksgiving Holiday with my Family and Friends, 2005
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Chapter 1

CATEGORY

1.1 Categories and Functors
The notion of a category is a concise concept shared among "groups and

group homomorphisms", "set and set-theoretic mappings", "topological spaces
and continuous mappings", e t c.

Definition 1. A category C consists of objects, denoted as X, Y, Z, . . . , and
morphisms, denoted as f, g, φ, ψ, α, β, . . . . For objects X and Y in the category
C , there is induced the set HomC (X, Y ) of morphisms from X to Y . If

φ ∈ HomC (X, Y ) we write φ : X → Y or X
φ−→ Y . Then, for φ : X → Y

and ψ : Y → Z, the composition ψ ◦ φ : X → Z is defined. Furthermore,

for X
φ−→ Y

ψ−→ Z
γ−→ W , the associative law γ ◦ (ψ ◦ φ) = (γ ◦ ψ) ◦ φ

holds. For each object X there exists a morphism 1X : X → X such that
for f : X → Y and for g : Z → X we have f ◦ 1X = f and 1X ◦ g = g.
Lastly, the sets HomC (X, Y ) are pairwise disjoint. Namely, if HomC (X, Y ) =
HomC (X ′, Y ′), then X = X ′ and Y = Y ′.

Note 1. When X is an object of a category C we also write X ∈ Ob(C ), the
class of objects in C . Note that a category is said to be small if Ob(C ) is a set.

Example 1. The category Ab of abelian groups consists of abelian groups and
group homomorphisms as morphisms. The category Set of sets consists of sets
and set-theoretic maps as morphisms. Next let T be a topological space. Then
there is an induced category T consisting of the open sets of T as objects. For
open sets U, V ⊂ T , the induced set HomT (U, V ) of morphisms from U and
V consists of the inclusion map ι : U ↪→ V if U ⊂ V , and HomT (U, V ) an
empty set if U � V .

Remark 1. For the category Ab we have the familiar element-wise definitions
of the kernel and the image of a group homomorphism f from a group G to

1



2 Category

a group H . We also have the notions of a monomorphism, called an injective
homomorphism, and of an epimorphism, called a surjective homomorphism in
the category Ab. For a general category C we need to give appropriate defini-
tions without using elements for the above mentioned concepts. For example,
φ : X → Y in C is said to be an epimorphism if f ◦ φ = g ◦ φ implies f = g
where f, g : Y → Z. (This definition of an epimorphism is reasonable since
the agreement f ◦φ = g◦φ only on the set-theoretic image of φ guarantees that
f = g.) Similarly, φ : X → Y is said to be a monomorphism if φ ◦ f = φ ◦ g
implies f = g where f, g : W → X . (This is reasonable since there can not be
two different paths from W to Y .) In order to give a categorical definition of an

image of a morphism, we need to define the notion of a subobject. Let W
φ−→ X

and W ′ φ′
−→ X be monomorphisms. Then define a pre-order (W ′, φ′) ≤ (W, φ)

if and only if there exists a morphism ψ : W ′ → W satisfying φ ◦ ψ = φ′.
Notice that ψ is a uniquely determined monomorphism. If (W, φ) ≤ (W ′, φ′)
also holds, we have a monomorphism ψ′ : W → W ′ satisfying φ′ ◦ψ′ = φ and
so φ ◦ ψ ◦ ψ′ = φ′ ◦ ψ′ = φ = φ ◦ 1W . Since φ is a monomorphism we have
ψ ◦ ψ′ = 1W . Similarly, we also have ψ′ ◦ ψ = 1W ′ . This means that ψ is an
isomorphism, and (W, φ), (W ′, φ′) are said to be equivalent. A subobject of
X is defined as an equivalence class of such pairs (W, φ). A categorical, i.e.,
element-free, definition of the image of a morphism φ : X → Y may be given
as follows. Consider a factorization of φ

X
φ ��

φ′
���

��
��

��
� Y

Y ′

ι


(1.1)

where (Y ′, ι) is a subobject of Y . For another such factorization (Y ′′, ι′), if
there exists a morphism j : Y ′ → Y ′′ satisfying ι = ι′ ◦ j, then (Y ′, ι) is said
to be the image of φ. Intuitively speaking, shrink Y as much as possible to Y ′

so that factorization is still possible. Namely, the image of φ is the smallest
subobject (Y ′, ι) to satisfy the commutative diagram (1.1). On the other hand,
the kernel of φ : X → Y can be characterized as the largest subobject (X ′, ι)
of satisfying φ ◦ ι = 0 in

X
φ �� Y

X ′

ι



φ′

����������
(1.2)



Categories and Functors 3

1.1.1 Cohomology in Ab

For a sequence

X
φ �� Y

ψ �� Z

in Ab, the cohomology group at Y is defined as the quotient group of Y

ker ψ
/

im φ (1.3)

provided imφ ⊂ kerψ, i.e., for y = φ(x) ∈ im φ we have ψ(y) = 0, or in still
other words, ψ(y) = ψ(φ(x)) = (ψ ◦ φ)(x) = 0.

1.1.2 The functor HomC (·, ·)
Let us take a close look at the set of morphisms HomC (X, Y ) in Definition

1. First consider HomC (X, X). Recall that there is a special morphism from X
to X , call it 1X , satisfying the following. For any φ : X → Y and ψ : Z → X
we have 1X ◦ ψ = ψ and φ ◦ 1X = φ in

Z
ψ �� X

1X �� X
φ �� Y. (1.4)

Then 1X is said to be an identity morphism as in Definition 1, (i).
Next delete Y in the expression HomC (X, Y ) to get HomC (X, ·). Then,

regard HomC (X, ·) as an assignment

HomC (X, ·) : C −→ Set

Y �−→ HomC (X, Y ).
(1.5)

Similarly we can consider

HomC (·, Y ) : C −→ Set

X �−→ HomC (X, Y ).
(1.6)

That is, when you substitute Y in the deleted spot of HomC (X, ·), you get the
set HomC (X, Y ) of morphisms. For two objects Y and Y ′ we have two sets
HomC (X, Y ) and HomC (X, Y ′). Then for a morphism β : Y → Y ′ consider
the diagram

X
φ

����
��
��
�� β◦φ

���
��

��
��

�

Y
β �� Y ′

(1.7)



4 Category

This diagram indicates that forφ ∈ HomC (X, Y ), we getβ◦φ ∈ HomC (X, Y ′).
Schematically, we express this situation as:

β : Y

HomC (X,·)
�� ��
��
��

�� Y ′ in C

HomC (X, β) : HomC (X, Y ) �� HomC (X, Y ′) in Set

(1.8)

where HomC (X, β)(φ) := β ◦ φ.
On the other hand, when X is deleted from HomC (X, Y ), we get (1.6). But

for X
α−→ X ′, i.e., considering

X

ψ◦α ��






α �� X ′

ψ����
��
��
��

Y

(1.9)

ψ ∈ HomC (X ′, Y ) induces ψ ◦ α ∈ HomC (X, Y ). Schematically,

α : X

HomC (·,Y )
��
��
��
��

�� X ′ in C

HomC (α, Y ) : HomC (X, Y ) HomC (X ′, Y ) in Set��

(1.10)

Notice that the direction of the morphism in (1.10) is changed as compared with
HomC (X, β) in (1.8).

Definition 2. Let C and C ′ be categories. A covariant functor from C to C ′

denoted as F : C � C ′, is an assignment of an object FX in C ′ to each object
X in C and a morphism Fα from FX to FX ′ to each morphism α : X → X ′

in C satisfying:

(Func1) For X
α−→ X ′ α′

−→ X ′′ in C we have

F (α′ ◦ α) = Fα′ ◦ Fα.

(Func2) For 1X : X → X we have F1X = 1FX : FX → FX .

Condition (Func1) may schematically be expressed as the commutativity of

X
α ��

α′◦α ���
��

��
��

� X ′

α′

��

FX
Fα ��

F (α′◦α) ���
��

��
��

��
FX ′

Fα′

��
X ′′ FX ′′

in C in C ′

(1.11)



Opposite Category 5

Example 2. In Definition 2, let C ′ = Set and let F = HomC (X, ·). Then one
notices from (1.8) that HomC (X, ·) : C � Set is a covariant functor.

Note 2. Similarly, a contravariant functor F : C � C ′ can be defined as
in Definition 2 with the following exception: For α : X → X ′ in C , Fα
is a morphism from FX ′ to FX in C ′, i.e., as in (1.10) the direction of the
morphism is changed. Notice that HomC (·, Y ) is a contravariant functor from
C to Set.

Before we begin the next topic, let us confirm that the covariant functor
HomC (X, ·) : C � Set satisfies Condition (Func2) of Definition 2. To demon-
strate this: for 1Y : Y → Y , indeed

HomC (X, 1Y ) : HomC (X, Y ) → HomC (X, Y )

is to be the identity morphism on HomC (X, Y ), i.e.,

HomC (X, 1Y ) = 1HomC (X,Y ).

Let α ∈ HomC (X, Y ) be an arbitrary morphism. Then consider

X
α

����
��
��
�

1Y ◦α=α

���
��

��
��

Y
1Y �� Y

(1.12)

which is a special case of (1.7). As shown in (1.8), the definition of

HomC (X, 1Y ) : HomC (X, Y ) → HomC (X, Y )

is α �→ 1Y ◦ α = α. Namely, HomC (X, 1Y ) is an identity on HomC (X, Y ).

1.2 Opposite Category
Next, we will define the notion of an opposite category (or dual category).

Let C be a category. Then the opposite category C ◦ has the same objects as
C . This means that the dual object X◦ in C ◦ of an object X in C satisfies
X◦ = X . We will use the same X even when X is an object of C ◦. Let X and
Y be objects in C ◦, then the set of morphisms from X to Y in C ◦ is defined as
the set of morphisms from Y to X in C , i.e.,

HomC ◦(X, Y ) = HomC (Y, X). (2.1)

Note that C ◦ is also called the dual category of C . Recall that

HomC (X, ·) : C � Set
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is a covariant functor. Let us replace C by C ◦. Then we have

HomC ◦(X, ·) : C ◦ � Set.

Let Y
φ−→ Y ′ be a morphism in C . Then in C ◦ we have Y

φ◦
←− Y ′. The

covariant functor HomC ◦(X, ·) takes Y
φ◦
←− Y ′ in C ◦ without changing the

direction of φ◦ to

HomC ◦(X, Y ) HomC ◦(X, Y ′)��

in Set. From (2.1) we get

HomC ◦(X, Y ) = HomC (Y, X) HomC ◦(X, Y ′) = HomC (Y ′, X)�� .

Schematically, we have

In C ◦ : Y

◦
��
��
��
��

Y ′φ◦
��

In C : Y
φ �� Y ′

◦

��
��
��

.

(2.2a)

Applying HomC ◦(X, ·) to the top row and HomC (·, X) to the bottom row, we
get:

HomC ◦(X, Y ) HomC ◦(X, Y ′)��

HomC (Y, X) HomC (Y ′, X)��

(2.2b)

in Set. Generally, for a covariant functor F : C � C ′, there is induced a
contravariant functor F : C ◦ � C ′. On the other hand, F : C � C ′◦

becomes contravariant.

1.2.1 Presheaf on T

In Example 1, we defined the category T associated with a topological space
T . Let us consider a contravariant functor F from T to a category A . Namely,
for U ↪→ V in T , we have FU ← FV in A . (As noted, F : T ◦ � A is a
covariant functor.) Then F is said to be a presheaf defined on T with values
in A . In the category of presheaves on T

T̂ := A T ◦
, (2.3)

an object is a covariant functor (presheaf) from T ◦ to A , and a morphism f of
presheaves F and G is defined as follows. To every object U of T , f assigns
a morphism

fU : FU → GU (2.4)
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in A . Generally, for categories C and C ′, let

Ĉ = C ′C (2.5)

be the category of (covariant) functors as its objects. For functors F and G, a
morphism f : F → G is called a natural transformation from F to G and is
defined as an assignment fU : FU → GU for an object U in C . Additionally
f must satisfy the following condition: for every U

α−→ V in C , the diagram

FU
fU ��

Fα
��

GU

Gα
��

FV
fV �� GV

(2.6a)

commutes, i.e., fV ◦Fα = Gα ◦ fU in C ′. Therefore, a morphism f : F → G
in T̂ = A T ◦

must satisfy the following in addition to (2.4). For ι : U ↪→ V
in T (i.e., U ←↩ V in T ◦),

FU
fU �� GU

FV
fV ��

Fι



GV

Gι


(2.6b)

must commute. Important examples of T̂ are the cases when A = Set and
A = Ab. We will return to this topic when the notion of a site is introduced.

1.3 Forgetful Functors
Let A be an abelian group. By forgetting the abelian group structure, A

can be regarded as just a set. Namely, we have an assignment S : Ab � Set.
For a group homomorphism φ : A → B in Ab, assign the set-theoretic map
Sφ : SA → SB. One may wish to check axioms (Func1) and (Func2) of
Definition 2 for the assignment S. Consequently S is a covariant functor from
Ab to Set. This functor S is said to be a forgetful functor from Ab to Set.

Definition 3. Let C ′ and C be categories. Then C ′ is a subcategory of C when
the following conditions are satisfied.

(Subcat1) Ob(C ′) ⊂ Ob(C ) and for all objects X and Y in C ′,

HomC ′(X, Y ) ⊂ HomC (X, Y ).

(Subcat2) The composition of morphisms in C ′
′ the identity morphisms

1X in C ′ are also identity morphisms in C .
Cof morphisms in C , and for all objects X in

is coming from the composition
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Example 3. Let V′ be the category of finite-dimensional vector spaces over a
field 	 and let V be the category of vector spaces over 	 and where the morphisms
are the 	-linear transformations. Then V′ is a subcategory of V. Let Top be the
category of topological spaces where the morphisms are continuous mappings.
Then Top is a subcategory of Set.

Remark 2. Note that we have HomV′(X, Y ) = HomV(X, Y ), since the 	-
linearity has nothing to do with dimensions. In general, when a subcategory
C ′ of a category C satisfies HomC ′(X, Y ) = HomC (X, Y ) for all X and Y
in C ′, C ′ is said to be a full subcategory of C .

1.4 Embedddings
Let B and C be categories. Even though B is not a subcategory of C , one

can ask whether B can be embedded in C (whose definition will be given in the
following). Let F be a covariant functor from B to C . Then for f : X → Y
in B we have FX → FY in C . Namely, for an element f of HomB(X, Y )
we obtain Ff in HomC (FX, FY ). That is we have the following map F̄ :

F̄ : HomB(X, Y ) �� HomC (FX, FY )

f � �� F̄ (f) = Ff

(4.1)

If F̄ is injective, F : B � C is said to be faithful, and if F̄ is surjective, F
is said to be full. Furthermore, F is said to be an embedding (or imbedding) if
F̄ is not only injective on morphisms, but also F is injective on objects. That
is, F : B � C is said to be an embedding if F is a faithful functor and if
FX = FY implies X = Y . Then B may be regarded as a subcategory of
C . We also say that F : B � C is fully faithful when F is full and faithful.
A functor F : B � C is said to represent C when the following condition is
satisfied: For every object X ′ of C there exists an object X in B so that there
exists an isomorphism from FX to X ′. If a fully faithful functor F : B � C
represents C then F is said to be an equivalence. Furthermore, an equivalence F
is said to be an isomorphism if F induces an injective correspondence between
the objects of B and C . The notion of an equivalence F can be characterized
by the following.

Proposition 3. A functor F : B � C is an equivalence if and only if there
exists a functor F ′ : C � B satisfying

(Eqv) F ′◦F and F ◦ F ′ are isomorphic to the identity functors 1B and 1C ,
respectively.

Proof. Let f : Z → Z ′ be a morphism in C . Since F represents C , there are

objects X and X ′ in B so that FX
i−→ Z and FX ′ j−→ Z ′ are isomorphisms in C .
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Then we have the morphism j−1 ◦f ◦ i : FX → FX ′. Define f̃ := j−1 ◦f ◦ i.
Since F is fully faithful there exists a unique morphism f̃ ′ : X → X ′ in B
satisfying F f̃ ′ = f̃ . Then define F ′f := f̃ ′. Namely, we have F ′Z = X
and F ′Z ′ = X ′. Note that F ′ becomes a functor from C to B. From the
commutative diagram

FX
≈
i

��

f̃ :=j−1◦f◦i
��

Z

f
��

FX ′ ≈
j

�� Z ′

(4.2)

in C , we get the commutative diagram in B

F ′FX
≈

F ′i
��

��

F ′Z = X

F ′f :=f̃ ′

��
F ′FX ′ ≈

F ′j
�� F ′Z ′ = X ′.

(4.3)

From the definition of F ′, i.e., F ′Z = X and (4.2), we also get

FF ′Z
≈
i

��

��

Z

f

��
FF ′Z ′ ≈

j
�� Z ′.

(4.4)

We obtain F ′ ◦ F ≈ 1B and F ◦ F ′ ≈ 1C .
Conversely, assume (Eqv). For an object Z of C we have an isomorphism

(F ◦ F ′)Z ≈−→ 1C Z = Z. Let X = F ′Z. Then FX
≈−→ Z. Therefore, F

represents C . Consider F̄ of (4.1), i.e.,

F̄ : HomB(X, X ′) → HomC (FX, FX ′).

Suppose that F̄ f = F̄ g for f, g ∈ HomB(X, X ′). We have Ff = Fg

which implies F ′Ff = F ′Fg. Since F ′ ◦ F
≈−→ 1B, f = g. Therefore

F is faithful. Let φ ∈ HomC (FX, FX ′). Since F represents C , we have

isomorphisms F (F ′FX) ≈
i

�� FX and F (F ′FX ′) ≈
j

�� FX ′ . That is,

we have the commutative diagram

FF ′FX
≈
i

��

F (F ′φ)
��

FX

φ
��

FF ′FX ′ ≈
j

�� FX ′.

(4.5)
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Then F ′φ : F ′FX → F ′FX ′, i.e., F ′φ ∈ HomB(X, X ′) satisfying

F̄ (F ′φ) = (F ◦ F ′)φ = 1C φ = φ.

Therefore, F is full.

Remark 3. When there is an equivalence F : B � C , B may be identi-
fied with C in the following sense. If there are objects X and X ′ in B hav-

ing isomorphisms FX
i−→ Z and FX ′ j−→ Z then we get the isomorphisms

F ′FX
F ′i−−→ F ′Z and F ′FX ′ F ′j−−→ F ′Z. Namely,

X
≈

F ′i
�� F ′Z X ′≈

F ′j
�� .

Considering Z ′ as isomorphic to Z we can conclude that there is a bijective
correspondence between isomorphic classes of B and C .

1.5 Representable Functors
First recall from (1.9) that HomC (·, X) is a contravariant functor from C to

Set. Let G also be a contravariant functor from C to Set. Namely, HomC (·, X)
and G are objects of Ĉ = SetC

◦
as in (2.5) and (2.6a). For G ∈ Ob(Ĉ ), if

there exists an object X in C so that HomC (·, X) is isomorphic to G in the
category Ĉ , then G is said to be a representable functor. We also say that G

and X̃ := HomC (·, X) are naturally equivalent. That is, there is a natural
transformation α : X̃ → G (i.e., α is a morphism in Ĉ ) which gives an
isomorphism for every object Y in C

αY : X̃(Y ) = HomC (Y,X) → GY. (5.1)

Such an α is said to be a natural equivalence.

1.5.1 Yoneda’s Lemma
Let F be an arbitrary contravariant functor from a category C to Set. For two

objects F and X̃ = HomC (·, X) of Ĉ = SetC
◦
, consider the set HomĈ (X̃, F )

of all morphisms in Ĉ from X̃ to F , i.e., HomĈ (X̃, F ) is the set of all the

natural transformations from X̃ to F . The Yoneda Lemma asserts that there is
an isomorphism (i.e., a bijection) between the sets HomĈ (X̃, F ) and FX . If

an element of HomĈ (X̃, F ) is written vertically as

F

X̃



(5.2)


