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Preface

Numbers imitate space, which is of such a different nature
—Blaise Pascal

It is fair to date the study of the foundation of mathematics back to the
ancient Greeks. The urge to understand and systematize the mathematics of
the time led Euclid to postulate axioms in an early attempt to put geometry
on a firm footing. With roots in the Elements, the distinctive methodology
of mathematics has become proof. Inevitably two questions arise: What are
proofs? and What assumptions are proofs based on?

The first question, traditionally an internal question of the field of logic,
was also wrestled with in antiquity. Aristotle gave his famous syllogistic sys-
tems, and the Stoics had a nascent propositional logic. This study continued
with fits and starts, through Boethius, the Arabs and the medieval logicians
in Paris and London. The early germs of logic emerged in the context of
philosophy and theology.

The development of analytic geometry, as exemplified by Descartes, illus-
trated one of the difficulties inherent in founding mathematics. It is classically
phrased as the question of how one reconciles the arithmetic with the geomet-
ric. Are numbers one type of thing and geometric objects another? What are
the relationships between these two types of objects? How can they interact?
Discovery of new types of mathematical objects, such as imaginary numbers
and, much later, formal objects such as free groups and formal power series
make the problem of finding a common playing field for all of mathematics
importunate.

Several pressures made foundational issues urgent in the 19th century.
The development of alternative geometries created doubts about the view
that mathematical truth is part of an absolute all-encompassing logic and
caused it to evolve towards one in which mathematical propositions follow
logically from assumptions that may vary with context.

Mathematical advances involving the understanding of the relationship
between the completeness of the real line and the existence of solutions to
equations led inevitably to anxieties about the role of infinity in mathematics.

These too had antecedents in ancient history. The Greeks were well aware
of the scientific importance of the problems of the infinite which were put
forth, not only in the paradoxes of Zeno, but in the work of Eudoxus,
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Archimedes and others. Venerable concerns about resolving infinitely divisi-
ble lines into individual points and what is now called “Archimedes’ Axiom”
were recapitulated in 19th century mathematics.

In response, various “constructions” of the real numbers were given, such
as those using Cauchy sequences and Dedekind cuts, as a way of under-
standing the relationship between discrete entities, such as the integers or
the rationals and the continuum. Even simple operations, such as addition
of arbitrary real numbers began to be understood as infinitary operations,
defined by some kind of limiting process. The notion of function was liberal-
ized beyond those that can be written in closed form. Sequences and series
became routine tools for solving equations.

The situation was made acute when Cantor, working on natural problems
involving trigonometric series, discovered the existence of different magni-
tudes of infinity. The widespread use of inherently infinitary techniques,
such as the use of the Baire Category Theorem to prove the existence of im-
portant objects, became deeply embedded in standard mathematics, making
it impossible to simply reject infinity as part of mathematics.

In parallel 19th century developments, through the work of Boole and oth-
ers, logic became once again a mathematical study. Boole’s algebraization of
logic made it grist for mathematical analysis and led to a clear understanding
of propositional logic. Dually, logicians such as Frege viewed mathematics as
a special case of logic. Indeed a very loose interpretation of the work of Frege
is that it is an attempt to base mathematics on a broad notion of logic that
subsumed all mathematical objects.

With Russell’s paradox and the failure of Frege’s program, a distinction
began to be made between logic and mathematics. Logic began to be viewed
as a formal epistemological mechanism for exploring mathematical truth,
barren of mathematical content and in need of assumptions or axioms to
make it a useful tool.

Progress in the 19th and 20th centuries led to the understanding of logics
involving quantifiers as opposed to propositional logic and to distinctions such
as those between first and second-order logic. With the semantics developed
by Tarski and the compactness and completeness theorems of Gödel, first-
order logic has become widely accepted as a well-understood, unproblematic
answer to the question What is a proof?

The desirable properties of first-order logic include:

• Proofs and propositions are easily and uncontroversially recognizable.

• There is an appealing semantics that gives a clear understanding of the
relationship between a mathematical structure and the formal proposi-
tions that hold in it.

• It gives a satisfactory model of what mathematicians actually do: the
“rigorous” proofs given by humans seem to correspond exactly to the
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“formal” proofs of first-order logic. Indeed formal proofs seem to pro-
vide a normative ideal towards which controversial mathematical claims
are driven as part of their verification process.

While there are pockets of resistance to first-order logic, such as con-
structivism and intuitionism on the one hand and other alternatives such as
second-order logic on the other, these seem to have been swept aside, if simply
for no other reason than their comparative lack of mathematical fruitfulness.

To summarize, a well-accepted conventional view of foundations of math-
ematics has evolved that can be caricatured as follows:

Mathematical Investigation = First-Order Logic + Assumptions

This formulation has the advantage that it segregates the difficulties with the
foundations of mathematics into discussions about the underlying assump-
tions rather than into issues about the nature of reasoning.

So what are the appropriate assumptions for mathematics? It would be
very desirable to find assumptions that:

1. involve a simple primitive notion that is easy to understand and can be
used to “build” or develop all standard mathematical objects,

2. are evident,

3. are complete in that they settle all mathematical questions,

4. can be easily recognized as part of a recursive schema.

Unfortunately Gödel’s incompleteness theorems make item 3 impossible. Any
recursive consistent collection A of mathematical assumptions that are strong
enough to encompass the simple arithmetic of the natural numbers will be
incomplete; in other words there will be mathematical propositions P that
cannot be settled on the basis of A. This inherent limitation is what has
made the foundations of mathematics a lively and controversial subject.

Item 2 is also difficult to satisfy. To the extent that we understand math-
ematics, it is a difficult and complex business. The Euclidean example of
a collection of axioms that are easily stated and whose content is simple to
appreciate is likely to be misleading. Instead of simple, distinctly conceived
and obvious axioms, the project seems more analogous to specifying a com-
plicated operating system in machine language. The underlying primitive
notions used to develop standard mathematical objects are combined in very
complicated ways. The axioms describe the operations necessary for doing
this and the test of the axioms becomes how well they code higher level ob-
jects as manipulated in ordinary mathematical language so that the results
agree with educated mathematicians’ sense of correctness.

Having been forced to give up 3 and perhaps 2, one is apparently left with
the alternatives:
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2′. Find assumptions that are in accord with the intuitions of mathemati-
cians well versed in the appropriate subject matter.

3′. Find assumptions that describe mathematics to as large an extent as is
possible.

With regard to item 1, there are several choices that could work for the
primitive notion for developing mathematics, such as categories or functions.
With no a priori reason for choosing one over another, the standard choice
of sets (or set membership) as the basic notion is largely pragmatic. Taking
sets as the primitive, one can easily do the traditional constructions that
“build” or “code” the usual mathematical entities: the empty set, the natural
numbers, the integers, the rationals, the reals, C, R

n, manifolds, function
spaces—all of the common objects of mathematical study.

In the first half of the 20th century a standard set of assumptions evolved,
the axiom system called the Zermelo-Fraenkel axioms with the Axiom of
Choice (ZFC). It is pragmatic in spirit; it posits sufficient mathematical
strength to allow the development of standard mathematics, while explic-
itly rejecting the type of objects held responsible for the various paradoxes,
such as Russell’s.

While ZFC is adequate for most of mathematics, there are many math-
ematical questions that it does not settle. Most prominent among them is
the first problem on Hilbert’s celebrated list of problems given at the 1900
International Congress of Mathematicians, the Continuum Hypothesis.

In the jargon of logic, a question that cannot be settled in a theory T is
said to be independent of T . Thus, to give a mundane example, the property
of being Abelian is independent of the axioms for group theory. It is routine
for normal axiomatizations that serve to synopsize an abstract concept in-
ternal to mathematics to have independent statements, but more troubling
for axiom systems intended to give a definitive description of mathematics
itself. However, independence phenomena are now known to arise from many
directions; in essentially every area of mathematics with significant infinitary
content there are natural examples of statements independent of ZFC.

This conundrum is at the center of most of the chapters in this Handbook.
Its investigation has left the province of abstract philosophy or logic and has
become a primarily mathematical project. The intent of the Handbook is
to provide graduate students and researchers access to much of the recent
progress on this project. The chapters range from expositions of relatively
well-known material in its mature form to the first complete published proofs
of important results. The introduction to the Handbook gives a thorough
historical background to set theory and summaries of each chapter, so the
comments here will be brief and general.

The chapters can be very roughly sorted into four types. The first type
consists of chapters with theorems demonstrating the independence of mathe-
matical statements. Understanding and proving theorems of this type require
a thorough understanding of the mathematics surrounding the source of the



Preface ix

problem in question, reducing the ambient mathematical constructions to
combinatorial statements about sets, and finally using some method (pri-
marily forcing) to show that the combinatorial statements are independent.

A second type of chapter involves delineating the edges of the independence
phenomenon, giving proofs in ZFC of statements that on first sight would
be suspected of being independent. Proofs of this kind are often extremely
subtle and surprising; very similar statements are independent and it is hard
to detect the underlying difference.

The last two types of chapters are motivated by the desire to settle these
independent statements by adding assumptions to ZFC, such as large cardinal
axioms. Proposers of augmentations to ZFC carry the burden of marshaling
sufficient evidence to convince informed practitioners of the reasonableness,
and perhaps truth, of the new assumptions as descriptions of the mathemat-
ical universe. (Proposals for axiom systems intended to replace ZFC carry
additional heavier burdens and appear in other venues than the Handbook.)

One natural way that this burden is discharged is by determining what
the supplementary axioms say ; in other words by investigating the conse-
quences of new axioms. This is a strictly mathematical venture. The theory
is assumed and theorems are proved in the ordinary mathematical manner.
Having an extensive development of the consequences of a proposed axiom
allows researchers to see the overall picture it paints of the set-theoretic uni-
verse, to explore analogies and disanalogies with conventional axioms, and
judge its relative coherence with our understanding of that universe. Exam-
ples of this include chapters that posit the assumption that the Axiom of
Determinacy holds in a model of Zermelo-Fraenkel set theory that contains
all of the real numbers and proceed to prove deep and difficult results about
the structure of definable sets of reals.

Were there an obvious and compelling unique path of axioms that supple-
ment ZFC and settle important independent problems, it is likely that the
last type of chapter would be superfluous. However, historically this is not the
case. Competing axioms systems have been posited, sometimes with obvious
connections, sometimes appearing to have nothing to do with each other.

Thus it becomes important to compare and contrast the competing pro-
posals. The Handbook includes expositions of some stunningly surprising
results showing that one axiom system actually implies an apparently unre-
lated axiom system. By far the most famous example of this are the proofs
of determinacy axioms from large cardinal assumptions.

Many axioms or independent propositions are not related by implication,
but rather by relative consistency results, a crucial idea for the bulk of the
Handbook. A remarkable meta-phenomenon has emerged. There appears
to be a central spine of axioms to which all independent propositions are
comparable in consistency strength. This spine is delineated by large cardinal
axioms. There are no known counterexamples to this behavior.

Thus a project initiated to understand the relationships between disparate
axiom systems seems to have resulted in an understanding of most known
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natural axioms as somehow variations on a common theme—at least as far
as consistency strength is concerned. This type of unifying deep structure is
taken as strong evidence that the axioms proposed reflect some underlying
reality and is often cited as a primary reason for accepting the existence of
large cardinals.

The methodology for settling the independent statements, such as the
Continuum Hypothesis, by looking for evidence is far from the usual deduc-
tive paradigm for mathematics and goes against the rational grain of much
philosophical discussion of mathematics. This has directed the attention of
some members of the philosophical community towards set theory and has
been grist for many discussions and message boards. However interpreted,
the investigation itself is entirely mathematical and many of the most skilled
practitioners work entirely as mathematicians, unconcerned about any philo-
sophical anxieties their work produces.

Thus set theory finds itself at the confluence of the foundations of mathe-
matics, internal mathematical motivations and philosophical speculation. Its
explosive growth in scope and mathematical sophistication is testimony to
its intellectual health and vitality.

The Handbook project has some serious defects, and does not claim to be
a remotely complete survey of set theory; the work of Shelah is not covered to
the appropriate extent given its importance and influence and the enormous
development of classical descriptive set theory in the last fifteen years is
nearly neglected. While the editors regret this, we are consoled that those
two topics, at least, are well documented elsewhere. Other parts of set theory
are not so lucky and we apologize.

We the editors would like to thank all of the authors for their labors. They
have taken months or years out of their lives to contribute to this project.
We would especially like to thank the referees, who are the unsung heroes
of the story, having silently devoted untold hours to carefully reading the
manuscripts simply for the benefit of the subject.

Matthew Foreman
Irvine

Let me express a special gratitude to the Lichtenberg-Kolleg at Göttingen.
Awarded an inaugural 2009–2010 fellowship, I was provided with a particu-
larly supportive environment at the Gauss Sternwarte, in the city in which
David Hilbert, Ernst Zermelo, and Paul Bernays did their formative work on
the foundations of mathematics. Thus favored, I was able to work in peace
and with inspiration to complete the final editing and proof-reading of this
Handbook.

Akihiro Kanamori
Boston and Göttingen
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2 Kanamori / Introduction

Set theory has entered its prime as an advanced and autonomous research
field of mathematics with broad foundational significance, and this Handbook
with its expanse and variety amply attests to the fecundity and sophistication
of the subject. Indeed, in set theory’s further reaches one sees tremendous
progress both in its continuing development of its historical heritage, the
investigation of the transfinite numbers and of definable sets of reals, as well
as its analysis of strong propositions and consistency strength in terms of
large cardinal hypotheses and inner models.

This introduction provides a historical and organizational frame for both
modern set theory and this Handbook, the chapter summaries at the end be-
ing a final elaboration. To the purpose of drawing in the serious, mathemati-
cally experienced reader and providing context for the prospective researcher,
we initially recapitulate the consequential historical developments leading to
modern set theory as a field of mathematics. In the process we affirm ba-
sic concepts and terminology, chart out the motivating issues and driving
initiatives, and describe the salient features of the field’s internal practices.
As the narrative proceeds, there will be a natural inversion: Less and less
will be said about more and more as one progresses from basic concepts to
elaborate structures, from seminal proofs to complex argumentation, from
individual moves to collective enterprise. We try to put matters in a succinct
yet illuminating manner, but be that as it may, according to one’s experience
or interest one can skim the all too familiar or too obscure. To the histo-
rian this account would not properly be history—it is, rather, a deliberate
arrangement, in significant part to lay the ground for the coming chapters.
To the seasoned set theorist there may be issues of under-emphasis or over-
emphasis, of omissions or commissions. In any case, we take refuge in a wise
aphorism: If it’s worth doing, it’s worth doing badly.

1. Beginnings

1.1. Cantor

Set theory was born on that day in December 1873 when Georg Cantor
(1845–1918) established that the continuum is not countable—there is no
one-to-one correspondence between the real numbers and the natural num-
bers 0, 1, 2, . . . . Given a (countable) sequence of reals, Cantor defined nested
intervals so that any real in their intersection will not be in the sequence.
In the course of his earlier investigations of trigonometric series Cantor had
developed a definition of the reals and had begun to entertain infinite total-
ities of reals for their own sake. Now with his uncountability result Cantor
embarked on a full-fledged investigation that would initiate an expansion of
the very concept of number. Articulating cardinality as based on bijection
(one-to-one correspondence) Cantor soon established positive results about
the existence of bijections between sets of reals, subsets of the plane, and the
like. By 1878 his investigations had led him to assert that there are only two
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infinite cardinalities embedded in the continuum: Every infinite set of reals
is either countable or in bijective correspondence with all the reals. This was
the Continuum Hypothesis (CH) in its nascent context, and the continuum
problem, to resolve this hypothesis, would become a major motivation for
Cantor’s large-scale investigations of infinite numbers and sets.

In his magisterial Grundlagen of 1883 Cantor developed the transfinite
numbers and the key concept of well-ordering, in large part to take a new,
structured approach to infinite cardinality. The transfinite numbers follow
the natural numbers 0, 1, 2, . . . and have come to be depicted in his later
notation in terms of natural extensions of arithmetical operations:

ω, ω + 1, ω + 2, . . . ω + ω(= ω·2),
. . . ω·3, . . . ω·ω(= ω2), . . . ω3, . . . ωω, . . . ωωω

, . . . .

A well-ordering on a set is a linear ordering of it according to which every
non-empty subset has a least element. Well-orderings were to carry the sense
of sequential counting, and the transfinite numbers served as standards for
gauging well-orderings. Cantor developed cardinality by grouping his transfi-
nite numbers into successive number classes, two numbers being in the same
class if there is a bijection between them. Cantor then propounded a basic
principle: “It is always possible to bring any well-defined set into the form of
a well-ordered set.” Sets are to be well-ordered, and they and their cardinali-
ties are to be gauged via the transfinite numbers of his structured conception
of the infinite.

The transfinite numbers provided the framework for Cantor’s two ap-
proaches to the continuum problem, one through cardinality and the other
through definable sets of reals, these each to initiate vast research programs.
As for the first, Cantor in the Grundlagen established results that reduced
the continuum problem to showing that the continuum and the countable
transfinite numbers have a bijection between them. However, despite sev-
eral announcements Cantor could never develop a workable correlation, an
emerging problem being that he could not define a well-ordering of the reals.

As for the approach through definable sets of reals, Cantor formulated
the key concept of a perfect set of reals (non-empty, closed, and containing
no isolated points), observed that perfect sets of reals are in bijective cor-
respondence with the continuum, and showed that every closed set of reals
is either countable or else have a perfect subset. Thus, Cantor showed that
“CH holds for closed sets”. The perfect set property, being either countable
or else having a perfect subset, would become a focal property as more and
more definable sets of reals came under purview.

Almost two decades after his initial 1873 result, Cantor in 1891 subsumed
it through his celebrated diagonal argument. In logical terms this argument
turns on the use of the validity ¬∃y∀x(Pxx←→ ¬Pyx) for binary predicates
P parametrizing unary predicates and became, of course, fundamental to the
development of mathematical logic. Cantor stated his new, general result in
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terms of functions, ushering in totalities of arbitrary functions into mathemat-
ics, but his result is cast today in terms of the power set P (x) = {y | y ⊆ x}
of a set x: For any set x, P (x) has a larger cardinality than x. Cantor had
been extending his notion of set to a level of abstraction beyond sets of reals
and the like; this new result showed for the first time that there is a set of a
larger cardinality than that of the continuum.

Cantor’s Beiträge of 1895 and 1897 presented his mature theory of the
transfinite, incorporating his concepts of ordinal number and cardinal num-
ber. The former are the transfinite numbers now reconstrued as the “order-
types” of well-orderings. As for the latter, Cantor defined the addition, mul-
tiplication, and exponentiation of cardinal numbers primordially in terms of
set-theoretic operations and functions. Salient was the incorporation of “all”
possibilities in the definition of exponentiation: If a is the cardinal number
of A and b is the cardinal number of B then ab is the cardinal number of the
totality, nowadays denoted BA, of all functions from B into A. As befits the
introduction of new numbers Cantor introduced a new notation, one using
the Hebrew letter aleph, ℵ. ℵ0 is to be the cardinal number of the natural
numbers and the successive alephs

ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .

indexed by the ordinal numbers are now to be the cardinal numbers of the
successive number classes from the Grundlagen and thus to exhaust all the
infinite cardinal numbers. Cantor pointed out that the exponentiated 2ℵ0

is the cardinal number of the continuum, so that CH could now have been
stated as

2ℵ0 = ℵ1.

However, with CH unresolved Cantor did not even mention the hypothesis
in the Grundlagen, only in correspondence. Every well-ordered set has an
aleph as its cardinal number, but where is 2ℵ0 in the aleph sequence?

Cantor’s great achievement, accomplished through almost three decades
of prodigious effort, was to have brought into being the new subject of set
theory as bolstered by the mathematical objectification of the actual infinite
and moreover to have articulated a fundamental problem, the continuum
problem. Hilbert made this the very first of his famous problems for the 20th
Century, and he drew out Cantor’s difficulty by suggesting the desirability of
“actually giving” a well-ordering of the real numbers.

1.2. Zermelo

Ernst Zermelo (1871–1953), already estimable as an applied mathematician,
turned to set theory at Göttingen under the influence of Hilbert. Zermelo
analyzed Cantor’s well-ordering principle by reducing it to the Axiom of
Choice (AC), the abstract existence assertion that every set x has a choice
function, i.e. a function f with domain x such that for every non-empty y ∈ x,
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f(y) ∈ y. Zermelo’s 1904 proof of the Well-Ordering Theorem, that with AC
every set can be well-ordered, would anticipate the argument two decades
later for transfinite recursion:

With x a set to be well-ordered, let f be a choice function on the power
set P (x). Call y ⊆ x an f -set if there is a well-ordering R of y such that for
any a ∈ y, a = f({b ∈ x | b does not R-precede a}). The well-orderings of
f -sets are thus determined by f , and f -sets cohere. It follows that the union
of f -sets is again an f -set and must in fact be x itself.

Zermelo’s argument provoked open controversy because of its appeal to
AC, and the subsequent tilting toward the acceptance of AC amounted to
a conceptual shift in mathematics toward arbitrary functions and abstract
existence principles. Responding to his critics Zermelo in 1908 published
a second proof of the Well-Ordering Theorem and then the first full-fledged
axiomatization of set theory, one similar in approach to Hilbert’s axiomatiza-
tion of geometry and incorporating set-theoretic ideas of Richard Dedekind.
This axiomatization duly avoided the emerging “paradoxes” like Russell’s
Paradox, which Zermelo had come to independently, and served to buttress
the Well-Ordering Theorem by making explicit its underlying set-existence
assumptions. Zermelo’s axioms, now formalized, constitute the familiar the-
ory Z, Zermelo set theory:

Extensionality (sets are equal if they contain the same members), Empty
Set (there is a set having no members), Pairs (for any sets x and y there is
a set {x, y} consisting exactly of x and y), Union (for any set x there is a
set

⋃
x consisting exactly of those sets that are members of some member

of x), Power Set (for any set x there is a set P (x) consisting exactly of the
subsets of x), Choice (for any set x consisting of non-empty, pairwise disjoint
sets, there is a set c such that every member of x has exactly one member
in c), Infinity (there is a certain, specified infinite set); and Separation (for
any set x and “definite” property P , there is a set consisting exactly of those
members of x having the property P ).

Extensionality, Empty Set, and Pairs lay the basis for sets. Infinity and
Power Set ensure sufficiently rich settings for set-theoretic constructions.
Power Set legitimizes “all” for subsets of a given set, and Separation legit-
imizes “all” for elements of a given set satisfying a property. Finally, Union
and Choice (formulated reductively in terms of the existence of a “transver-
sal” set meeting each of a family of sets in one member) complete the encasing
of the Well-Ordering Theorem.

Zermelo’s axiomatization sought to clarify vague subject matter, and like
strangers in a strange land, stalwarts developed a familiarity with sets guided
hand-in-hand by the axiomatic framework. Zermelo’s own papers, with work
of Dedekind as an antecedent, pioneered the reduction of mathematical con-
cepts and arguments to set-theoretic concepts and arguments from axioms.
Zermelo’s analysis moreover served to draw out what would come to be gen-
erally regarded as set-theoretic and combinatorial out of the presumptively
logical, with Infinity and Power Set salient and the process being strate-
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gically advanced by the segregation of the notion of property to Separa-
tion.

Taken together, Zermelo’s work in the first decade of the 20th Century
initiated a major transmutation of the notion of set after Cantor. With AC
Zermelo shifted the notion away from Cantor’s inherently well-ordered sets,
and with his axiomatization Zermelo ushered in a new abstract, prescriptive
view of sets as structured solely by membership and governed and generated
by axioms. Through his set-theoretic reductionism Zermelo made evident
how his set theory is adequate as a basis for mathematics.

1.3. First Developments

During this period Cantor’s two main legacies, the extension of number into
the transfinite and the investigation of definable sets of reals, became fully
incorporated into mathematics in direct initiatives. The axiomatic tradition
would be complemented by another, one that would draw its life more directly
from the mathematics.

The French analysts Emile Borel, René Baire, and Henri Lebesgue took
on the investigation of definable sets of reals in what would be a typically
“constructive” approach. Cantor had established the perfect set property for
closed sets and formulated the concept of content for a set of reals, but he
did not pursue these matters. With these as antecedents the French work
would lay the basis for measure theory as well as descriptive set theory, the
definability theory of the continuum.

Borel, already in 1898, developed a theory of measure for sets of reals; the
formulation was axiomatic, and at this early stage, bold and imaginative.
The sets measurable according to his measure are the now well-known Borel
sets. Starting with the open intervals (a, b) of reals assigned measure b−a, the
Borel sets result when closing off under complements and countable unions,
measures assigned in a corresponding manner.

Baire in his 1899 thesis classified those real functions obtainable by start-
ing with the continuous functions and closing off under pointwise limits—the
Baire functions—into classes indexed by the countable ordinal numbers, pro-
viding the first transfinite hierarchy after Cantor. Baire’s thesis also intro-
duced the now basic concept of category. A set of reals is nowhere dense iff
its closure under limits includes no open set, and a set of reals is meager (or
of first category) iff it is a countable union of nowhere dense sets—otherwise,
it is of second category. Generalizing Cantor’s 1873 argument, Baire estab-
lished the Baire Category Theorem: Every non-empty open set of reals is of
second category. His work also suggested a basic property: A set of reals A
has the Baire property iff there is an open set O such that the symmetric
difference (A−O)∪ (O−A) is meager. Straightforward arguments show that
every Borel set has the Baire property.

Lebesgue’s 1902 thesis is fundamental for modern integration theory as the
source of his concept of measurability. Lebesgue’s concept of measurable set
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subsumed the Borel sets, and his analytic definition of measurable function
subsumed the Baire functions. In simple terms, any arbitrary subset of a
Borel measure zero set is a Lebesgue measure zero, or null, set, and a set is
Lebesgue measurable if it is the union of a Borel set and a null set, in which
case the measure assigned is that of the Borel set. It is this “completion”
of Borel measure through the introduction of arbitrary subsets which gives
Lebesgue measure its complexity and applicability and draws in wider issues
of constructivity. Lebesgue’s subsequent 1905 paper was the seminal paper of
descriptive set theory: He correlated the Borel sets with the Baire functions,
thereby providing a transfinite hierarchy for the Borel sets, and then applied
Cantor’s diagonalization argument to show both that this hierarchy is proper
(new sets appear at each level) and that there is a Lebesgue measurable set
which is not Borel.

As descriptive set theory was to develop, a major concern became the
extent of the regularity properties, those indicative of well-behaved sets of
reals, of which prominent examples were Lebesgue measurability, having the
Baire property, and having the perfect set property. Significantly, the context
was delimited by early explicit uses of AC in the role of providing a well-
ordering of the reals: In 1905 Giuseppe Vitali established that there is a non-
Lebesgue measurable set, and in 1908 Felix Bernstein established that there
is a set without the perfect set property. Thus, Cantor’s early contention
that the reals are well-orderable precluded the universality of his own perfect
set property, and it would be that his new, enumerative approach to the
continuum would steadily provide focal examples and counterexamples.

The other, more primal Cantorian legacy, the extension of number into
the transfinite, was considerably advanced by Felix Hausdorff, whose work
was first to suggest the rich possibilities for a mathematical investigation
of the uncountable. A mathematician par excellence, he took that sort of
mathematical approach to set theory and extensional, set-theoretic approach
to mathematics that would come to dominate in the years to come. In a
1908 paper, Hausdorff provided an elegant analysis of scattered linear orders
(those having no dense sub-ordering) in a transfinite hierarchy. He first stated
the Generalized Continuum Hypothesis (GCH)

2ℵα = ℵα+1 for every α.

He emphasized cofinality (the cofinality cf(κ) of a cardinal number κ is the
least cardinal number λ such that a set of cardinality κ is a union of λ sets each
of cardinality less than κ) and the distinction between singular (cf(κ) < κ)
and regular (cf(κ) = κ) cardinals. And for the first time he broached a
“large cardinal” concept, a regular limit cardinal > ℵ0. Hausdorff’s work
around this time on sets of real functions ordered under eventual domination
and having no uncountable “gaps” led to the first plausible mathematical
proposition that entailed the denial of CH.

Hausdorff’s 1914 text, Grundzüge der Mengenlehre, broke the ground for
a generation of mathematicians in both set theory and topology. Early on,
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he defined an ordered pair of sets in terms of (unordered) pairs, formulated
functions in terms of ordered pairs, and ordering relations as collections of
ordered pairs. He in effect capped efforts of logicians by making these moves
in mathematics, completing the set-theoretic reduction of relations and func-
tions. He then presented Cantor’s and Zermelo’s work systematically, and
of particular interest, he used a well-ordering of the reals to provide what
is now known as Hausdorff’s Paradox. The source of the later and better
known Banach-Tarski Paradox, Hausdorff’s Paradox provided an implausi-
ble decomposition of the sphere and was the first, and a dramatic, synthesis
of classical mathematics and the new Zermelian abstract view.

A decade after Lebesgue’s seminal 1905 paper, descriptive set theory came
into being as a distinct discipline through the efforts of the Russian math-
ematician Nikolai Luzin. He had become acquainted with the work of the
French analysts while in Paris as a student, and in Moscow he began a for-
mative seminar, a major topic of which was the “descriptive theory of func-
tions”. The young Pole Wac�law Sierpiński was an early participant while he
was interned in Moscow in 1915, and undoubtedly this not only kindled the
decade-long collaboration between Luzin and Sierpiński but also encouraged
the latter’s involvement in the development of a Polish school of mathematics
and its interest in descriptive set theory. In an early success, Luzin’s student
Pavel Aleksandrov (and independently, Hausdorff) established the ground-
breaking result that the Borel sets have the perfect set property, so that “CH
holds for the Borel sets”.

In the work that really began descriptive set theory, another student of
Luzin’s, Mikhail Suslin, investigated the analytic sets after finding a mistake
in Lebesgue’s paper. In a brief 1917 note Suslin formulated these sets in terms
of an explicit operationA drawn from Aleksandrov’s work and announced two
fundamental results: a set B of reals is Borel iff both B and its complement
R−B are analytic; and there is an analytic set which is not Borel. This was to
be his sole publication, for he succumbed to typhus in a Moscow epidemic in
1919 at the age of 25. In an accompanying note Luzin announced that every
analytic set is Lebesgue measurable and has the perfect set property, the latter
result attributed to Suslin. Luzin and Sierpiński in joint papers soon provided
proofs, in work that shifted the emphasis to the co-analytic sets, complements
of analytic sets, and provided for them a basic tree representation based on
well-foundedness (having no infinite branches) from which the main results
of the period flowed.

After this first wave in descriptive set theory had crested, Luzin and
Sierpiński in 1925 extended the domain of study to the projective sets. For
Y ⊆ R

k+1, the projection of Y is pY = {〈x1, . . . , xk〉 | ∃y(〈x1, . . . , xk, y〉 ∈
Y )}. Suslin had essentially noted that a set of reals is analytic iff it is the
projection of a Borel subset of R

2. Luzin and Sierpiński took the geometric
operation of projection to be basic and defined the projective sets as those
sets obtainable from the Borel sets by the iterated applications of projection
and complementation. The corresponding hierarchy of projective subsets of
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R
k is defined, in modern notation, as follows: For A ⊆ R

k,

A is Σ1
1 iff A = pY for some Borel set Y ⊆ R

k+1,

A is analytic as for k = 1, and for n > 0,

A is Π1
n iff R

k −A is Σ1
n,

A is Σ1
n+1 iff A = pY for some Π1

n set Y ⊆ R
k+1, and

A is Δ1
n iff A is both Σ1

n and Π1
n.

(Σ1
n is also written Σ∼

1
n; Π1

n is also written Π∼
1
n; and Δ1

n is also written Δ∼
1
n.

One can formulate these concepts with continuous images instead of projec-
tions, e.g. A is Σ1

n+1 iff A is the continuous image of some Π1
n set Y ⊆ R. If

the basics of continuous functions are in hand, this obviates the need to have
different spaces.)

Luzin and Sierpiński recast Lebesgue’s use of the Cantor diagonal argu-
ment to show that the projective hierarchy is proper, and soon its basic
properties were established. However, this investigation encountered obsta-
cles from the beginning. Whether the Π1

1 subsets of R, the co-analytic sets
at the bottom of the hierarchy, have the perfect set property and whether the
Σ1

2 sets are Lebesgue measurable remained unknown. Besides the regularity
properties, the properties of separation, reduction, and especially uniformiza-
tion relating sets to others were studied, but there were accomplishments only
at the first projective level. The one eventual success and a culminating re-
sult of the early period was the Japanese mathematician Motokiti Kondô’s
1937 result, the Π1

1 Uniformization Theorem: Every Π1
1 relation can be uni-

formized by a Π1
1 function. This impasse with respect to the regularity prop-

erties would be clarified, surprisingly, by penetrating work of Gödel involving
metamathematical methods.

In modern set theory, what has come to be taken for the “reals” is actually
Baire space, the set of functions from the natural numbers into the natural
numbers (with the product topology). Baire space, the “fundamental do-
main” of a 1930 Luzin monograph, is homeomorphic to the irrational reals
and so equivalent for all purposes having to do measure, category, and per-
fect sets. Already by then it had become evident that a set-theoretic study of
the continuum is best cast in terms of Baire space, with geometric intuitions
being augmented by combinatorial ones.

During this period AC and CH were explored by the new Polish school,
most notably by Sierpiński, Alfred Tarski, and Kazimierz Kuratowski, no
longer as underlying axiom and primordial hypothesis but as part of ongoing
mathematics. Sierpiński’s own earliest publications, culminating in a 1918
survey, not only dealt with specific constructions but also showed how deeply
embedded AC was in the informal development of cardinality, measure, and
the Borel hierarchy. Even more than AC, Sierpiński investigated CH, and
summed up his researches in a 1934 monograph. It became evident how
having not only a well-ordering of the reals but one as given by CH whose
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initial segments are countable led to striking, often initially counter-intuitive,
examples in analysis and topology.

1.4. Replacement and Foundation

In the 1920s, fresh initiatives in axiomatics structured the loose Zermelian
framework with new features and corresponding axioms, the most consequen-
tial moves made by John von Neumann (1903–1957) in his doctoral work,
with anticipations by Dmitry Mirimanoff in an informal setting. Von Neu-
mann effected a Counter-Reformation of sorts that led to the incorporation
of a new axiom, the Axiom of Replacement: For any set x and property
P (v, w) functional on x (i.e. for any a ∈ x there is exactly one b such that
P (a, b)), {b | P (a, b) for some a ∈ x} is a set. The transfinite numbers had
been central for Cantor but peripheral to Zermelo; von Neumann reconstrued
them as bona fide sets, the ordinals, and established their efficacy by formal-
izing transfinite recursion, the method for defining sets in terms of previously
defined sets applied with transfinite indexing.

Ordinals manifest the basic idea of taking precedence in a well-ordering
simply to be membership. A set x is transitive iff

⋃
x ⊆ x, so that x is

“closed” under membership, and x is an ordinal iff x is transitive and well-
ordered by ∈. Von Neumann, as had Mirimanoff before him, established the
key instrumental property of Cantor’s ordinal numbers for ordinals: Every
well-ordered set is order-isomorphic to exactly one ordinal with membership.
Von Neumann took the further step of ascribing to the ordinals the role of
Cantor’s ordinal numbers. To establish the basic ordinal arithmetic results
that affirm this role, von Neumann saw the need to establish the Transfi-
nite Recursion Theorem, the theorem that validates definitions by transfinite
recursion. The proof was anticipated by the Zermelo 1904 proof, but Re-
placement was necessary even for the very formulation, let alone the proof,
of the theorem. Abraham Fraenkel and Thoralf Skolem had independently
proposed Replacement to ensure that a specific collection resulting from a
simple recursion be a set, but it was von Neumann’s formal incorporation
of transfinite recursion as method which brought Replacement into set the-
ory. With the ordinals in place von Neumann completed the restoration
of the Cantorian transfinite by defining the cardinals as the initial ordinals,
i.e. those ordinals not in bijective correspondence with any of its predecessors.
The infinite initial ordinals are now denoted

ω = ω0, ω1, ω2, . . . , ωα, . . . ,

so that ω is to be the set of natural numbers in the ordinal construal. It
would henceforth be that we take

ωα = ℵα

conflating extension with intension, with the left being a von Neumann or-
dinal and the right being the Cantorian cardinal concept. Every infinite
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set x, with AC, is well-orderable and hence in bijective correspondence with
a unique initial ordinal ωα, and the cardinality of x is |x| = ℵα. It has be-
come customary to use the lower case Greek letters to denote ordinals; α < β
to denote α ∈ β construed as ordering; On to denote the ordinals; and the
middle letters κ, λ, μ, . . . to denote the initial ordinals in their role as the
infinite cardinals, with κ+ denoting the cardinal successor of κ.

Von Neumann provided a new axiomatization of set theory, one that first
incorporated what we now call proper classes. A class is the totality of all
sets that satisfy a specified property, so that membership in the class amounts
to satisfying the property, and von Neumann axiomatized the ways to have
these properties. Only sets can be members, and so the recourse to possi-
bly proper classes, classes not represented by sets, avoids the contradictions
arising from formalizing the known paradoxes. Actually, von Neumann took
functions to be primitive in an involved framework, and Paul Bernays in
1930 re-constituted the von Neumann axiomatization with sets and classes
as primitive. Classes would not remain a formalized component of modern
set theory, but the informal use of classes as objectifications of properties
would become increasingly liberal, particularly to convey large-scale issues in
set theory.

Von Neumann (and before him Mirimanoff, Fraenkel, and Skolem) also
considered the salutary effects of restricting the universe of sets to the well-
founded sets. The well-founded sets are the sets in the class

⋃
α Vα, where

the “ranks” Vα are defined by transfinite recursion:

V0 = ∅; Vα+1 = P (Vα); and Vδ =
⋃

α<δVα for limit ordinals δ.

Von Neumann entertained the Axiom of Foundation: Every nonempty set x
has an ∈-minimal element, i.e. a y ∈ x such that x ∩ y is empty. (With AC
this is equivalent to having no infinite ∈-descending sequences.) This axiom
amounts to the assertion that the cumulative hierarchy exhausts the universe
V of sets:

V =
⋃

αVα.

In modern terms, the ascribed well-foundedness of ∈ leads to a ranking func-
tion ρ : V → On defined recursively by ρ(x) =

⋃
{ρ(y) + 1 | y ∈ x}, so that

Vα = {x | ρ(x) < α}, and one can establish results for all sets by induction
on rank.

Zermelo in a 1930 paper offered his final axiomatization of set theory as
well as a striking, synthetic view of a procession of models that would have
a modern resonance. Proceeding in what we would now call a second-order
context, Zermelo amended his 1908 axiomatization Z by adjoining both Re-
placement and Foundation while leaving out Infinity and AC, the latter being
regarded as part of the underlying logic. The now standard axiomatization
of set theory

ZFC, Zermelo-Fraenkel with Choice,
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is recognizable if we inject Infinity and AC, the main difference being that
ZFC is a first-order theory (as discussed below). “Fraenkel” acknowledges
the early suggestion by Fraenkel to adjoin Replacement; and the Axiom of
Choice is explicitly mentioned.

ZF, Zermelo-Fraenkel,

is ZFC without AC and is a base theory for the investigation of weak Choice-
type propositions as well as propositions that contradict AC.

Zermelo herewith completed his transmutation of the notion of set, his
abstract view stabilized by further axioms that structured the universe of
sets. Replacement and Foundation focused the notion of set, with the first
providing the means for transfinite recursion and induction and the second
making possible the application of those means to get results about all sets,
they appearing in the cumulative hierarchy. Foundation is the one axiom
unnecessary for the recasting of mathematics in set-theoretic terms, but the
axiom is also the salient feature that distinguishes investigations specific to set
theory as a field of mathematics. With Replacement and Foundation in place
Zermelo was able to provide natural models of his axioms, each a Vκ where κ is
an inaccessible cardinal (regular and strong limit: if λ < κ, then 2λ < κ), and
to establish algebraic isomorphism, initial segment, and embedding results for
his models. Finally, Zermelo posited an endless procession of such models,
each a set in the next, as natural extensions of their cumulative hierarchies.

Inaccessible cardinals are at the modest beginnings of the theory of large
cardinals, now a mainstream of modern set theory devoted to the investi-
gation of strong hypotheses and consistency strength. The journal volume
containing Zermelo’s paper also contained Stanis�law Ulam’s seminal paper
on measurable cardinals, which would become focal among large cardinals.
In modern terminology, a filter over a set Z is a family of subsets of Z closed
under the taking of supersets and of intersections. (Usually excluded from
consideration as trivial are {X ⊆ Z | A ⊆ X} for some set A ⊆ Z, the
principal filters.) An ultrafilter U over Z is a maximal filter over Z, i.e. for
any X ⊆ Z, either X ∈ U or else Z − X ∈ U . For a cardinal λ, a filter
is λ-complete if it is closed under the taking of intersections of fewer than
λ members. Finally, an uncountable cardinal κ is measurable iff there is a
κ-complete ultrafilter over κ. In a previous, 1929 note Ulam had constructed,
using a well-ordering of the reals, an ultrafilter over ω. Measurability thus
generalizes a property of ω, and Ulam showed moreover that measurable cardi-
nals are inaccessible. In this work, Ulam was motivated by measure-theoretic
considerations, and he viewed his work as about {0, 1}-valued measures, the
measure 1 sets being the sets in the ultrafilter. To this day, ultrafilters of all
sorts in large cardinal theory are also called measures.

A decade later Tarski provided a systematic development of these concepts
in terms of ideals. An ideal over a set Z is a family of subsets of Z closed
under the taking of subsets and of unions. This is the “dual” notion to filters;
if I is an ideal (resp. filter) over Z, then Ĭ = {Z − X | X ∈ I} is its dual
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filter (resp. ideal). An ideal is λ-complete if its dual filter is. A more familiar
conceptualization in mathematics, Tarski investigated a general notion of
ideal on a Boolean algebra in place of the power set algebra P (Z). Although
filters and ideals in large cardinal theory are most often said to be on a
cardinal κ, they are more properly on the Boolean algebra P (κ). Moreover,
the measure-theoretic terminology has persisted: For an ideal I ⊆ P (Z), the
I-measure zero (negligible) sets are the members of I, the I-positive measure
(non-negligible) sets are the members of P (Z) − I, and the I-measure one
(all but negligible) sets are the members of the dual filter {Z −X | X ∈ I}.

Returning to the axiomatic tradition, Zermelo’s 1930 paper was in part a
response to Skolem’s advocacy of the idea of framing Zermelo’s 1908 axioms
in first-order logic, the logic of formal languages based on the quantifiers ∀
and ∃ interpreted as ranging over the elements of a domain of discourse.
First-order logic had emerged in 1917 lectures of Hilbert as a delimited sys-
tem of logic amenable to mathematical investigation. Entering from a differ-
ent, algebraic tradition, Skolem in 1920 had established a seminal result for
semantic methods with the Löwenheim-Skolem Theorem, that a countable
collection of first-order sentences, if satisfiable, is satisfiable in a countable
domain. For this he introduced what we now call Skolem functions, func-
tions added formally for witnessing ∃x assertions. For set theory Skolem in
1923 proposed formalizing Zermelo’s axioms in the first-order language with
∈ and = as binary predicate symbols. Zermelo’s “definite” properties were
to be those expressible in this first-order language in terms of given sets, and
the Axiom of Separation was to become a schema of axioms, one for each
first-order formula. As an argument against taking set theory as a foundation
for mathematics, Skolem pointed out what has come to be called Skolem’s
Paradox: Zermelo’s 1908 axioms cast in first-order logic is a countable col-
lection of sentences, and so if they are satisfiable at all, they are satisfiable
in a countable domain. Thus, we have the paradoxical existence of countable
models for Zermelo’s axioms although they entail the existence of uncount-
able sets. Zermelo found this antithetical and repugnant. However, strong
currents were at work leading to a further, subtler transmutation of the no-
tion of set as based on first-order logic and incorporating its relativism of
set-theoretic concepts.

2. New Groundwork

2.1. Gödel

Kurt Gödel (1906–1978) substantially advanced the mathematization of logic
by submerging metamathematical methods into mathematics. The main ve-
hicle was the direct coding, “the arithmetization of syntax”, in his celebrated
1931 Incompleteness Theorem, which worked dialectically against a program
of Hilbert’s for establishing the consistency of classical mathematics. But
starting an undercurrent, the earlier 1930 Completeness Theorem for first-
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order logic clarified the distinction between the formal syntax and semantics
of first-order logic and secured its key instrumental property with the Com-
pactness Theorem.

Tarski in the early 1930s provided his systematic “definition of truth”, ex-
ercising philosophers to a surprising extent ever since. Tarski simply schema-
tized truth as a correspondence between formulas of a formal language and
set-theoretic assertions about an intended structure interpreting the language
and provided a recursive definition of the satisfaction relation, when a formula
holds in the structure, in set-theoretic terms. The eventual effect of Tarski’s
mathematical formulation of semantics would be not only to make mathe-
matics out of the informal notion of satisfiability, but also to enrich ongoing
mathematics with a systematic method for forming mathematical analogues
of several intuitive semantic notions. Tarski would only be explicit much later
about satisfaction-in-a-structure for arbitrary structures, this leading to his
notion of logical consequence. For coming purposes, the following affirms
notation and concepts in connection with Tarski’s definition.

For a first-order language, a structure N interpreting that language (i.e.
a specification of a domain of discourse as well as interpretations of the func-
tion and predicate symbols), a formula ϕ(v1, v2, . . . , vn) of the language with
the (free) variables as displayed, and a1, a2, . . . , an in the domain of N ,

N |= ϕ[a1, a2, . . . , an]

asserts that the formula ϕ is satisfied in N according to Tarski’s recursive
definition when vi is interpreted as ai. A subset y of the domain of N is first-
order definable over N iff there is a ψ(v1, v2, . . . , vn+1) and a1, a2, . . . , an in
the domain of N such that

y = {z ∈ N | N |= ψ[a1, a2, . . . , an, z]}.

(The first-order definability of k-ary relations is analogously formulated with
vn+1 replaced by k variables.)

Through Tarski’s recursive definition and an “arithmetization of syntax”
whereby formulas are systematically coded by natural numbers, the satis-
faction relation N |= ϕ[a1, a2, . . . , an] for sets N is definable in set theory.
On the other hand, by Tarski’s result on the “undefinability of truth”, the
satisfaction relation for V itself is not first-order definable over V .

Set theory was launched as a distinctive field of mathematics by Gödel’s
construction of the class L leading to the relative consistency of the Axiom of
Choice and the Generalized Continuum Hypothesis. In a brief 1939 account
Gödel informally presented L essentially as is done today: For any set x
let def(x) denote the collection of subsets of x first-order definable over the
structure 〈x,∈〉 with domain x and the membership relation restricted to it.

Then define:

L0 = ∅; Lα+1 = def(Lα), Lδ =
⋃
{Lα | α < δ} for limit ordinals δ;
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and the constructible universe

L =
⋃

αLα.

Gödel pointed out that L “can be defined and its theory developed in the
formal systems of set theory themselves”. This is actually the central feature
of the construction of L. L is definable in ZF via transfinite recursion based
on the formalizability of def(x), which was reaffirmed by Tarski’s definition
of satisfaction. With this, one can formalize the Axiom of Constructibility
V = L, i.e. ∀x(x ∈ L). To set a larger context, we affirm the following for
a class X: for a set-theoretic formula ϕ, ϕX denotes ϕ with its quantifiers
restricted to X and this extends to set-theoretic terms t (like

⋃
x, P (x), and

so forth) through their definitions to yield tX . X is an inner model iff X is a
transitive class containing all the ordinals such that ϕX is a theorem of ZF for
every axiom ϕ of ZF. What Gödel did was to show in ZF that L is an inner
model which satisfies AC and GCH. He thus established a relative consistency
which can be formalized as an assertion: Con(ZF) implies Con(ZFC + GCH).

In the approach via def(x) it is necessary to show that def(x) remains
unaltered when applied in L with quantifiers restricted to L. Gödel himself
would never establish this absoluteness of first-order definability explicitly.
In a 1940 monograph, Gödel worked in Bernays’ class-set theory and used
eight binary operations producing new classes from old to generate L set by
set via transfinite recursion. This veritable “Gödel numbering” with ordinals
eschewed def(x) and made evident certain aspects of L. Since there is a
direct, definable well-ordering of L, choice functions abound in L, and AC
holds there. Of the other axioms the crux is where first-order logic impinges,
in Separation and Replacement. For this, “algebraic” closure under Gödel’s
eight operations ensured “logical” Separation for bounded formulas, formulas
having only quantifiers expressible in terms of ∀v ∈ w, and then the full
exercise of Replacement (in V ) secured all of the ZF axioms in L.

Gödel’s proof that L satisfies GCH consisted of two separate parts. He
established the implication V = L→ GCH, and, in order to apply this impli-
cation within L, that (V = L)L. This latter follows from the aforementioned
absoluteness of def(x), and in his monograph Gödel gave an alternate proof
based on the absoluteness of his eight binary operations.

Gödel’s argument for V = L→ GCH rests, as he himself wrote in his 1939
note, on “a generalization of Skolem’s method for constructing enumerable
models”. This was the first significant use of Skolem functions since Skolem’s
own to establish the Löwenheim-Skolem theorem, and with it, Skolem’s Para-
dox. Ironically, though Skolem sought through his paradox to discredit set
theory based on first-order logic as a foundation for mathematics, Gödel
turned paradox into method, one promoting first-order logic. Gödel specifi-
cally established his “Fundamental Theorem”:

For infinite γ, every constructible subset of Lγ

belongs to some Lβ for a β of the same cardinality as γ.
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For infinite α, Lα has the same cardinality as that of α. It follows from
the Fundamental Theorem that in the sense of L, the power set of Lωα is
included in Lωα+1 , and so GCH follows in L.

The work with L led, further, to the resolution of difficulties in descriptive
set theory. Gödel announced, in modern terms: If V = L, then (a) there
is a Δ1

2 set of reals that is not Lebesgue measurable, and (b) there is a Π1
1

set of reals without the perfect set property. Thus, the early descriptive set
theorists were confronting an obstacle insurmountable in ZFC! When even-
tually confirmed and refined, the results were seen to turn on a “good” Σ1

2

well-ordering of the reals in L defined via reals coding well-founded struc-
tures and thus connected to the well-founded tree representation of Π1

1 sets.
Gödel’s results (a) and (b) constitute the first real synthesis of abstract and
descriptive set theory, in that the axiomatic framework is incorporated into
the investigation of definable sets of reals.

Gödel brought into set theory a method of construction and of argument
which affirmed several features of its axiomatic presentation. Most promi-
nently, he showed how first-order definability can be formalized and used to
achieve strikingly new mathematical results. This significantly contributed
to a lasting ascendancy for first-order logic which, in addition to its suffi-
ciency as a logical framework for mathematics, was seen to have considerable
operational efficacy. Moreover, Gödel’s work buttressed the incorporation
of Replacement and Foundation into set theory, the first immanent in the
transfinite recursion and arbitrary extent of the ordinals, and the second as
underlying the basic cumulative hierarchy picture that anchors L.

In later years Gödel speculated about the possibility of deciding propo-
sitions like CH with large cardinal hypotheses based on the heuristics of
reflection, and later, generalization. In a 1946 address he suggested the con-
sideration of “stronger and stronger axioms of infinity” and reflection down
from V : “Any proof of a set-theoretic theorem in the next higher system
above set theory (i.e. any proof involving the concept of truth, etc.) is re-
placeable by a proof from such an axiom of infinity”. In a 1947 expository
article on the continuum problem Gödel presumed that CH would be shown
independent from ZF and speculated more concretely about possibilities with
large cardinals. He argued that the axioms of set theory do not “form a sys-
tem closed in itself” and so the “very concept of set on which they are based
suggests their extension by new axioms that assert the existence of still fur-
ther iterations of the operation of ‘set of’ ”. In an unpublished footnote
toward a 1966 revision of the article, Gödel acknowledged “extremely strong
axioms of infinity of an entirely new kind”, generalizations of properties of
ω “supported by strong arguments from analogy”. These heuristics would
surface anew in the 1960s, when the theory of large cardinals developed a
self-fueling momentum of its own, stimulated by the emergence of forcing
and inner models.
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2.2. Infinite Combinatorics

For decades Gödel’s construction of L stood as an isolated monument in
the axiomatic tradition, and his methodological advances would only become
fully assimilated after the infusion of model-theoretic techniques in the 1950s.
In the mean time, the direct investigation of the transfinite as extension of
number was advanced, gingerly at first, by the emergence of infinite combi-
natorics.

The 1934 Sierpiński monograph on CH (discussed earlier) having consid-
erably elaborated its consequences, a new angle in the combinatorial inves-
tigation of the continuum was soon broached. Hausdorff in 1936 reactivated
his early work on gaps in the orderings of functions to show that the reals can
be partitioned into ℵ1 Borel sets, answering an early question of Sierpiński.
Hausdorff had newly cast his work in terms of functions from ω to ω, the
members of Baire space or the “reals”, under the ordering of eventual dom-
inance: f ≤∗ g if f(n) ≤ g(n) for all but finitely many n ∈ ω. Work on
this structure and definable sets of reals in the 1930s, and particularly of
Fritz Rothberger through the 1940s, isolated what is now called the domi-
nating number d, the least cardinality of a subset of Baire space cofinal in
≤∗. ℵ1 ≤ d ≤ 2ℵ0 , but absent CH d assumed an independent significance
as a pivotal cardinal. Rothberger established incisive results which we now
cast as about the relationships to other pivotal cardinals, results which pro-
vided new understandings about the structure of the continuum but would
become vacuous with the blanket assumption of CH. The investigation of d

and other “cardinal characteristics (or invariants) of the continuum” would
blossom with the advent of forcing.

Taking up another thread, Frank Ramsey in 1930, addressing a problem of
formal logic, established a generalization of the pigeonhole principle for finite
sets, and in a move transcending purpose and context he also established an
infinite version implicitly applying the now familiar Kőnig’s Lemma for trees.
In modern terms, for ordinals α, β, and δ and n ∈ ω the partition relation

β −→ (α)n
δ

asserts that for any partition f : [β]n → δ of the n-element subsets of β into
δ cells, there is an H ⊆ β of order type α homogeneous for the partition,
i.e. all the n-element subsets of H lie in the same cell. Ramsey’s theorem
for finite sets is: For any n, k, i ∈ ω there is an r ∈ ω such that r −→ (k)n

i .
The “Ramsey numbers”, the least possible r’s for various n, k, i, are unknown
except in a few basic cases. The (infinite) Ramsey’s Theorem is: ω −→ (ω)n

i

for every n, i ∈ ω.
A tree is a partially ordered set T such that the predecessors of any ele-

ment are well-ordered. The αth level of T consists of those elements whose
predecessors have order-type α, and the height of T is the least α such that
the αth level of T is empty. A chain of T is a linearly ordered subset, and
an antichain is a subset consisting of pairwise incompatible elements. A co-
final branch of T is a chain with elements at every non-empty level of T .


