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Preface

Fractional Calculus is a field of applied mathematics that deals with 
derivatives and integrals of arbitrary orders (including complex orders), and 
their applications in science, engineering, mathematics, economics, and 
other fields.  It is also known by several other names such as Generalized 

name “Fractional Calculus” is holdover from the period when it meant 
calculus of ration order.  The seeds of fractional derivatives were planted 
over 300 years ago.  Since then many great mathematicians (pure and 
applied) of their times, such as N. H. Abel, M. Caputo, L. Euler, J. Fourier, 
A. K. 

not being taught in schools and colleges; and others remain skeptical of this 

for fractional derivatives were inconsistent, meaning they worked in some 
cases but not in others.  The mathematics involved appeared very different 

applications of this field, and it was considered by many as an abstract area 
containing only mathematical manipulations of little or no use. 

Nearly 30 years ago, the paradigm began to shift from pure mathematical 

Fractional Calculus has been applied to almost every field of science, 

has made a profound impact include viscoelasticity and rheology, electrical 
engineering, electrochemistry, biology, biophysics and bioengineering, 
signal and image processing, mechanics, mechatronics, physics, and control 
theory.  Although some of the mathematical issues remain unsolved, most 
of the difficulties have been overcome, and most of the documented key 
mathematical issues in the field have been resolved to a point where many 

Marichev (1993), Kiryakova (1994), Carpinteri and Mainardi (1997), 
Podlubny (1999), and Hilfer (2000) have been helpful in introducing the 
field to engineering, science, economics and finance, pure and applied 

field.  There are several reasons for that: several of the definitions proposed 

engineering, and mathematics.  Some of the areas where Fractional Calculus 

Oustaloup (1991, 1994, 1995), Miller and Ross (1993), Samko, Kilbas, and 

from that of integer order calculus. There were almost no practical 

formulations to applications in various fields. During the last decade 

mathematics communities. The progress in this field continues. Three 

Integral and Differential Calculus and Calculus of Arbitrary Order. The 

Grunwald,  J. Hadamard, G. H. Hardy, O. Heaviside, H. J. Holmgren,  
P. S. Laplace, G. W. Leibniz, A. V. Letnikov, J. Liouville, B. Riemann
M. Riesz, and H. Weyl, have contributed to this field.  However,  most
scientists and engineers remain unaware of Fractional Calculus; it is 

of the mathematical tools for both the integer- and fractional-order calculus 
are the same. The books and monographs of Oldham and Spanier (1974), 

xi



recent books in this field are by West, Grigolini, and Bologna (2003), 

One of the major advantages of fractional calculus is that it can be 

believe that many of the great future developments will come from the 
applications of fractional calculus to different fields.  For this reason, we 

symposium on Fractional Derivatives and Their Applications (FDTAs), 
ASME-DETC 2003, Chicago, Illinois, USA, September 2003; IFAC first 
workshop on Fractional Differentiations and its Applications (FDAs), 
Bordeaux, France, July 2004; Mini symposium on FDTAs, ENOC-2005, 
Eindhoven, the Netherlands, August 2005; the second symposium on 
FDTAs, ASME-DETC 2005, Long Beach, California, USA, September 
2005; and IFAC second workshop on FDAs, Porto, Portugal, July 2006) and 
published several special issues which include Signal Processing, Vol. 83, 
No. 11, 2003 and Vol. 86, No. 10, 2006; Nonlinear dynamics, Vol. 29, No. 

further advance the field of fractional derivatives and their applications.   

In spite of the progress made in this field, many researchers continue to ask: 
“What are the applications of this field?”  The answer can be found right 
here in this book.  This book contains 37 papers on the applications of 

within the boundaries of integral order calculus, that fractional calculus is 
indeed a viable mathematical tool that will accomplish far more than what 
integer calculus promises, and that fractional calculus is the calculus for the 
future. 

FDTAs, ASME-DETC 2005, Long Beach, California, USA, September 
2005.  We sincerely thank the ASME for allowing the authors to submit 
modified versions of their papers for this book.  We also thank the authors 
for submitting their papers for this book and to Springer-Verlag for its 

Kilbas, Srivastava, and Trujillo (2005), and Magin (2006). 

considered as a super set of integer-order calculus.  Thus, fractional calculus 
has the potential to accomplish what integer-order calculus cannot. We 

are promoting this field.  We recently organized five symposia (the first 

1–4, 2002 and Vol. 38, No. 1–4, 2004; and Fractional Differentiations and its 
Applications, Books on Demand, Germany, 2005.  This book is an attempt to 

Fractional Calculus.  These papers have been divided into seven categories 
based on their themes and applications, namely, analytical and numerical 

believe that researchers, new and old, would realize that we cannot remain 

Eindhoven, The Netherlands, August 2005, and the second symposium on 

2xii Preface

techniques, classical mechanics and particle physics, diffusive systems, 
viscoelastic and disordered media, electrical systems, modeling, and 
control.  Applications, theories, and algorithms presented in these papers 
are contemporary, and they advance the state of knowledge in the field.  We 

the papers presented at the Mini symposium on FDTAs, ENOC-2005, 
Most of the papers in this book are expanded and improved versions of  



publication.  We hope that readers will find this book useful and valuable in 
the advancement of their knowledge and their field. 
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Part 1 

Analytical and
Numerical Techniques 



we demonstrate how that approximation can be used to find accurate numerical
solutions of three different classes of fractional differential equations (FDEs), where

order greater than one. An example of a traveling point load on an infinite beam
resting on an elastic, fractionally damped, foundation is studied. The second class

generalized Basset’s equation are studied. The third class contains FDEs where the

other means. In each case, the Galerkin approximation is found to be very good. We
conclude that the Galerkin approximation can be used with confidence for a variety
of FDEs, including possibly nonlinear ones for which analytical solutions may be
difficult or impossible to obtain.

1 Introduction

tion [1, 2], as

Dα[x(t)] =
1

Γ (1 − α)
d

dt

[∫ t

0

x(τ)
(t − τ)α

dτ

]
,

THREE CLASSES OF FDEs AMENABLE

 Abstract 
We have recently elsewhere a Galerkin approximation scheme

for fractional order derivatives, and used it to obtain accurate numerical solutions
presented

of second-order (mechanical) systems with fractional-order damping terms. Here,

contains FDEs where the highest derivative has order 1. Examples of the so-called

highest derivative is the fractional-order derivative itself. Two specific examples are

Keywords

A fractional derivative of order α is given using the Riemann Louville defini-–

© 2007 Springer. 
in Physics and Engineering, 3–14. 

TO APPROXIMATION USING
A GALERKIN TECHNIQUE

Mechanical Engineering Department, Indian Institute of Science, Bangalore
560012, India

for simplicity we assume that there is a single fractional-order derivative, with
order between 0 and 1. In the first class of FDEs, the highest derivative has integer

considered. In each example studied in the paper, the Galerkin-based numerical
approximation is compared with analytical or semi-analytical solutions obtained by

creep.

3

Fractional derivative,Galerkin, finite element,Basset’s problem, relaxation,

J. Sabatier et al. (eds.), Advances in Fractional Calculus: Theoretical Developments and Applications 
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where 0 < α < 1. Two equivalent forms of the above with zero initial condi-
tions (as in, e.g., [3]) are given as

Dα[x(t)] =
1

Γ (1 − α)

∫ t

0

ẋ(τ)
(t − τ)α

dτ =
1

Γ (1 − α)

∫ t

0

ẋ(t − τ)
τα

dτ . (1)

called fractional differential equations or FDEs. In this work, we consider
FDEs where the fractional derivative has order between 0 and 1 only. Such
FDEs, for our purposes, are divided into three categories, depending on

is exactly equal to 1, or is a fraction between 0 and 1.
In this article, we will demonstrate three strategies for these three classes of

FDEs, whereby a new Galerkin technique [4] for fractional derivatives can be

approximation scheme of [4] involves two calculations:

Aȧ + Ba = c ẋ(t) (2)

and
Dα[x(t)] ≈ 1

Γ (1 + α)Γ (1 − α)
cT a, (3)

where A and B are n × n matrices (specified by the scheme; see [4]), c is an
n× 1 vector also specified by the scheme1, and a is an n× 1 vector n internal
variables that approximate the infinite-dimensional dynamics of the actual

As will be seen below, the first category of FDEs (section 2) poses no real
problem over and above the examples already considered in [4]. That is, in
[4], the highest derivatives in the examples considered had order 2; while in
the example considered in section 2 below, the highest derivative will be or

infinite domain. Our approximation scheme provides significant advantages for
this problem. The second category of FDEs (section 3) also leads to numerical
solution of ODEs (not FDEs). The specific example considered here is relevant
to the physical problem of a sphere falling slowly under gravity through a
viscous liquid, but not yet at steady state. Again, the approximation scheme
leads to an algorithmically simple, quick and accurate solution. However, the
equations are stiff and suitable for a routine that can handle stiff systems,
such as Matlab’s “ode23t”. Finally, the third category of FDEs (section 4)

solved simply and accurately using an index one DAE solver such as Matlab’s
“ode23t”.
1

which involve fractional-order derivatives of the dependent variable(s) are
Differential equations with a single-independent variable (usually “time”),

whether the highest-order derivative in the FDE is an integer greater than 1,

used to obtain simple, quick, and accurate numerical solutions. The Galerkin

fractional order derivative. The T superscript in Eq. (3) denotes matrix trans-
pose.

order 4. However, the example of section 2 is a boundary-value problem on an

leads to a system of differential algebraic equations (DAEs), which can be

A Maple-8 worksheet to compute the matrices A , B, and c is available on [5].

Singh and Chatterjee
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We emphasize that we have deliberately chosen linear examples below
so that analytical or semi-analytical alternative solutions are available for
comparing with our results using the Galerkin approximation. However, it
will be clear that the Galerkin approximation will continue to be useful for
a variety of nonlinear problems where alternative solution techniques might
run into serious difficulties.

2 Traveling Load on an Infinite Beam

The governing equation for an infinite beam on a fractionally damped elastic
foundation, and with a moving point load (see Fig. 1), is

uxxxx +
m̄

EI
utt +

c

EI
D1/2

t u +
k

EI
u = − 1

EI
δ(x − vt) , (4)

where D1/2 has a t-subscript to indicate that x is held constant. The boundary
conditions of interest are

u(±∞, t) ≡ 0.

Beam
Point Load

v

x = vt
8-

8

u

Fig. 1. Traveling point load on an infinite beam with a fractionally damped elastic
foundation.

2.1 With Galerkin

With the Galerkin approximation of the fractional derivative, we get the new
PDEs

uxxxx +
m̄

EI
utt +

c

EI Γ (1/2)Γ (3/2)
cT a +

k

EI
u = − 1

EI
δ(x − vt)

and
Aȧ + Ba = cut ,

We seek steady-state solutions to this problem.

THREE CLASSES OF FDEs AMENABLE
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where a is now a function of both x and t, and the overdot denotes a partial
derivative with respect to t. Changing variables to ξ = x − vt and τ = t to
shift to a steadily moving coordinate system, we get

uξξξξ +
m̄

EI

(
v2 uξξ − 2 v uξτ + uττ +

c

Γ (1/2)Γ (3/2)
cT a + k u

)
= − 1

EI
δ(ξ)

(5)
and

A(aτ − v aξ) + Ba = c (uτ − v uξ) . (6)

uξξξξ +
m̄

EI

(
v2 uξξ +

c

Γ (1/2)Γ (3/2)
cT a + k u

)
= − 1

EI
δ(ξ) (7)

and
−vAaξ + Ba = −v cuξ . (8)

The solution will be discussed later.

2.2 Without Galerkin

D1/2
t u(t, x) =

1
Γ (1/2)

∫ t

0

u̇(z, x)√
t − z

dz .

On letting w = t − z in the above we get

D1/2
t u(t, x) =

1
Γ (1/2)

∫ t

0

u̇(t − w, x)√
w

dw . (9)

After the change of variables ξ = x− vt and τ = t, we get u̇ = −v uξ +uτ ,
which gives u̇ = −v uξ for the steady state (τ independent) solution. Hence,
u̇(t−w, x) = −v uξ(ξ+v w), because ξ = x−vt =⇒ x−v(t−w) = ξ+v w. On

D1/2
t u(t, x) =

−v

Γ (1/2)

∫ τ

0

uξ(ξ + v w)√
w

dw

=
−v

Γ (1/2)

(∫ ∞

0

uξ(ξ + v w)√
w

dw −
∫ ∞

τ

uξ(ξ + v w)√
w

dw

)
.

In the above, steady state is achieved as τ → ∞, and we get

D1/2
t u(t, x) =

−v

Γ (1/2)

∫ ∞

0

uξ(ξ + v w)√
w

dw .

Substituting y = ξ + v w above for later convenience, we get

Now, seeking a steady-state solution, Eqs. (5) and (6) become

Without the Galerkin approximation, the
written as

fractional term in Eq. (4) can be

substituting in Eq. (9) we get (with incomplete incorporation of steady state
conditions)

Singh and Chatterjee
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D1/2
t u(t, x) =

−√
v

Γ (1/2)

∫ ∞

ξ

u′(y)√
y − ξ

d y =
−√

v

Γ (1/2)

∫ ∞

−∞

H(y − ξ)u′(y)√
y − ξ

d y ,

where H(y − ξ) is the Heaviside step function, with H(s) = 1 if s > 0, and 0
otherwise.

uξξξξ+
m̄v2

EI
uξξ− c

√
v

EI Γ (1/2)

∫ ∞

−∞

H(y − ξ)u′(y)√
y − ξ

d y+
k

EI
u = − 1

EI
δ(ξ) . (10)

2.3

�
with constant coefficients. The eigenvalues of this system have nonzero real
parts, and are found numerically. Those with negative real parts contribute to
the solution for ξ > 0, while those with positive real parts contribute to the
solution for ξ < 0. There is a jump in the solution at ξ = 0. The jump occurs
only in uξξξ, and equals −1/EI. All other state variables are continuous at
ξ = 0. These jump/continuity conditions provide as many equations as there
are state variables; and these equations can be used to solve for the same
number of unknown coefficients of eigenvectors in the solution. The overall
procedure is straightforward, and can be implemented in, say, a few lines of
Matlab code. Numerical results obtained will be presented below.

Equation (10) cannot, as far as we know, be solved in closed form. It can
be solved numerically using Fourier transforms. The Fourier transform of u(ξ)
is given by

U(ω) =
√−iω

−EIω4
√−iω + m̄v2ω2

√−iω − ic
√

v ω + k
√−iω

(11)

The inverse Fourier transform of the above was calculated numerically,
pointwise in ξ. The integral involved in inversion is well behaved and con-
vergent. However, due to the presence of the oscillatory quantity exp(iωξ) in
the integrand, some care is needed. In these calculations, we used numerical
observation of antisymmetry in the imaginary part, and symmetry in the real
part, to simplify the integrals; and then used MAPLE to evaluate the integrals
numerically.

2.4 Results

Results for m̄ = 1, EI = 1, k = 1 and various values of v and c are shown in
Fig. 2. The Galerkin approximation is very good.

The agreement between the two solutions (Galerkin and Fourier) provides
support for the correctness of both. In a problem with several unequally spaced

Thus, the steady state version of Eq. (4) without approximation is

Solutions, with Galerkin and without

Solution of Eq. (7) and (8) is straightforward and quick. An algebraic eigen-
value problem is solved and a jump condition imposed. The details are as

THREE CLASSES OF FDEs AMENABLE

follows. For ξ = 0, the system reduces to a homogeneous first-order system
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traveling loads, the Galerkin technique will remain straightforward while the
Fourier approach will become more complicated. Our point here is not that the
Fourier solution is intellectually inferior (we find it elegant). Rather, straight-
forward application of the Galerkin technique requires less problem-specific
ingenuity and effort.

Fig. 2. Numerical results for a traveling point load on an infinite beam at steady
state.

3 Off Spheres Falling Through Viscous Liquids

A sphere falling slowly under its own weight through a viscous liquid will
approach a steady speed [6]. The approach is described by a FDE where
the highest derivative has order 1. Here, we study no fluid mechanics issues.
Rather, we consider two such FDEs with, for simplicity, zero initial conditions.
Such problems have been referred to as examples of the generalized Basset’s

Singh and Chatterjee
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problem [7]. Our aim is to demonstrate the use of our Galerkin approximation
for such problems.

Consider
v̇(t) + Dαv(t) + v(t) = 1 , v(0) = 0, (12)

0 < α < 1 . Here, for demonstration, we will consider α = 1/2 and 1/3. The
solution methods discussed below will work for any reasonable α between 0
and 1.

3.1 With Galerkin

The fractional derivative is approximated as before to give

v̇(t) +
1

Γ (1 − α)Γ (1 + α)
cT a + v(t) = 1 (13a)

and
Aȧ + Ba = c v̇(t) , (13b)

described in [4].

solved using Matlab’s standard ODE solver, “ode45”. However, the equations
are stiff and the solution takes time. Two or more orders of magnitude less
effort seem to be needed if we use Matlab’s stiff system and/or index one DAE
solver, “ode23t”. We will present numerical results later.

3.2

V (s) =
1

s(1 + s + sα)
=

[1 − (−s−1 − sα−1)]−1

s2
.

We can expand the numerator above in a Binomial series for |(s−1 +
sα−1)| < 1, because α < 1 and we are prepared to let s be as large needed
(in particular, suppose we consider s values on a vertical line in the complex
plane, we are prepared to choose that line as far into the right half plane as
needed). The series we obtain is

V (s) =
∞∑

n=0

(−1)n
n∑

r=0

(
n

r

)
1

sn+2−rα
.

Taking the inverse Laplace transform of the above,

v(t) =
∞∑

n=0

(−1)n
n∑

r=0

(
n

r

)
tn+1−rα

Γ (n + 2 − rα)
. (14)

α , the matrices A , B, and c are obtained once and for all using the method

Equation (13) can be rewritten as a first-order system of ODEs, and

The Laplace transform of the solution to Eq. (12) is given by

Series solution using Laplace transforms

THREE CLASSES OF FDEs AMENABLE

with initial conditions v(0) = 0 and a(0) = 0 . Recall that, for any value of
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3.3 Results

Results for the above problem are shown in Fig. 3. The Galerkin approxima-

150) term for both cases,
using MAPLE (fewer than 150 terms may have worked; more were surely not
needed).

150) term. Right:
150) term.

4 FDEs With Highest Derivative Fractional

Consider
Dαx(t) + x(t) = f(t) , x(0) = 0. (15)

damping and under slow loading (where inertia plays a negligible role), such as
in creep tests. Here, we concentrate on demonstrating the use of our Galerkin
technique for this class of problems.

4.1

duce ẋ(t) by taking a 1−α order derivative, but such differentiation requires

tion matches well with the series solutions of Eq. (12) for α = 1/2 and
1/3. The sum in Eq. (14) was taken upto the O(t

Fig. 3. Comparison between Laplace transform and 15-element Galerkin approxi-
mation solutions: Left: α = 1/2 and sum in Eq. (14) upto O(t
α = 1/3 and sum in Eq. (14) upto O(t

Equations of this form are called relaxation fractional Eq. [8]. These
equations have relevance to, e.g., mechanical systems with fractional-order

Adaptation of the Galerkin approximation

it requires ẋ(t) as an input (see (3)). We could intro-Eqs. (2) and
Our usual Galerkin approximation strategy will not work here directly,
because

Singh and Chatterjee
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the forcing function f(t) to have such a derivative, and we avoid such differ-
entiation here. Instead, we adopt the Galerkin approximation through con-

of x(t) in equation (3). We interpret the above as follows. If the forcing was
some general function h(t) instead of ẋ(t); and if h(t) was integrable, i.e.,
h(t) = ġ(t) for some function g(t); and if, in addition, g(t) was continuous at
t = 0, then by adding a constant to g(t) we could ensure that g(0) = 0 while
still satisfying h(t) = ġ(t). Further, the forcing of h(t) (in place of ẋ(t)) in

h(t) = ġ(t) , g(0) = 0 (16a)

and
Aȧ + Ba = c ġ(t) (16b)

then (within our Galerkin approximation)

Dα[g(t)] =
1

Γ (1 + α)Γ (1 − α)
cT a .

But, by definition,

Dα[g(t)] =
1

Γ (1 − α)

∫ t

0

ġ(τ)
(t − τ)α

dτ =
1

Γ (1 − α)

∫ t

0

h(τ)
(t − τ)α

dτ = Dα−1[h(t)] ,

hence
Dα−1[h(t)] =

1
Γ (1 + α)Γ (1 − α)

cT a . (17)

Keeping this in mind, we adopt the following strategy:

1.
order derivatives. To emphasize this crucial distinction, we write A1−α,
B1−α and c1−α respectively.

2.

x(t) + y(t) = f(t) , (18a)

A1−αȧ + B1−αa = c1−α y(t) (18b)

and
x(t) − 1

Γ (α)Γ (2 − α)
cT
1−αa = 0 . (18c)

straints that lead to DAEs, which are
available routines.

Eq. (2) would result in an α order derivative of g(t) (in place of x(t)) in
Eq. (3). In other words, if

Compute matrices A , B, and c for 1 − α order derivatives instead of α

Replace Eq. (15) by the following system:

THREE CLASSES OF FDEs AMENABLE

then easily solved using standard

Observe that ẋ(t) forcing in Eq. (2) results in an α order derivative
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x(t) − D−αy(t) = 0

or
Dαx(t) = y(t) , provided DαD−αy(t) = y(t) . (19)

It happens that DαD−αy(t) = y(t) (see [1] for details).
We used α = 1/2 and 1/3 for numerical simulations. The index of the

DAEs here (see [9] for details) is one. For both values of α, DAEs (18) are

initial conditions are calculated as x(0) = 0 , a(0) = 0 and y(0) = 1; a guess
for corresponding initial slopes, which is an optional input to “ode23t,” is
ẋ(0) = 0 , ȧ(0) = A−1

1−αc1−α and ẏ(0) = 0. Results obtained will be presented
later.

4.2

α = 1/2, MAPLE gives

x(t) = −et
(
erfc

(√
t
)
− e−t

)
. (20)

Since we were unable to analytically invert the Laplace transform using
MAPLE for α = 1/3, we present a series solution below, along the lines of
our previous series solutions (this solution is not new, and will be familiar to
readers who know about Mittag-Leffler functions).

X(s) =
1

s(1 + s1/3)
=

[1 − (−s−1/3)]−1

s4/3
. (21)

On expanding the numerator above (assuming |s| > 1) and simplifying,
we get

X(s) =
∞∑

n=4

(−1)n

sn/3
. (22)

The above series is absolutely convergent for |s| > 1 . Inverting gives

x(t) =
∞∑

n=4

(−1)n tn/3−1

Γ (n/3)
. (23)

Here, Eq. (18) is a set of differential algebraic equations (DAEs). By Eqs.
(16) and (17), Eq. (18c) can be rewritten as

solved using Matlab’s built-in function “ode23t” for f(t) = 1. Consistent

Analytical solutions

The solution of Eq. (15) can be obtained using Laplace transforms. For

The Laplace transform of the solution to Eq. (15) for α = 1/3 is given by

Singh and Chatterjee
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4.3 Results

Numerical results are shown in Fig. 4. The Galerkin approximation matches

150) term (fewer may have sufficed).

Fig. 4.
solutions. Left: α = 1/2 . Right: α = 1/3. For α = 1/3, the series is summed up to
O(t150).

5 Discussion and Conclusions

We have identified three classes of FDEs that are amenable to solution using

developed recently in other work [4]. To showcase the effectiveness of the

analytically (if only in the form of power series). However, more general and
nonlinear problems which are impossible to solve analytically are also expected
to be equally effectively solved using this approximation technique.

The approximation technique used here, as discussed in [4], involves nu-
merical evaluation of certain matrices. For approximation of a derivative of
a given fractional order between 0 and 1, and with a given number of shape
functions in the Galerkin approximation, these matrices need be calculated
only once. They can then be used in any problem where a derivative of the
same order appears. A MAPLE file which calculates these matrices is avail-
able on the web. We hope that this technique will serve to provide a simple,
reliable, and routine method of numerically solving FDEs in a wide range of
applications.

the exact solutions well in both cases. The sum in Eq. (23) is taken upto the
O(t

Comparison between analytical and 15-element Galerkin approximation

approximation technique, we have used linear FDEs, which could also be solved

THREE CLASSES OF FDEs AMENABLE

a new Galerkin approximation for the fractional-order derivative, that was
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Abstract 
The Mittag-Leffler function E (z), which is a generalization of the 

exponential function, arises frequently in the solutions of physical problems 

1 <  < 2 which is applicable for many physical problems.  What has not been 
known is the exact number of real zeros of E (z) for a given value of  in this 
range.  An iteration formula is derived for calculating the number of real zeros of 
E (z) for any value of  in the range 1 <  < 2 and some specific results are 
tabulated.     

Key words 

1 Introduction 

The single parameter Mittag-Leffler function E (z) is defined over the entire 
complex plane by 

                                 
0k

k

1k

z
zE       > 0, z  C                   (1)  
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described by differential and/or integral equations of fractional order. Conse-  
quently, the zeros of E (z) and their distribution are of fundamental impor- 
tance and  play a significant role in the dynamic solutions.  The Mittag- Leffler
function E (z) is known to have a finite number of real zeros in the range 
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ENUMERATION OF THE REAL ZEROS  
OF THE MITTAG-LEFFLER FUNCTION E (z), 
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and is named after Mittag-Leffler who introduced it in 1903 [1,2].  The two
parameter generalized Mittag-Leffler function, which was introduced later [3,4], 
is also defined over the entire complex plane, and is given by 

                                     
0k

k

, k

z
zE         ,  0, z  C           (2)         

It may be noted that when  = 1, E ,1(z) = E (z).  Properties of the Mittag-

others have considered complex  [8,9] and complex  [10], the present work is 
restricted to real  and .  The Mittag-Leffler functions are natural extensions of 

are often expressed in terms of Mittag-Leffer functions in much the same way 
that solutions of many integer order differential equations may be expressed in 
terms of exponential functions.  Consequently, the zeros of E ,1(z), which play a 
significant role in the dynamic solutions, are of intrinsic interest. 

Except for the special case of  = 1, in general E ,1(z) has an infinite number 
of zeros [11,12] and all complex zeros of E (z) appear as pairs of complex 
conjugates [13].  To facilitate the discussion of the zeros, the domain of  values 

 2 based on the nature of the zeros, but E ,1(z) and its zeros exhibit similar 
properties within each range.  For 0  1, E (z) has no real zeros [14] and 
thus must have an infinite number of complex zeros.  For  = 1, E1,1(z) can be 

1

E (z) has a finite number of zeros on the negative real axis [5,8,9,11,14] and 
must in addition have an infinite number of complex zeros [11,15].  For  2, 

,1(z) has no 
positive real zeros.  Thus, for convenience, the variable x will be used to 
represent a positive real number so that E ,1

argument.  Real zeros occur only in the ranges 1  2, and  2.  The range 
1  2 is the range for which the least is known and yet is quite relevant for 
many physical problems [6,17].  The objective of this paper is to determine the 
exact number of real zeros for E ,1

These results will be discussed later in connection with an asymptotic formula 
for the number of real zeros valid near  = 2 [14].  The first requirement is a 
discussion of how to calculate E ,1

Hanneken, Vaught, and Achar 

Leffler functions have been summarized in several references [5–7].  Although 

the exponential function and solutions of fractional-order differential equations 

written as E ( z) = exp(z), which has no zeros real or complex.  For 1  2, 

complex zeros [8–10,16].  Note that regardless of the range of , E

(–x) clearly has a negative real 

(–x) for arbitrary  in the range 1  2.  

(–x) accurately. 

can be conveniently divided into four ranges: 0  1,  = 1, 1  2, and 

E (z) has an infinite number of zeros that are real, negative, and simple and no 
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2 Numerical Evaluation of E ,

Numerical values of E , (z) are easily calculated using the power series given in 
Eq. (2) when the argument z is not too large.  However, for large arguments this 
method is impractical because of the extremely slow convergence of the series.  
Instead, use will be made of the representation of E , (z) as a Laplace inversion 
integral [6] 

                                   ds
zs

s
e

i
zE

Br

s
, 2

1                                    (3)

where Br denotes the Bromwich path.  Using standard techniques in the theory 
of calculus of residues [18], E , ( z ) can be decomposed into two parts [14].  
For the special case of a negative real argument, the result is given by: 

                                    xfxgxE ,,,                               (4a) 

          
/1

/1/1

,
x

sinx
1

coscosxexp
2

xg (4b) 

          
/1

0
2

/1

,
x

dr
1cosr2r

sinsinrrrxexp1

xf          (4c) 

where  + 1 >  and for  < 1, g ,

                                     xfxgxE 1,1,1,                              (5a) 

             sinx
1

coscosxexp
2

xg

11

1,               (5b) 

                           
0

2

1/1

1, dr
1cosr2r

sinrrxexp1
xf                   (5c) 

(–x)

(4a–c) reduce to 
(–x) = 0.  For the special case of  = 1 Eqs. 
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,1

were in agreement to better than 40 significant digits with the values calculated 
directly from Eq. (1) for small values of the argument.  As an alternative to the 
numerical integration required in Eq. (5c), f ,1

infinite series as follows[14] 

            
1n

n

1n

21,
n1x

1

21x

1

1x

1
xf                 (6) 

This series is particularly useful when both x and the gamma function are 
large and the series converges very quickly.  The value of the gamma function 
approaches infinity as its argument approaches a negative integer.  Thus, Eq. (6) 
is most useful for  close to 2 and x large. 

3  Zeros of E ,1

Critical to the derivation of a formula for the number of real zeros is an 
understanding of the nature of the zeros and this is best done by examining the 
graphs of E ,1 ,1(0) = 1 and for large x values E ,1

negative and asymptotically approaches zero governed predominately by f ,1

Eq. (5c), with the exponentially decreasing oscillations of g ,1

superimposed.  The fact that the curves of E ,1

ultimately become negative for large x implies that E ,1

,1

The curve exhibits only one zero at x  2.293 and for larger x remains 
negative with the superimposed oscillation of g ,1

scale.  The rate of exponential decay of g ,1

x1/  cos( / ), the cos( / ) being negative in the range 1  2.  As  increases 
this exponent decreases resulting in larger amplitude oscillations.  This is 
illustrated in the graph of E ,1

amplitude oscillations of g ,1

24.243 in addition to the one at x  2.110.   

Hanneken, Vaught, and Achar 

(–x) were computed 
primarily from Eqs. (5a–c) using Mathematica [19] with the integration performed 
using the built-in  function NIntegrate. The values computed using Eqs. (5a–c) 

(–x) can be written in an asymptotic 

(–x) of Multiplicity 2 

(–x).  For 1  2, E (–x) is 

Numerical values of the Mittag-Leffler function E

(–x), 

(–x) are positive at x = 0 and 

(–x) is determined by the exponent 
(–x) imperceptible on this 

(–x) for  = 1.5 also shown in Fig. 1.  The larger 
(–x) give rise to a relative maximum at x  17.472 

(–x), Eq. (5b), 

(–x) can only cross the 
x-axis an odd number of times[5].  This is illustrated in the plot of E (–x) for  
     = 1.3 shown in Fig. 1.  

x
extending above the x-axis and yielding two more zeros at x  13.765 and
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z
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Clearly, there is a value of  between  = 1.3 and  = 1.5 for which the 
curve of E ,1

of E ,1

1.422190690801 separates the range of  values where E ,1

zero from the range where E ,1

,1 x)

the next section depends essentially on the existence of these values of  where 
the curve of E ,1

,1

tangent to the x-axis have been numerically determined.  A few selected values 
are given in Table 1.  These values will be most useful in section 5 to establish 

5 ,1 ,1

,1 5  < 7 , 7 zeros for 

7  < 9 , 9 zeros for 9  < 11 ,  , 11281 zeros for 11281  < 11283 . 

    Fig. 1.  Plots of E (–x) for various values of 

(–x) is exactly tangent to the x-axis.  This is illustrated in the graph 

.

(–x) for  1.422190690801 also shown in Fig. 1.  This curve has a zero 

(–x) has only one 

(–

(–x) is tangent to the x-axis and for which one of the zeros has a 
multiplicity of 2.  The first 5,641 of these  values where the curve of E (–x) is 

(–x) has 5 zeros and E
(–x) has 5 zeros for 

at x  2.145 and is tangential at x  16.724 where it has a zero of multiplicity  
of 2 still yielding an odd total number of zeros.  It may be noted that for  = 1.3 
the curve crosses the x-axis only once yielding one zero and for  = 1.5 the 
curve crosses the x-axis 3 times yielding 3 zeros.  Thus, the value of 

(–x) has three zeros.  The next larger value of 

ranges of reliability for the iteration results for  < 1.999.  In reading Table 1, for 
example,  is the lowest value of  for which E (–x)
is tangent to the x-axis.  Thus, E

where the curve is tangent to the x-axis is at  1.5718839229424 where E
 has five zeros.  The iteration formula for the number of real zeros described in 
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     Table 1.   Values of  (truncated) at which E ,1

n n  n n

3 1.422190690801  11217 1.998994787610 
5 1.571883922942  11219 1.998994948054 
7 1.649068237342  11221 1.998995108443 
9 1.698516223760  11223 1.998995268780 

11 1.733693032768  11225 1.998995429062 
13 1.760338811725  11227 1.998995589290 
15 1.781392651685  11229 1.998995749465 
17 1.798543344750  11231 1.998995909586 
19 1.812841949070  11233 1.998996069654 
21 1.824982270661  11235 1.998996229667 
23 1.835443517675  11237 1.998996389627 
25 1.844568817828  11239 1.998996549534 
27 1.852611186687  11241 1.998996709387 
29 1.859761810886  11243 1.998996869186 
31 1.866168176867  11245 1.998997028932 
33 1.871946096560  11247 1.998997188625 
35 1.877187921171  11249 1.998997348263 
37 1.881968294552  11251 1.998997507849 
39 1.886348272721  11253 1.998997667381 
41 1.890378331112  11255 1.998997826860 
43 1.894100597857  11257 1.998997986285 
45 1.897550537931  11259 1.998998145657 
47 1.900758240821  11261 1.998998304976 
49 1.903749417395  11263 1.998998464241 
51 1.906546180470  11265 1.998998623453 
53 1.909167662339  11267 1.998998782612 
55 1.911630507999  11269 1.998998941718 
57 1.913949272538  11271 1.998999100770 
59 1.916136743903  11273 1.998999259770 
61 1.918204207029  11275 1.998999418716 
63 1.920161661487  11277 1.998999577609 
65 1.922018001994  11279 1.998999736450 
67 1.923781169033  11281 1.998999895237 
69 1.925458275243  11283 1.999000053971 

Hanneken, Vaught, and Achar 

(–x) is tangent to the x-axis 


