VOLTAGE-SENSITIVE ION CHANNELS

Voltage-Sensitive Ion Channels

Biophysics of Molecular Excitability

by

H. RICHARD LEUCHTAG

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-5524-9 (HB) ISBN 978-1-4020-5525-6 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved © 2008 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. To Alice, Clyde, Penny, Jeremy, Joshua and Ilana Leuchtag, and to the memory of my parents, Käthe (Wagner) Leuchtag and Rudolf Wilhelm Leuchtag, who with United States citizenship became Kathe and Rudolph Leuchtag Light

Contents

Preface

Ch. 1	EXPLORING EXCITABILITY	1
	1. NERVE IMPULSES AND THE BRAIN	1
	1.1. Molecular excitability	1
	1.2. Point-to-point communication	2 3
	1.3. Propagation of an impulse	3
	1.4. Sodium and potassium channels	5
	1.5. The action potential	5 5 7
	1.6. What is a voltage-sensitive ion channel?	
	2. SEAMLESS NATURE, FRAGMENTED SCIENCE	9
	2.1. Physics	9
	2.2. Chemistry	11
	2.3. Biology	14
	3. THE INTERDISCIPLINARY CHALLENGE	18
	3.1. Worlds apart	18
	3.2. Complex systems	18
	3.3. Interdisciplinary sciences bridge the gap	19
Ch. 2	INFORMATION IN THE LIVING BODY	21
	1. HOW BACTERIA SWIM TOWARD A FOOD SOURCE	21
	2. INFORMATION AND ENTROPY	24
	3. INFORMATION TRANSFER AT ORGAN LEVEL	25
	3.1. Sensory organs	25
	3.2. Effectors: Muscles, glands, electroplax	26
	3.3. Using the brain	27
	3.4. Analyzing the brain	28
	4. INFORMATION TRANSFER AT TISSUE LEVEL	29
	5. INFORMATION TRANSFER AT CELL LEVEL	30
	5.1. The cell	30
	5.2. Cells of the nervous system	31
	5.3. The neuron	31
	5.4. Crossing the synapse	34
	5.5. The "psychic" neuron	35
	5.6. Two-state model "neurons"	35
	5.7. Sensory cells	36
	5.8. Effector cells	38
	6. INFORMATION TRANSFER AT MEMBRANE LEVEL	39
	6.1. Membrane structure	39
	6.2. G proteins and second messengers	39
	7. INFORMATION TRANSFER AT MOLECULAR LEVEL	40
	7.1. Chirality	40
	7.2. Carbohydrates	42

xxiii

7.3. Lipids	42
7.4. Nucleic acids and genetic information	43
7.5. Proteins	43
8. INFORMATION FLOW AND ORDER	44
8.1. Information flow and time scales	45
8.2. The emergence of order	45
0.2. The emergence of order	75
Ch. 3 ANIMAL ELECTRICITY	47
1. DO ANIMALS PRODUCE ELECTRICITY?	47
1.1. Galvani's "animal electricity"	48
1.2. Volta's battery	48
1.3. Du Bois-Reymond's "negative variation"	49
2. THE NERVE IMPULSE	49
2. 1. Helmholtz and conduction speed	49
2.2. Pflüger evokes nerve conduction	49
2.3. Larger fibers conduct faster – but not always	50
	50 50
2.4. Refractory period and abolition of action potential 2.5. Solitary rider, solitary wave	50 50
3. BIOELECTRICITY AND REGENERATION	
	51
3.1. Regeneration and the injury current	51
3.2. Bone healing and electrical stimulation	52
3.3. Neuron healing	52
4. MEMBRANES AND ELECTRICITY	53
4.1. Bernstein's membrane theory	53
4.2. Quantitative models	53
4.3. The colloid chemical theory	54
4.4. Membrane impedance studies	54
4.5. Liquid crystals and membranes	55
5. ION CURRENTS TO ACTION POTENTIALS	56
5.1. The role of sodium	56
5.2. Isotope tracer studies	57
5.3. Hodgkin and Huxley model the action potential	57
5.4. Membrane noise	58
5.5. The patch clamp and single-channel pulses	59
6. GENETICS REVEALS CHANNEL STRUCTURE	59
6.1. Channel isolation	59
6.2. Genetic techniques	59
6.3. Modeling channel structure	60
7. HOW DOES A CHANNEL FUNCTION?	60
7.1. The hypothesis of movable gates	60
7.2. The phase-transition hypothesis	60
7.3. Electrodiffusion reconsidered	60
7.4. Ferroelectric liquid crystals as channel models	61
Ch. 4 ELECTROPHYSIOLOGY OF THE AXON	63
1. EXCITABLE CELL PREPARATIONS	63
	05

CONTENTS

	1.1. A squid giant axon experiment	64
	1.2. Node of Ranvier	65
	1.3. Molluscan neuron	66
	2. TECHNIQUES AND MEASUREMENTS	66
	2.1. Space clamp	67
	2.2. Current clamp	68
	2.3. Voltage clamp	68
	2.4. Internal perfusion	68
	3. RESPONSES TO VOLTAGE STEPS	69
	3.1. The current–voltage curves	69
	3.2. Step clamps and ramp clamps	69
	3.3. Repetitive firing	70
	3.4. The geometry of the nerve impulse	72
	4. VARYING THE ION CONCENTRATIONS	73
	4.1. The early current	73
	4.2. The delayed current	74
	4.3. Divalent ions	74
	4.4. Hydrogen ions	74
	4.5. Varying the ionic environments	75
	5. MOLECULAR TOOLS	76
	5.1. The trouble with fugu	76
	5.2. Lipid-soluble alkaloids	77
	5.3. Quaternary ammonium ions	77
	5.4. Peptide toxins	78
	6. THERMAL PROPERTIES	79
	6.1. Effect of temperature on electrical activity	79
	6.2. Effect of temperature on conduction speed	80
	6.3. Excitation threshold, temperature and accommodation	80
	6.4. Stability and thermal hysteresis	80
	6.5. Temperature effects on current–voltage characteristics	81
	6.6. Temperature pulses modify ion currents	83
	6.7. Temperature and membrane capacitance	84
	6.8. Heat generation during an impulse	84
	7. OPTICAL PROPERTIES	84
	7.1. Membrane birefringence	84
	7.2. Ultraviolet effects	85
	8. MECHANICAL PROPERTIES	85
	8.1. Membrane swelling	85
	8.2. Mechanoreception	86
5	ASPECTS OF CONDENSED MATTER	89
	1. THE LANGUAGE OF PHYSICS	89
	1.1. The Schrödinger equation	89
	1.2. The Uncertainty Principle	90

Ch.

ix

CONTENTS

1.3. Spin and the hydrogen atom	91
1.4. Identical particles—why matter exists	92
1.5. Tunneling	93
1.6. Quantum mechanics and classical mechanics	93
1.7. \widetilde{Q} uantum mechanics and ion channels	94
2. CONDENSED MATTER	95
2.1. Liquids and solids	95
2.2. Polymorphism	96
2.3. Quasicrystals	97
2.4. Phonons	97
2.5. Liquid crystals	98
3. REVIEW OF THERMODYNAMICS	99
3.1. Laws of thermodynamics	99
3.2. Characteristic functions	102
4. PHASE TRANSITIONS	103
4.1. Phase transitions in thermodynamics	103
4.2. Transitions of first order	104
4.3. Chemical potentials, metastability and phase diagrams	105
4.4. Transitions of second order	106
4.5. Qualitative aspects of phase transitions	108
5. FROM STATISTICS TO THERMODYNAMICS	108
5.1. Phase space	108
5.2. The canonical distribution	110
5.3. Open systems	110
5.4. Thermodynamics of quantum systems	111
5.5. Phase transitions in statistical mechanics	112
5.6. Structural transitions in ion channels	113
Ch. 6 IONS IN THE ELECTRIC FIELD	115
1. REVIEW OF ELECTROSTATICS	115
1.1. Forces, fields and media	115
1.2. The laws of electrostatics	117
2. MOVEMENT OF IONS IN AN ELECTRIC FIELD	119
2.1. Current	119
2.2. Ohm's law	119
2.3. Capacitance and inductance	121
2.4. Circuits and membrane models	122
3. CABLE THEORY	123
<i>3.1. The cable equations</i>	123
3.2. Application to the squid axon	125
4. THERMODYNAMICS OF DIELECTRICS	126
4.1. Electrochemical potential	126
4.2. The Nernst-Planck equation	126
4.3. Thermodynamics of electric displacement and field	127
4.4. Electrets	128

CONTENTS	xi
5. MOTIONS OF CELLS IN ELECTRIC FIELDS	129
5.1. Dielectrophoresis	129
5.2. Electrorotation	130
6. MOVEMENT OF IONS THROUGH MATTER	130
6.1. Movement of ions through liquid solutions	130
6.2. Surface effects	131
6.3. Movement of ions through solids	131
6.4. Ionic switches	132
6.5. Ionic polarons and excitons	132
7. SUPERIONIC CONDUCTION	132
7.1. Sodium-ion conductors	133
7.2. Superionic conduction in polymers and elastomers	136
7.3. Are ion channels superionic conductors?	137
Ch. 7 IONS DRIFT AND DIFFUSE	139
1. THE ELECTRODIFFUSION MODEL	139
1.1. The postulates of the model	140
1.2. A mathematical membrane	141
1.3. Boundary conditions	141
2. ONE ION SPECIES, STEADY STATE	142
2.1. The Nernst-Planck equation	142
2.2. Electrical equilibrium	144
3. THE CONSTANT FIELD APPROXIMATION	146
3.1. Linearizing the equations	147
3.2. The current-voltage relationship	148
3.3. Comparison with data	149
4. AN EXACT SOLUTION	151
4.1. One-ion steady-state electrodiffusion	151
4.2. Finite current	152
4.3. Reclaiming the dimensions	156
4.4. Electrical equilibrium	156
4.5. Applying the boundary conditions	159
4.6. Equal potassium concentrations	161
Ch. 8 MULTI-ION AND TRANSIENT ELECTRODIFFUSION	163
1. MULTIPLE SPECIES OF PERMEANT IONS	163
1.1. Ions of the same charge	163
1.2. Ions of different charges	164
1.3. The Goldman–Hodgkin–Katz equation	165
2. TIME-DEPENDENT ELECTRODIFFUSION	166
2.1. Scaling of variables	168
2.2. The Burgers equation	168
2.3. A simple case	169
3. CRITIQUE OF THE CLASSICAL MODEL	170

Ch. 9 MODELS OF MEMBRANE EXCITABILITY	173
1. THE MODEL OF HODGKIN AND HUXLEY	173
1.1. Ion-current separation and ion conductances	174
1.2. The current equation	174
1.3. The independence principle	175
1.4. Linear kinetic functions	176
1.5. Activation and inactivation	176
1.6. The partial differential equation of Hodgkin	
and Huxley	178
1.7. Closing the circle	178
2. EXTENSIONS AND INTERPRETATIONS	179
2.1. The gating current	179
2.2. Probability interpretation of the conductance functions	180
2.3. The Cole–Moore shift	180
2.4. Mathematical extensions of the Hodgkin-Huxley	
equations	182
2.5. The propagated action potential is a soliton	182
2.6. Action potential as a vortex pair	183
2.7. Catastrophe theory version of the model	183
2.8. Beyond the squid axon	185
3. EVALUATION OF THE HODGKIN-HUXLEY MODEL	186
3.1. Current separation	187
3.2. Voltage dependence of the conductances	187
<i>3.3. Time variation of the conductances</i>	189
<i>3.4. The separation of ion kinetics</i>	189
3.5. We're not out of the woods yet	190
4. THE CONCEPT OF AN ION CHANNEL	190
4.1. Pore or carrier – or what?	190
4.2. "Pore" and "channel": Shifting meanings	192
4.3. Limitations of the phenomenological approach	192
Ch. 10 ADMITTANCE TO THE SEMICIRCLE	195
1. OSCILLATIONS, NORMAL MODES AND WAVES	195
1.1. Simple pendulum	195
1.2. Normal modes	197
1.3. The wave equation	197
1.4. Fourier series	198
1.5. The Fourier transform of a vibrating string	198
2. MEMBRANE IMPEDANCE AND ADMITTANCE	199
2.1. Impedance decreases during an impulse	199
2.2. Inductive reactance	201
2.3. A simple circuit model	202
3. TIME DOMAIN AND FREQUENCY DOMAIN	203
3.1. Fourier analysis	203
<i>3.2. The complex admittance</i>	205
3.3. Constant-phase-angle capacitance	206

Contents	xiii
4. DIELECTRIC RELAXATION	207
4.1. The origin of electric polarization	207
4.2. Local fields affect permittivity	208
4.3. Dielectric relaxation and loss	209
4.4. Cole–Cole analysis	211
5. FREQUENCY-DOMAIN MEASUREMENTS	212
5.1. Linearizing the model of Hodgkin and Huxley	213
5.2. Frequency response of the axonal impedance	214
5.3. Pararesonance	216
5.4. Impedance of the Hodgkin–Huxley axon membrane	216
5.5. Generation of harmonics	217
?5.6. Data fits to squid-axon sodium system	217
5.7. Admittance under suppressed ion conduction	217
Ch. 11 WHAT'S THAT NOISE?	221
1. STOCHASTIC PROCESSES AND STATISTICAL LAWS	221
1.1. Stochastic processes	222
1.2. Stationarity and ergodicity	224
1.3. Markov processes	224
2. NOISE MEASUREMENT AND ANALYSIS TECHNIQUES	225
2.1. Application of Fourier analysis to noise problems	225
2.2. Spectral density and autocorrelation	226
2.3. White noise	227
3. EFFECTS OF NOISE ON NONLINEAR DYNAMICS	228
3.1. An aperiodic fluctuation	228
3.2. The Langevin equation	228
4. NOISE IN EXCITABLE MEMBRANES	230
4.1. A nuisance becomes a technique	230
4.2. Fluctuation phenomena in membranes	230
4.3. 1/f noise	231
4.4. Lorentzian spectra	231
4.5. Multiple Lorentzians	233
4.6. Nonstationary noise	234
4.7. Light scattering spectra	235
5. IS THE SODIUM CHANNEL A LINEAR SYSTEM?	235
5.1. Sodium-current characteristics	235
5.2. Admittance and noise	238
6. MINIMIZING MEASUREMENT AREA	239
6.1. Patch clamping	240
6.2. Elementary stochastic fluctuations in ion channels	240
Ch. 12 ION CHANNELS, PROTEINS AND TRANSITIONS	243
1. THE NICOTINIC ACETYLCHOLINE RECEPTOR	244
2. CULTURED CELLS AND LIPOSOMES	245
2.1. Sealing the pipette to the membrane	245
2.2. Reconstitution of channels in bilayers	246
2.3. Reconstitution of sodium channels	247

	3. SINGLE-CHANNEL CURRENTS	248
	3.1. Unitary potassium currents	249
	3.2. Unitary sodium currents	249
	4. MACROSCOPIC CURRENTS FROM CHANNEL	
	TRANSITIONS	249
	4.1. The two-state model	250
	4.2. Ohmic one-ion channels	250
	4.3. Time dependence	252
	4.4. Critique of the methodology	253
	5. PROTEIN STRUCTURES	253
	5.1. Amino acids: Building blocks of proteins	253
	5.2. Primary structure	255
	5.3. Levels of structural organization	256
	5.4. The alpha helix	257
	5.5. The beta sheet	259
	5.6. Domains and loop regions	259
	5.7. Structure classifications and representations	260
	5.8. Alpha-domain structures	260
	5.9. Alpha/beta structures	262
	5.10. Antiparallel beta structures: jelly rolls and barrels	263
	6. METALLOPROTEINS	263
	6.1. Metalloproteins in physiology and toxicology	264
	6.2. Voltage-sensitive ion channels as metalloproteins	265
	7. MEMBRANE PROTEINS	265
	7.1. Membrane-spanning protein molecules	265
	7.2. Crystallization of membrane proteins	266
	7.2. Biosynthesis of membrane proteins	267
	8. TRANSITIONS IN PROTEINS	267
	8.1. Vibrations and conformational transitions	268
	8.2. Allosteric transitions in myoglobin and hemoglobin	268
	8.3. Allostery in ion channels	268
Ch. 13	DIVERSITY AND STRUCTURES OF ION CHANNELS	271
	1. THE ROLE OF STRUCTURE	271
	2. FAMILIES OF ION CHANNELS	272
	2.1 Molecular biology	272
	2.2. Evolution of voltage-sensitive ion channels	272
	3. MOLECULAR BIOLOGY PROBES CHANNEL STRUCTURE	273
	3.1. Genetic engineering of ion channels	273
	3.2. Obtaining the primary structure	273
	3.3. Hydropathy analysis	273
	3.4. Site-directed mutagenesis	274
	4. CLASSIFICATION OF ION CHANNELS	275
	4.1. Nomenclature	275
	4.2. Classification criteria	275
	4.3. Toxins and pharmacology	276
	4.4. Voltage-sensitive ion channels and disease	276

CONTENTS	XV
5. POTASSIUM CHANNELS: A LARGE FAMILY	277
5.1. Shaker and related mutations of Drosophila	277
5.2. Diversity of potassium channels	277
5.3. Three groups of K channels	279
5.4. Voltage-sensitive potassium channels	279
5.5. Auxiliary subunits	282
5.6. Inward rectifiers	282
5.7. Potassium channels and disease	284
6. VOLTAGE-SENSITIVE SODIUM CHANNELS: FAST ON	
THE TRIGGER	284
6.1. Neurotoxins of VLG Na channels	285
6.2. Types of VLG Na channels	285
6.3. Positively charged membrane-spanning segments	285
6.4. Proton access to channel residues	287
6.5. Mutations in sodium channels	288
7. CALCIUM CHANNELS: LONG-LASTING CURRENTS	288
7.1. Function of VLG Ca channels	289
7.2. Structure of VLG Ca channels	290
7.3. Types of VLG Ca channels	291
7.4. Calcium-channel diseases	291
8. H ⁺ -GATED CATION CHANNELS: THE ACID TEST	292
9. CHLORIDE CHANNELS: ACCENTUATE THE NEGATIVE	293
9.1. Structure and function of chloride channels	293
9.2. Chloride-channel diseases	294
10. HYPERPOLARIZATION-ACTIVATED CHANNELS:	204
IT'S TIME	294
11. CYCLIC NUCLEOTIDE GATED CHANNELS	295
12. MITOCHONDRIAL CHANNELS 13. FUNGAL ION CHANNELS–ALAMETHICIN	295 297
14. THE STRUCTURE OF A BACTERIAL	297
POTASSIUM CHANNEL	298
Ch. 14 MICROSCOPIC MODELS OF CHANNEL FUNCTION	301
1. GATED STRUCTURAL PORE MODELS	301
1.1. Structural gated pores	301
1.2. Selectivity filter and selectivity sequences	304
1.3. Independence of ion fluxes	304
1.4. Gates	305
1.5. A "paradox" of ion channels	306
1.6. Bacterial model pores and porins	306
1.7. Water through the voltage-sensitive ion channel?	307
1.8. Molecular dynamics simulations	307
2. MODELS OF ACTIVATION AND INACTIVATION	308
2.1. Armstrong model	309
2.2. Barrier-and-well models of the channel	309
2.3. The inactivation gate	311
2.4. Beyond the gated pore	312

	3. ORGANOMETALLIC CHEMISTRY	313
	3.1. Types of intermolecular interactions	313
	3.2. Organometallic receptors	314
		316
		317
		318
	5.1. The theories of Onsager and Holland	318
		320
	0	321
		322
	1 0 0	322
	5.6. Aggregation models	322
	5.7. Condensed state models	323
		323
		324
	1 2	324
		325
	<i>33</i> 0	325
		326
	1: OKDER I KOM DISOKDER:	520
Ch. 15	ORDER FROM DISORDER	329
011110		329
		330
	1.2. Power laws and scaling in physical statistics	331
		332
		333
	0 1	334
		334
	2.2. Scaling and fractal dimension	334
	2.3. Fractals in time: 1/f noise	335
		336
	1 1	337
		338
		338
	3.2. The perfect spin gas	339
	3.3. Thermodynamic functions of a spin gas	341
	3.4. Spontaneous order in a real spin gas	342
	4. FLUCTUATIONS, STABILITY, MACROSCOPIC TRANSITIONS	
	<i>4.1. Fluctuations and instabilities</i>	343
	4.2. Convective and electrohydrodynamic instabilities	344
	4.3. Spin waves and quasiparticles	345
	4.4. The phonon gas	346
	4.5. The spontaneous ordering of matter	347
	5. PHASE TRANSITIONS	347
	5.1. Order variables and parameters	348
	5.2. Mean field theories	349
	5.3. Critical slowing down and vortex unbinding	350
	5.5. Critical slowing down and vories anothering	550

CONTENTS	xvii
6. DISSIPATIVE STRUCTURES	351
6.1. Thermodynamics of irreversible processes	351
6.2. Evolution of order	351
6.3. Synergetics	352
6.4. A model of membrane excitability	352
Ch. 16 POLAR PHASES	355
1. ORIENTATIONAL POLAR STATES IN CRYSTALS	355
1.1. Piezoelectricity	356
1.2. Pyroelectricity	356
1.3. The strange behavior of Rochelle salt	357
1.4. Transition temperature and Curie-Weiss law	357
1.5. Hysteresis	358
1.6. Ferroic effects	358
2. THERMODYNAMICS OF FERROELECTRICS	359
2.1. A nonlinear dielectric equation of state	360
2.2. Second order transitions	361
2.3. Field and pressure effects	362
2.4. Chirality and self-bias	363
2.5. Admittance and noise in ferroelectrics	364
3. STRUCTURAL PHASE TRANSITIONS IN FERROELECTRICS	365
3.1. Order-disorder and displacive transitions	365
3.2. Spontaneous electrical pulses	366
3.3. Soft lattice modes	366
3.4. Hydrogen-bonded ferroelectrics	367
4. FERROELECTRIC PHASE TRANSITIONS AND CONDUCTION	369
4.1. Tris-sarcosine calcium chloride	369
4.2. Betaine calcium chloride dihydrate	369
4.3. Dielectric relaxation in structural transitions	370
4.4. Cole-Cole dispersion; critical slowing down	371
4.5. From ferroelectric order to superionic conduction	371
4.6. Ferroelectric semiconductors	373
5. PIEZO- AND PYROELECTRICITY IN BIOLOGICAL TISSUES	374
5.1. Pyroelectric properties of biological tissues	374
5.2. Piezoelectricity in biological materials	375
6. PROPOSED FERROELECTRIC CHANNEL UNIT	
IN MEMBRANES	375
6.1. Early ferroelectric proposals for membrane excitability	375
6.2. The ferroelectric-superionic transition model	378
6.3. Field-induced birefringence in axonal membranes	380
6.4. Membrane capacitance versus temperature	380
6.5. Surface charge	380
6.6. Field effect and the function of the resting potential	381
6.7. Phase pinning and the action of tetrodotoxin	382
7. THE CHANNEL IS NOT CRYSTALLINE	383

Ch. 17	DELICATE PHASES AND THEIR TRANSITIONS	387
	1. MESOPHASES: PHASES BETWEEN LIQUID AND CRYSTAL	387
	1.1. Nematics and smectics	387
	1.2. Calamitic and discotic liquid crystals	388
	1.3. Helical structures: Cholesterics and blue phases	388
	1.4. Columnar liquid crystals	391
	2. STATES AND PHASE TRANSITIONS OF LIQUID CRYSTALS	392
	2.1. Correlation functions in liquid crystals	393
	2.2. Symmetry, molecular orientation and order parameter	394
	2.3. Free energy of the inhomogeneous	
	orientational structure	394
	2.4. Modulated orientational structure	395
	2.5. Free energy of a smectic liquid crystal of type A	396
	2.6. Stability of the smectic phase	397
	2.7. Phase transitions between smectic forms	398
	2.8. Inversions in chiral liquid crystals	399
	3. ORDER PARAMETERS UNDER EQUILIBRIUM CONDITIONS	399
	3.1. Biaxial smectics	399
	3.2. The role of fluctuations	400
	3.3. Effect of impurities	401
	4. FIELD-INDUCED PHASE TRANSFORMATIONS	401
	4.1. Dielectric permittivity of liquid crystals	402
	4.2. Unwinding the helix	402
	4.3. The Fredericks transition	403
	5. POLARIZED STATES IN LIQUID CRYSTALS	404
	5.1. Flexoelectric effects in nematics and type-A smectics	405
	5.2. Flexoelectric deformations	405
	5.3. The flexoelectric effect in cholesterics	406
	5.4. Polarization and piezoelectric effects in chiral smectics	407
	5.5. The electroclinic effect	408
	5.6. The electrochiral effect	408
	6. THE FERROELECTRIC STATE OF A CHIRAL SMECTIC	408
	6.1. Behavior of a liquid ferroelectric in an external field	409
	6.2. Polarization and orientational perturbation	411
	6.3. Surface-stabilized ferroelectric liquid crystals	413
Ch. 18	PROPAGATION AND PERCOLATION IN A CHANNEL	415
	1. SOLITONS IN LIQUID CRYSTALS	415
	1.1. Water waves to nerve impulses	416
	1.2. Korteweg-deVries equation	417
	1.3. Nonlinear Schrödinger equation	418
	1.4. The sine-Gordon equation	419
	15 Three dimensional solitons	420

1.5. Three-dimensional solitons 420

Contents	xix
1.6. Localized instabilities in nematic liquid crystals	421
1.7. Electric-field-induced solitons	422
1.8. Solitons in smectic liquid crystals	422
2. SELF-ORGANIZED WAVES	422
2.1. The broken symmetries of life	422
2.2. Autowaves	424
2.3. Catastrophe theory model based on a	
ferroelectric channe	425
2.4. The action potential as a polarization soliton	427
3. BILAYER AND CHANNELS FORM A HOST-GUEST PHASE	429
3.1. Protein distribution by molecular shape	429
3.2. Flexoelectric responses in hair cells	430
4. PERCOLATION THEORY	430
4.1. Cutting bonds	431
4.2. Site percolation and bond percolation	433
4.3. Two conductors	434
4.4. Directed percolation	435
4.5. Percolation in ion channels	436
5. MOVEMENT OF IONS THROUGH LIQUID CRYSTALS	437
5.1. Chiral smectic C elastomers	437
5.2. Metallomesogens	438
5.3. Ionomers	439
5.4. Protons, H bonds and cooperative phenomena	439
Ch. 19 SCREWS AND HELICES	443
1. THE SCREW-HELICAL GATING HYPOTHESIS	443
2. ORDER AND ION CHANNELS	445
2.1. Threshold responses in biological membranes	445
2.2. Mean field theories of excitable membranes	446
2.3. Constant phase capacitance obeys a power law	447
2.4. The open channel is an open system	447
2.5. Self-similarity in currents through ion channels	447
3. FERROELECTRIC BEHAVIOR IN MODEL SYSTEMS	448
3.1. Ferroelectricity in Langmuir-Blodgett films	448
3.2. Observations in bacteriorhodopsin	449
3.3. Ferroelectricity in microtubules	450
4. SIZING UP THE CHANNEL MOLECULE	451
4.1. The size problem in crystalline ferroelectrics	452
4.2. Size is a parameter	452
5. THE DIPOLAR ALPHA HELIX	453
5.1. Structure of the α helix	453
5.2. Helix–coil transition	454
5.3. Dipole moment of the α helix	454
5.4. α -Helix solitons in protein	454
5.5. Temperature effects in Davydov solitons	457

	6. ALPHA HELICES IN VOLTAGE-SENSITIVE ION CHANNELS	459
	6.1. The α -helical framework of ion channels	459
	6.2. Channel gating as a transition in an α helix	460
	6.3. Water in the channel—again?	461
Ch. 20	VOLTAGE-INDUCED GATING OF ION CHANNELS	465
	1. ION CHANNEL: A FERROELECTRIC LIQUID CRYSTAL?	465
	1.1. Electroelastic model of channel gating	465
	1.2. Cole-Cole curves in a ferroelectric liquid crystal	466
	1.3 A voltage-sensitive transition in a liquid crystal	467
	2. ELECTRIC CONDUCTION ALONG THE ALPHA HELIX	468
	2.1. Electron transfer by solitons	468
	2.2. Proton conduction in hydrogen-bonded networks	469
	2.3. Dynamics of the alpha helix	469
	3. ION EXCHANGE MODEL OF CONDUCTION	470
	3.1. Expansion of H bonds and ion replacement	471
	3.2. Can sodium ions travel across an alpha helix?	471
	3.3. Relay mechanism	472
	3.4. Metal ions can replace protons in H bonds	
	of ion channels	475
	4. GATELESS GATING	477
	4.1. How does a depolarization change an ion conductance?	477
	4.2. Enzymatic dehydration of ions	477
	4.3. Hopping conduction	478
	5. INACTIVATION AND RESTORATION OF EXCITABILITY	478
	5.1. Inactivation as a surface interaction	479
	5.2. Restoration of excitability	480
Ch. 21	BRANCHING OUT	483
	1. FERROELECTRIC LIQUID CRYSTALS WITH AMINO ACIDS	484
	1.1. Amino acids with branched sidechains	484
	1.2. Relaxation of linear electroclinic coupling	486
	1.3. Electrical switching near the SmA*–SmC*	10.0
	phase transition	486
	1.4. Two-dimensional smeetic C* films	487
	2. FORCES BETWEEN CHARGED RESIDUES WIDEN H BONDS	488
	2.1. Electrostatics and the stability of S4 segments	489
	2.2. Changes in bond length and ion percolation	491
	2.3. Replacement of charged residues with neutrals	492
	3. MICROSCOPIC CHANNEL FUNCTION	492
	3.1. Tilted segments in voltage-sensitive channels	492 494
	3.2. Segment tilt and channel activation	
	<i>3.3. Chirality and bend</i> 4. CRITICAL ROLES OF PROLINE AND BRANCHED	495
	4. CRITICAL ROLES OF PROLINE AND BRANCHED SIDECHAINS	496
		496
	4.1. The role of proline	490

CONTENTS	xxi
4.2. The role of branched nonpolar amino acids	497
4.3. Substitution leads to loss of voltage sensitivity	498
4.4. Whole channel experiments	500
5. NEW DATA NEW MODELS	
5.1. Amino acids dissociate from the helix	501
5.2. A twisted pathway in a resting channel	503
5.3. A prokaryotic voltage-sensitive sodium channel	503
5.4. Interactions with bilayer charges	503
6. TOWARD A THEORY OF VOLTAGE-SENSITIVE ION	
CHANNELS	504
6.1. The hierarchy of excitability	505
6.2. Block polymers	506
6.3. Coupling the S4 segments to the electric field	506
6.4. A new picture is emerging	506

INDEX

509

PREFACE

The goal of this book is to explore the complexity of a microscopic bit of matter that exists in a myriad of copies within our bodies, the voltage-sensitive ion channel. We seek to investigate the way in which these macromolecules make it possible for the long fibers of our nerve and muscle cells to conduct impulses. These integral components of cell membranes are marvels of nature's evolutionary adaptation. To understand them we must probe the boundaries of physics and chemistry.

Since function is intimately related to structure, we examine the molecular structure of channels, focusing on physical principles that govern all matter. With the application of genetic methods, our knowledge of ion channels has broadened and deepened. In the hope that research can help ameliorate suffering, we discuss the diseases that arise from channel malfunctions due to genetic mutations.

This book is intended for students and scientists who are willing to travel into uncharted waters of an interdisciplinary science. We approach the subject of voltagesensitive ion channels from various points of view. This book seeks to give voice to the viewpoints of the physical and the biological scientist, and to bridge gaps in terminology and background. Readers may find this book to have both elementary and advanced aspects: For the reader trained in the biological sciences, it reviews background in physics and chemistry; for the reader trained in the physical sciences, it reviews background in physiology and biochemistry. Beyond the introductory chapters, we follow up concepts that may be as new and challenging to you, the reader, as at first they were to me.

Ten years or so ago at a Biophysical Society meeting I was talking to a fellow channel scientist, one considerably younger than I. I happened to mention that, in my opinion, voltage-sensitive ion channels will eventually have to be investigated by quantum mechanical methods. "It'll take a hundred years before that happens," was his response before dashing off. This book is, in a sense, directed to that scientist. He and I are older now, and while I have learned that many things take longer than we expect, I would like him to consider that some things may take less long. While his estimate may well be right for a completely worked out solution to the problem of molecular excitability, there is no better time to begin working toward that goal than now.

This book refers to results condensed-state physicists have obtained in materials that exhibit structural and behavioral properties similar to those of membranes containing voltage-sensitive ion channels. I hope that this book, by bringing together molecular excitability and condensed state physics, will confirm that biology and physics are parts of the same world.

For this work I am indebted to many people. At UCLA, my professors Robert Finkelstein, David Saxon, Marcel Verzeano and Jean Bath stand out. James Swihart, my graduate adviser at the Indiana University Physics Department, taught me to sail the choppy seas of research; while in Europe, he discussed my thesis with Alan Hodgkin. Other influential professors at Indiana included Alfred Strickholm, Ludvik Bass (then a visiting professor from the University of Queensland, Australia) and

PREFACE

Walter J. Moore. Helpful during my postdoctoral work at the New York University Physics Department were Morris Shamos, Robert Rinaldi, Abraham Liboff and Charles Swenberg, as well as Rodolfo Llinas and Charles Nicholson at the New York University Medical Center. By convincing me that classical electrodiffusion is inadequate as a mathematical model of excitable membrane currents, Fred Dodge and James Cooley prodded me into looking for the reason for that inadequacy.

Harvey Fishman was my mentor and collaborator at the University of Texas Medical Branch in Galveston and the Marine Biological Laboratory at Woods Hole; he remains my friend. At Woods Hole I met and was inspired by Kenneth S. "Casey" Cole. At Texas Southern University, Floyd Banks, Sunday Fadulu, Debabrata Ghosh, Oscar Criner and Mahmoud Saleh were research collaborators. Discussions with Fred Cummings, Rita Guttman, Lee Moore, Tobias "Toby" Schwartz, Gabor Szabo, David Landowne, Malcolm Brodwick, Susan Hamilton, Arthur "Buzz" Brown, Richard "Spike" Horn, Tony Lacerda, Sidney Lang, Georg Zundel and others helped keep me focused.

Donald Chang was instrumental in turning my focus from the membrane to the channel. Ichiji Tasaki has been a friend and colleague. They, together with William J. Adelman Jr., collaborated with me in organizing a conference and editing a book on structure and function in excitable cells, a precursor to this volume.

Stewart Kurtz, Robert Newnham and other members of the Materials Research Laboratory of Pennsylvania State University provided valuable insights into ferroelectricity. I was fortunate in meeting Vladimir Fridkin, as our discussions have been fruitful. Vladimir Bystrov, my collaborator and friend, has applied his knowledge of physics and his boundless energy to research, writing, translating and organizing conferences. Hervé Duclohier invited me to his lab to put predictions of my channel model to an experimental test with his collaborators. Said Bendahhou and his colleagues extended the test from parts of channels to whole channels. Michael Green, a friend and colleague, and Fishman have read parts of this book and provided valuable criticism; any remaining errors are of course my own.

I thank the many scientists on whose work I have depended, both those I have cited and—with sincere apologies—those I have not. My special gratitude goes to the authors whose illustrations provide figures in this volume, as well as to the permissions staffs of publishing houses and the Copyright Clearance Center. Jane Richardson kindly provided me with an updated version of a figure. The librarians who supplied me with research materials, particularly at the Butt–Holdsworth Memorial Library in Kerrville, Texas, deserve special mention. I appreciate the skill, patience and thoroughness of Springer editors Peter Butler, Tanja van Gaans and André Tournois, and typesetters Bhawna Narang and Nidhi Waddon. My wife and intellectual companion, Alice Leuchtag, has been a constant source of support and encouragement throughout the writing of this book.

It is my hope that scientists will maintain an awareness of the outcomes of their research, applying science only to the building of a more just and peaceful world, in harmony with our planet.

EXPLORING EXCITABILITY

Voltage-sensitive ion channels are macromolecules that act as electrical components in the membranes of living organisms. While we know that these molecules carry out important physiological functions in many different types of cells, scientists first became aware of them in the study of the impulses that carry information along nerve and muscle fibers.

1. NERVE IMPULSES AND THE BRAIN

Our species, *Homo sapiens*, is unique among animals in its abilities to manipulate symbols, having developed languages and conceptualized space, time, matter, life, ethics and our place in the universe. These abilities are localized in the brain, about 1.4 kilograms of pink-gray organ. The complexity of the brain extends from macroscopic to microscopic—from its highly convoluted surface, through a labyrinth of lobes, tracts, nuclei and other anatomic structures, through a dense tissue of interconnected cells, through a rich mosaic of membranes, to the large molecules that make up those membranes and the membrane-spanning helical strands within them.

It is remarkable that, despite the vast differences in human behavior from even that of our closest primate relatives, the molecular structures in our brains differ only in minor details from those of other mammals. Even more remarkable is the fact that such seemingly primitive forms as bacteria possess complex molecules that are shedding light on the details of related molecules in our brains.

1.1. Molecular excitability

The human body, like the bodies of other living organisms, is a tumult of electrical activity. Just as an electrocardiogram shows us that the heart is a powerful generator of electric currents emanating from the coordinated action of its nerve and muscle cells, so an electroencephalogram demonstrates that the brain likewise generates electricity. The cells of the heart, brain and other organs produce electric currents in the form of transient ion flows across the membranes that cover them. The membranes are mosaic sheets of lipid and protein molecules. While the lipids form effective electrical

insulators, proteins of a particular class are capable of dispatching pulses of rapid ion conduction. These switchable protein macromolecules are called *ion channels*.¹

Ion channels of one type, *ligand-gated ion channels*, recognize and react to specific molecules in their environment. When these ligand molecules attach, the ion channel changes its conformation and starts (or stops) conducting ions. Examples of ligand-gated ion channels include receptors for tastes and odors, and the macromolecules that receive elementary messages from other cells in the form of chemical messenger molecules. Among these we find hormones, such as thyroxine and insulin, and neurotransmitters, such as dopamine and acetylcholine.

Ion channels of another type switch their conductivity in response to a change of the voltage across the membrane. These channels make it possible for impulses to travel along nerve and muscle fibers; it is to these *voltage-sensitive ion channels* that this book is devoted. Hybrid channels exhibit both voltage and ligand sensitivity.

The problem of the way ion channels respond to changes in membrane voltage—the problem of *molecular excitability*—has not been solved, although much progress has been made in this direction. This book will report on the background, history and ongoing efforts being made toward a solution of this problem. We will approach the problem from different directions, concerning ourselves not only with recent results, but also with earlier data and concepts.

1.2. Point-to-point communication

To make large, multicellular organisms, evolution has had to solve the important problem of communication within the body. For stationary organisms such as plants, that problem was essentially solved by sending signal molecules, hormones, in the fluids that move up and down the body. Hormones also play an important part in communication within animals, but the amount and speed of the information that can be sent by this endocrine system is limited in specificity by the number of different hormones that can be synthesized and recognized, and in speed by the circulatory system that transports them. To generate a system of communication capable of controlling the muscles of the body, producing visual images and other sophisticated tasks in fast-moving organisms, the "blind watchmaker," evolution, had to do better.² A rapid point-to-point communication system was required.

The solution, which appeared early during the evolution of such invertebrates as jellyfish, was for certain specialized cells to grow fibers of great length and to send waves of electrical and chemical energy along them. These *nerve impulses* are complex examples of solitary waves. They travel along a vast network of nerve fibers, the nervous system. Data about the external environment and the status of the body are fed into this point-to-point communications network from sense receptors. In vertebrates, the sense data are processed into responses and memories in the central nervous system, which consists of the brain and the spinal cord. Their outputs signal muscles to contract by way of *neuromuscular junctions*, and stimulate the endocrine system by activating glands.

Nerve impulses are wonderful and mysterious. Every perceived sound, sight, smell and taste reaches our brains, and our consciousness, by nerve impulses. Every muscular movement, whether an eyeblink, a uterine contraction or a heartbeat, is controlled by nerve impulses. Even the release of chemical messengers such as adrenaline or testosterone is stimulated by nerve impulses.

The nerve impulse is an integral part of what we mean by *cellular excitability*, the ability of living cells to respond to their environment. Nerve impulses are waves that move along *axons*, the long tubular fibers of neurons. One convenient way to study them is to record their electrical signatures, called *action potentials*. Action potentials can also be recorded from muscle, gland and other cells. Vast numbers of experiments on a great variety of animal and plant cells have been carried out by biological scientists to study the electrical responses of excitable membranes; see Figure 1.1.³ It is only by information from such experiments that our ideas regarding the underlying basis of excitability can be tested.

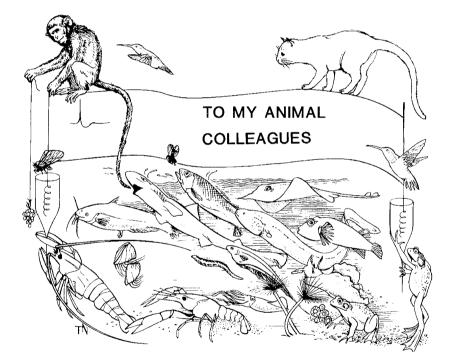


Figure 1.1. Dedication of a book on voltage-sensitive ion channels by Susumu Hagiwara. From Hagiwara, 1983.

1.3. Propagation of an impulse

The question *What is the scientific basis of excitability?* has intrigued scientists for centuries. Isaac Newton evidently had a strong interest in this question as he posed these two Queries in his book *Opticks*⁴:

Qu. 23. Is not Vision perform'd chiefly by the Vibrations of [the Aether], excited in the bottom of the Eye by the Rays of Light, and propagated through the solid, pellucid and uniform Capillamenta of the optick Nerves into the place of Sensation? And is not Hearing perform'd by the Vibrations either of this or some other Medium, excited in the auditory Nerves by the Tremors of the Air, and propagated by the solid, pellucid and uniform Capillamenta of those Nerves into the place of Sensation? And so of the other Senses.

Qu. 24. Is not Animal Motion perform'd by the Vibrations of this Medium, excited in the Brain by the power of the Will, and propagated from thence through the solid, pellucid and uniform Capillamenta of the Nerves into the Muscles, for contracting and dilating them? ...

Much has been learned since Newton's time (including the facts that the ether doesn't exist and that nerve impulses can make muscles contract but not dilate), yet the core of the question of excitability remains unresolved; a fundamental understanding of the molecular basis of the action potential still eludes us.

The neuron's long nerve fiber, the axon, is a long cylinder, which in some neurons of vertebrates has a fatty covering of *myelin* over it. The myelin sheath speeds up the action potential. For simplicity let us begin by considering an unmyelinated axon. The axon is bounded by a membrane called the *axolemma*, and it contains a watery, fibrous gel called the *axoplasm*. The axon is bathed in a body fluid that is essentially blood plasma, an aqueous solution rich in sodium ions, like seawater. The axoplasm has a much lower concentration of sodium ions, but a much higher concentration of potassium ions than the exterior solution. The anions, cations and neutral molecules present in the two solutions are distributed so as to make the solutions electrically neutral and at the same osmotic pressure. The sodium and potassium concentration differences represent two independent sources of energy.

A voltage measurement can tell us that a healthy axon, ready for a nerve impulse, is electrically charged. As a result of surface charges on the membrane, the axoplasm is negative relative to the external solution. The internal potential relative to the external solution in the inactive cell is called the *resting potential*. In a typical nerve axon, the potential of the axoplasm relative to the external medium (which serves as ground potential) is about -70 mV.

Sending a message requires a source of energy. Supplying energy only at the transmitting point would be inadequate, because the message would then diminish and be lost in the background noise. Energy sources therefore must be distributed all along the communication line. In this way, as in a line of carefully placed upright dominoes, there is no limit to the length of the path. However, a line of dominoes can send only one message—until energy is provided to set the dominoes up again. Thus for ongoing communication two sources of energy are needed: one to transmit the message (an impulse sufficient to knock the dominoes down) and another to restore the metastable order of the system (work to set them up again).

Such a strategy is used in the body to propagate nerve and muscle impulses. The nerve or muscle fiber is maintained in a high-energy state far from thermal equilibrium, known as the *resting* state. This term is a misnomer because the "resting" membrane is highly charged by a strong electric field. The resting voltage across a nerve membrane is usually about 70 mV, with the inside negative. Combining this with

the membrane thickness L of about 5 nm (1 nm = 10^{-9} m = 10 Å), we see that the average resting electric field, E = V/L, is of the order of 10^7 V/m, a very high field. So the "rest" of a resting membrane is a tense one indeed!

In this state, only a small stimulus is needed to initiate a wave in which the fiber rapidly falls to a state of lower energy. Part of the energy made available in this process must be passed along to a neighboring section to carry the wave on. This is the *fast system*, often called the *sodium system* for the current of sodium often ions involved in it. After the impulse has passed, the high-energy resting state—perhaps better called the *excitable state*—is restored to ready the system for the next impulse. This is accomplished by the *slow* or *delayed system*, often called the *potassium system*.

1.4. Sodium and potassium channels

The high concentration of sodium ions on the outside relative to that inside the cell would tend to drive them in. In addition, their positive charge attracts them toward the negative interior of the axon. For these two reasons, the external sodium ions are at a high *electrochemical potential energy* relative to the axoplasm, which would drive them across the membrane through any available pathway. Macromolecules called *sodium channels* within the axonal membrane provide such pathways under certain conditions. When these conditions are met, the channels are said to be *open*; otherwise, they are *closed*. The terms "open" and "closed" are convenient labels but, as we shall see in the following chapters, should not be taken too literally.

The voltage-sensitive sodium channels are pathways for sodium ions only when the membrane is *partially depolarized*. It takes only a rather modest depolarization (lowering of the absolute value of the voltage from resting) to reach the threshold at which the probability becomes high for the sodium channel to remodel itself into a different configuration, in which it becomes a selective ion conductor. Not all the sodium channels in an axon open to allow sodium ions to enter the axoplasm, however, and within a brief period of about 0.7 s most of them close again, even while the depolarization is maintained. Now the sodium system is said to be *inactivated*.

Restoring the excitable state—setting the dominoes upright again—is the job of the *potassium channels*. Like the sodium channels, these are glycoprotein molecules embedded in the fatty membrane. The probability that the axonal potassium channels will open increases upon depolarization, but only after a brief delay.

We emphasize an important point: The opening and closing of voltagesensitive ion channels is not rigidly controlled by the membrane voltage. These are *stochastic* events, so that only their *probability* is voltage-dependent, as we will explore in Chapter 11.

1.5. The action potential

Now we can begin to see how a nerve impulse travels: Suppose a group of sodium channels in a region of an axon were to open. Then external sodium ions there would quickly enter the axon, pushed by the concentration difference and pulled by the

electrostatic force. As they carry their positive charges into the axoplasm, they drive the internal voltage toward zero and beyond, to positivity. As this *depolarization* spreads out within a local region surrounding the group of channels, neighboring Na channels sense it, respond and stochastically open, carrying the action forward. Like the line of dominoes, the array of sodium channels exists in a metastable situation; its destabilization spreads by local interactions. Thus the signal is carried from channel to channel and down the axon to its terminal. Because of inactivation, sodium channels close after a brief opening.

After a delay the potassium ions flow outward, driven by their electrochemical potential difference. Because the K^+ concentration is higher inside the cell, this current is oppositely directed to that of the sodium ions. The outward current restores the resting potential difference. It will take a little longer for that patch of axon to become excitable again; this *refractory period* is due to inactivation. The voltage-sensitive channels are restored to their excitable configurations by a shift of their molecular configurations, and the axon is ready to conduct another impulse.

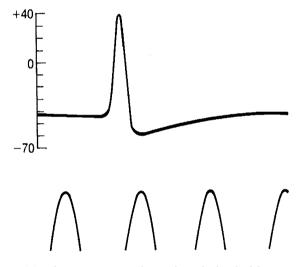


Figure 1.2. The action potential rises from the level of the resting potential to a positive peak, then drops at a slower rate to the resting potential. It may "undershoot" the resting level and approach it from below. The time marker, 500 Hz, shows that the action potential is complete in about 2 ms. This figure, published by Hodgkin and Huxley in 1939, is one of the first pictures of a complete action potential. From Smith, 1996. Reprinted by permission from MacMillan Publishers Ltd: Nature 144:710-711 copyright 1939.

An action potential, then, is a *traveling electric wave* normally initiated by a threshold depolarization, a sufficiently large lessening of the resting potential. (Alternately, it may be initiated by heating or injuring the axon or muscle fiber.) The entire action potential at a given point is completed in two to three milliseconds; it

propagates along the axon, which may be as short as a millimeter or as long, for example, as a giraffe's leg. Figure 1.2 shows the time course of an action potential.⁵

The action potential is not a localized phenomenon. As the inward current flows, the ions spread in both directions, depolarizing adjacent regions. This activates neighboring sodium channels, moving the impulse ahead. If the depolarization has been applied, experimentally, to an excitable region of an excised axon, the action potential may start off in either direction, depending on electrode placement. However, once the impulse has started, it will only continue in the forward direction, since the sodium channels in the backward direction are inactivated. In the living organism the anatomy of the cell ensures that the impulse travels in only one direction, from cell body to axon terminal.

We have seen that a useful way to look at a nerve axon is that it is a system of metastable units extended along a line, like a row of dominoes. The only thing that keeps the sodium ions from flowing in and the potassium ions from flowing out until electrical and diffusional equilibrium is attained is the impermeability of the membrane. Any breach in that impermeability will initiate an ion current. Evolution has found a way to harness that metastability by breaking the membrane's impermeability with two separate sets of molecules, permeable to different ions, thereby creating an efficient and adaptable system of information transfer. One type of ion channel is necessary to permit the signaling current to flow, and another to carry an opposing current to restore the membrane to its excitable condition. In many nerve and muscle membranes, the sodium channel plays the first, and the potassium channel the second role. This is not always the case; for example, calcium channels take the place of sodium channels at the axon terminal; the calcium ions they import into the cell trigger transmission of the signal across the synapse.

Necessary as well is the energy-requiring job of maintaining the different ion concentrations inside and outside the cell; this job is carried out by metabolically driven membrane molecules called *ion pumps*.

This brief (and incomplete) description shows us in general terms how an action potential works and what a voltage-sensitive ion channel does. What is missing from this simple picture is an understanding of the way the ion channels themselves work. That is the riddle of molecular excitability. Here begins the trail that we will seek to follow in this book.

1.6. What is a voltage-sensitive ion channel?

The electric currents that are measured in experiments on axons are due to the movement of positive ions across the axolemma. The major part of the membrane area is impermeable to ions; it is occupied by a double layer of lipid molecules. Lipids are amphiphilic molecules, arranged with their polar, hydrophilic heads facing outward to the aqueous phases. Because the inner regions of the membranes are composed of the hydrophobic tails, ions lack the energy to enter, much less traverse them. It is by way of the ion channels, glycoprotein molecules that extend through the lipid *bilayer*, that ions may, under certain conditions, pass. The relationship between the bilayer and the protein molecules intrinsically embedded within it has been explored by the

freeze–fracture technique; see Figure 1.3.⁶ The carbohydrate chains of the glycoproteins are seen extending outward into the extracellular phase.

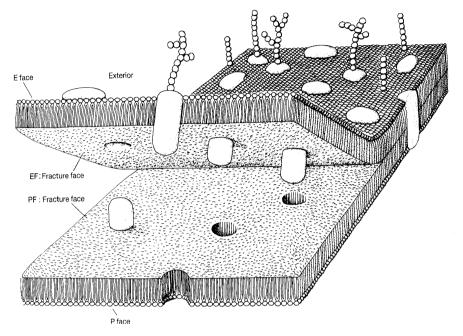


Figure 1.3. Schematic sketch of a cell membrane, showing the relation of intrinsic protein molecules to the lipid bilayer. From C. U. M. Smith, 1996, after B. Safir, 1975.

Among the various types of membrane proteins we shall focus on the ones directly involved in excitability. We have already mentioned the sodium channel and the calcium channel, rapidly switching conductors of their respective ions, and the slower potassium channel. These glycoprotein molecules are called *voltage-sensitive* (or voltage-dependent)⁷ ion channels, because it is the voltage across the membrane that controls their ion conductance. Because the ion concentrations inside the axon are different from those outside, the concentration differences act, along with the potential difference, to move the ions. The voltage plays two roles: Its decrease impels a change in the conformation of the molecules in their ionic environment, and it helps to drive the ions across.

In later chapters of this book we will review how these channels behave in various circumstances, that is, their *function*, and how they are put together, their *structure*. We will seek to answer the questions:

- How do the ions pass so rapidly through the voltage-sensitive ion channel?
- How does the channel manage to select specific types of ions to carry?
- What transformations does the conformation of the channel undergo that

convert it from nonconducting to conducting and back?

- How are the opening and closing transformations coupled to the electric field?
- How does the structure of channels determine their function?

These are difficult questions and, although various models have been proposed, the full answers to them are not yet known. We can expect the answers to be rather subtle, and that it will require a great deal of fundamental knowledge to understand them. For this reason let us now take a brief tour through some aspects of the sciences of physics, chemistry and biology and their interdisciplinary combinations.

2. SEAMLESS NATURE, FRAGMENTED SCIENCE

One of the fundamental tenets of science is that nature is a seamless unity. Yet a survey of science as it is actually carried on shows that, in practice, science is divided into disciplines represented by departments with little communication between them. This division into physics, chemistry, biology and other branches, historically necessary though it was, has resulted in a fragmented science.

2.1. Physics

Physics is a set of general concepts that deal with such concepts as space, time, force, motion, electricity, magnetism, sound, light and the fundamental structure of matter. These concepts are as important to living as to nonliving things, to "the trees and the stones and the fish in the tide."⁸

Newton's mechanics is the flagship theory of classical physics. *Classical mechanics* allows us to isolate a problem from its environment. Newton's three laws are sufficient for many applications but fail in two realms: the fast-moving and the microscopic. The two revolutions that dealt with these realms are relativity and quantum mechanics.

In solving a mechanical problem, the direct application of Newton's laws is usually *not* the easiest way to proceed. Instead of analyzing forces, the concept of *energy* gives us a more convenient approach, because of the important law that energy is conserved. The concept of energy conservation extends far beyond mechanics, because energy takes many forms, including heat, electrical, magnetic, elastic and chemical—even mass, as relativity shows, is a form of energy. Energy is not necessarily associated only with particles, but can be found in space, in the form of *fields*—electric, magnetic and gravitational.

One branch of physics directly pertinent to voltage-sensitive ion channels is *electrodynamics*, which deals with electricity and magnetism. While mechanics describes a world of three independent dimensions, length, time and mass, nature provides another dimension: electric charge. This dimension adds some interesting phenomena: Resting charges produce electrostatic attractions and repulsions; when charges move, they also produce magnetic fields, perpendicular to the velocity or current. Electric and magnetic fields in space produce electromagnetic waves. Thus