Algorithm Collections for Digital Signal Processing Applications Using Matlab

Algorithm Collections for Digital Signal Processing Applications Using Matlab

E.S. Gopi
National Institute of Technology, Tiruchi, India

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-6409-8 (HB)
ISBN 978-1-4020-6410-4 (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.
www.springer.com

Printed on acid-free paper

All Rights Reserved

© 2007 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

This book is dedicated to
my Wife G. Viji
and my Son V.G.Vasig

Contents

Preface xiii
Acknowledgments xv
Chapter 1 ARTIFICIAL INTELLIGENCE 1 Particle Swarm Algorithm 1
1-1 How are the Values of ' x ' and ' y ' are Updated in Every Iteration? 2
1-2 PSO Algorithm to Maximize the Function F(X, Y, Z) 4
1-3 M-program for PSO Algorithm 6
1-4 Program Illustration 8
2 Genetic Algorithm 9
2-1 Roulette Wheel Selection Rule 10
2-2 Example 11
2-2-1 M-program for genetic algorithm 11
2-2-2 Program illustration 13
2-3 Classification of Genetic Operators 15
2-3-1 Simple crossover 16
2-3-2 Heuristic crossover 16
2-3-3 Arith crossover 17
3 Simulated Annealing 18
3-1 Simulated Annealing Algorithm 19
3-2 Example 19
3-3 M-program for Simulated Annealing 23
4 Back Propagation Neural Network 24
4-1 Single Neuron Architecture 25
4-2 Algorithm 27
4-3 Example 29
4-4 M-program for Training the Artificial Neural Network for the Problem Proposed in the Previous Section 31
5 Fuzzy Logic Systems 32
5-1 Union and Intersection of Two Fuzzy Sets 32
5-2 Fuzzy Logic Systems 33
5-2-1 Algorithm 35
5-3 Why Fuzzy Logic Systems? 38
5-4 Example 39
5-5 M-program for the Realization of Fuzzy Logic System for the Specifications given in Section 5-4 41
6 Ant Colony Optimization 44
6-1 Algorithm 44
6-2 Example 48
6-3 M-program for Finding the Optimal Order using Ant Colony 50
Technique for the Specifications given in the Section 6-2
Chapter 2 PROBABILITY AND RANDOM PROCESS 1 Independent Component Analysis 53
1-1 ICA for Two Mixed Signals 53
1-1-1 ICA algorithm 62
1-2 M-file for Independent Component Analysis 65
2 Gaussian Mixture Model 68
2-1 Expectation-maximization Algorithm 70
2-1-1 Expectation stage 71
2-1-2 Maximization stage 71
2-2 Example 72
2-3 Matlab Program 73
2-4 Program Illustration 76
3 K-Means Algorithm for Pattern Recognition 77
3-1 K-means Algorithm 77
3-2 Example 77
3-3 Matlab Program for the K-means Algorithm Applied for the Example given in Section 3-2 78
4 Fuzzy K-Means Algorithm for Pattern Recognition 79
4-1 Fuzzy K-means Algorithm 80
4-2 Example 81
4-3 Matlab Program for the Fuzzy k-means Algorithm Applied for the Example given in Section 4-2 83
5 Mean and Variance Normalization 84
5-1 Algorithm 84
5-2 Example 1 85
5-3 M-program for Mean and Variance Normalization 86
Chapter 3 NUMERICAL LINEAR ALGEBRA 87
1 Hotelling Transformation 87
1-1 Diagonalization of the Matrix 'CM' 88
1-2 Example 88
1-3 Matlab Program 90
2 Eigen Basis 91
2-1 Example 1 91
3 Singular Value Decomposition (SVD) 93
3-1 Example 94
4 Projection Matrix 95
4-1 Projection of the Vector 'a' on the Vector 'b' 95
4-2 Projection of the Vector on the Plane Described by Two Columns Vectors of the Matrix ' X ' 96
4-2-1 Example 97
4-2-2 Example 2 98
5 Orthonormal Vectors 100
5-1 Gram-Schmidt Orthogonalization procedure 100
5-2 Example 101
5-3 Need for Orthonormal Basis 101
5-4 M-file for Gram-Schmidt Orthogonalization Procedure 103
6 Computation of the Powers of the Matrix ' A ' 103
7 Determination of $K^{\text {th }}$ Element in the Sequence 104
8 Computation of Exponential of the Matrix ' A ' 107
8.1 Example 107
9 Solving Differential Equation Using Eigen decomposition 108
10 Computation of Pseudo Inverse of the Matrix 109
11 Computation of Transformation Matrices 111
11-1 Computation of Transformation Matrix for the Fourier 113 Transformation
11-2 Basis Co-efficient transformation 115
11-3 Transformation Matrix for Obtaining Co-efficient of Eigen Basis 117
11-4 Transformation Matrix for Obtaining Co-efficient of Wavelet Basis 117
12 System Stability Test Using Eigen Values 118
13 Positive Definite Matrix test for Minimal Location of the Function $f(x 1, x 2, x 3, x 4 \ldots x n)$ 119
14 Wavelet Transformation Using Matrix Method 119
14-1 Haar Transformation 120
14-1-1 Example 122
14-1-2 M-file for haar forward and inverse transformation 125
14-2 Daubechies-4 Transformation 127
14-2-1 Example 128
14-2-2 M-file for daubechies 4 forward and inverse transformation 131
Chapter 4 SELECTED APPLICATIONS 135
1 Ear Pattern Recognition Using Eigen Ear 135
1-1 Algorithm 135
1-2 M-program for Ear Pattern Recognition 138
1-3 Program Illustration 140
2 Ear Image Data Compression using Eigen Basis 141
2-1 Approach 141
2-2 M-program for Ear Image Data Compression 143
3 Adaptive Noise Filtering using Back Propagation Neural Network 145
3-1 Approach 146
3-2 M-file for Noise Filtering Using ANN 147
3-3 Program Illustration 149
4 Binary Image Rotation Using Transformation Matrix 150
4-1 Algorithm 151
4-2 M-program for Binary Image Rotation with 45 Degree Anticlockwise Direction 152
5 Clustering Texture Images Using K-means Algorithm 152
5-1 Approach 153
5-2 M-program for Texture Images Clustering 155
6 Search Engine Using Interactive Genetic Algorithm 156
6-1 Procedure 156
6-2 Example 158
6-3 M-program for Interactive Genetic Algorithm 160
6-4 Program Illustration 165
7 Speech Signal Separation and Denoising Using Independent Component Analysis 166
7-1 Experiment 1 166
7-2 Experiment 2 167
7-3 M-program for Denoising 169
8 Detecting Photorealistic Images using ICA Basis 170
8-1 Approach 171
8-1-1 To classify the new image into one among the photographic or photorealistic image 171
8-2 M-program for Detecting Photo Realistic Images Using ICA basis 172
8-3 Program Illustration 174
9 Binary Image Watermarking Using Wavelet Domain 175 of the Audio Signal
9-1 Example 175
9-2 M-file for Binary Image Watermarking 176 in Wavelet Domain of the Audio Signal
9-3 Program Illustration 180
Appendix 183
Index 189

Preface

The Algorithms such as SVD, Eigen decomposition, Gaussian Mixture Model, PSO, Ant Colony etc. are scattered in different fields. There is the need to collect all such algorithms for quick reference. Also there is the need to view such algorithms in application point of view. This Book attempts to satisfy the above requirement. Also the algorithms are made clear using MATLAB programs. This book will be useful for the Beginners Research scholars and Students who are doing research work on practical applications of Digital Signal Processing using MATLAB.

Acknowledgments

I am extremely happy to express my thanks to the Director Dr M.Chidambaram, National Institute of Technology Trichy India for his support. I would also like to thank Dr B.Venkatramani, Head of the Electronics and Communication Engineering Department, National Institute of Technology Trichy India and Dr K.M.M. Prabhu, Professor of the Electrical Engineering Department, Indian Institute of Technology Madras India for their valuable suggestions. Last but not least I would like to thank those who directly or indirectly involved in bringing up this book sucessfully. Special thanks to my family members father Mr E.Sankara subbu, mother Mrs E.S.Meena, Sisters R.Priyaravi, M.Sathyamathi, E.S.Abinaya and Brother E.S.Anukeerthi.

Thanks
E.S.Gopi

Chapter 1

ARTIFICIAL INTELLIGENCE
 Algorithm Collections

1. PARTICLE SWARM ALGORITHM

Consider the two swarms flying in the sky, trying to reach the particular destination. Swarms based on their individual experience choose the proper path to reach the particular destination. Apart from their individual decisions, decisions about the optimal path are taken based on their neighbor's decision and hence they are able to reach their destination faster. The mathematical model for the above mentioned behavior of the swarm is being used in the optimization technique as the Particle Swarm Optimization Algorithm (PSO).

For example, let us consider the two variables ' x ' and ' y ' as the two swarms. They are flying in the sky to reach the particular destination (i.e.) they continuously change their values to minimize the function $(x-10)^{2}+(y-$ $5)^{2}$. Final value for ' x ' and ' y ' are 10.1165 and 5 respectively after 100 iterations.

The Figure 1-1 gives the closed look of how the values of x and y are changing along with the function value to be minimized. The minimization function value reached almost zero within 35 iterations. Figure 1-2 shows the zoomed version to show how the position of x and y are varying until they reach the steady state.

Figure 1-1. PSO Example zoomed version

Figure 1-2. PSO Example

1.1 How are the Values of ' x and y ' are Updated in Every Iteration?

The vector representation for updating the values for x and y is given in Figure 1-3. Let the position of the swarms be at ' a ' and ' b ' respectively as shown in the figure. Both are trying to reach the position ' e '. Let ' a ' decides to move towards ' c ' and ' b ' decides to move towards ' d '.

The distance between the position ' c ' and ' e ' is greater than the distance between ' d ' and ' e '. so based on the neighbor's decision position ' d ' is treated as the common position decided by both ' a ' and ' b '. (ie) the position ' c ' is the individual decision taken by ' a ', position ' d ' is the individual decision taken by ' b ' and the position ' d ' is the common position decided by both 'a' and 'b'.

Figure 1-3. Vector Representation of PSO Algorithm
' a ' based on the above knowledge, finally decides to move towards the position ' g ' as the linear combination of 'oa', 'ac' and 'ad'. [As ' d ' is the common position decided].The linear combination of 'oa' and scaled 'ac' (ie) 'af' is the vector 'of'. The vector 'of' combined with vector ' fg ' (ie) scaled version of 'ad' to get 'og' and hence final position decided by ' a ' is ' g '.

Similarly, ' b ' decides the position ' h ' as the final position. It is the linear combination of 'ob' and 'bh'(ie) scaled version of 'bd'. Note as ' d ' is the common position decided by ' a ' and ' b ', the final position is decided by linear combinations of two vectors alone.

Thus finally the swarms ' a ' and ' b ' moves towards the position ' g ' and ' h ' respectively for reaching the final destination position ' e '. The swarm ' a ' and ' b ' randomly select scaling value for linear combination. Note that 'oa' and 'ob' are scaled with 1 (ie) actual values are used without scaling. Thus the decision of the swarm 'a' to reach 'e' is decided by its own intuition along with its neighbor's intuition.

Now let us consider three swarms ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) are trying to reach the particular destination point ' D '. A decides A ', B decides B ' and C decides C^{\prime} as the next position. Let the distance between the B^{\prime} and D is less compared with $\mathrm{A}^{\prime} \mathrm{D}$ and C^{\prime} and hence, B^{\prime} is treated as the global decision point to reach the destination faster.

Thus the final decision taken by A is to move to the point, which is the linear combination of $\mathrm{OA}, \mathrm{AA}^{\prime}$ and AB^{\prime}. Similarly the final decision taken
by B is to move the point which is the linear combination of $O B, B B$ '. The final decision taken by C is to move the point which is the linear combination of OC, CC' and CB'.

1.2 PSO Algorithm to Maximize the Function F (X, Y, Z)

1. Initialize the values for initial position a, b, c, d, e
2. Initialize the next positions decided by the individual swarms as $a^{\prime}, b^{\prime}, c^{\prime}$ d' and e'
3. Global decision regarding the next position is computed as follows. Compute $f\left(a^{\prime}, b, c, d, e\right), f\left(a, b^{\prime}, c, d, e\right), f\left(a, b, c^{\prime}, d, e\right), f\left(a, b, c, d^{\prime}, e\right)$ and $f\left(a, b, c, d, e^{\prime}\right)$. Find minimum among the computed values. If $f\left(a^{\prime}\right.$, $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$) is minimum among all, the global position decided regarding the next position is a^{\prime}. Similarly If $f(a, b \prime, c, d, e)$ is minimum among all, b^{\prime} is decided as the global position regarding the next position to be shifted and so on. Let the selected global position is represented ad 'global'
4. Next value for a is computed as the linear combination of ' a ', (a ' $-a$) and (global-a) (ie)

- nexta $=\mathrm{a}+\mathrm{C} 1$ * RAND * $\left(\mathrm{a}^{\prime}-\mathrm{a}\right)+\mathrm{C} 2$ * RAND * (global -a$)$
- nextb $=\mathrm{b}+\mathrm{C} 1 *$ RAND $*(\mathrm{~b},-\mathrm{b})+\mathrm{C} 2 *$ RAND * (global -b$)$
- nextc $=\mathrm{c}+\mathrm{C} 1 *$ RAND * $\left(\mathrm{c}^{\prime}-\mathrm{c}\right)+\mathrm{C} 2 *$ RAND $*$ (global -c$)$
- nextd $=\mathrm{d}+\mathrm{C} 1 *$ RAND $*\left(\mathrm{~d}^{\prime}-\mathrm{d}\right)+\mathrm{C} 2 *$ RAND $*($ global -d$)$
- nexte $=\mathrm{e}+\mathrm{C} 1 *$ RAND * $\left(\mathrm{e}^{\prime}-\mathrm{e}\right)+\mathrm{C} 2 *$ RAND * (global -e$)$

5. Change the current value for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e as nexta, nextb, nextc, nextd and nexte
6. If $\mathrm{f}($ nexta, $\mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$ is less than $\mathrm{f}\left(\mathrm{a}^{\prime}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\right)$ then update the value for a^{\prime} as nexta, otherwise a ' is not changed.

If $\mathrm{f}(\mathrm{a}$, nextb, $\mathrm{c}, \mathrm{d}, \mathrm{e})$ is less than $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$ then update the value for b^{\prime} as nextb, otherwise b^{\prime} is not changed
If $f(a, b$, nextc, $d, e)$ is less than $f\left(a, b, c^{\prime}, d, e\right)$ then update the value for c ' as nextc, otherwise c ' is not changed

If $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}$, nextd, e$)$ is less than $\mathrm{f}\left(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}^{\prime}, \mathrm{e}\right)$ then update the value for d' as nextd, otherwise d^{\prime} is not changed

If $\mathrm{f}\left(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\right.$, nexte) is less than $\mathrm{f}\left(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}^{\prime}\right)$ then update the value for e' as nexte, otherwise e' is not changed
7. Repeat the steps 3 to 6 for much iteration to reach the final decision.

The values for ' $c 1$ ',' $c 2$ ' are decided based on the weightage given to individual decision and global decision respectively.

Let $\Delta \mathrm{a}(\mathrm{t})$ is the change in the value for updating the value for ' a ' in t th iteration, then nexta at $(t+1)$ th iteration can be computed using the following formula. This is considered as the velocity for updating the position of the swarm in every iteration.

$$
\begin{aligned}
& \operatorname{nexta}(\mathrm{t}+1)=\mathrm{a}(\mathrm{t})+\Delta \mathrm{a}(\mathrm{t}+1) \\
& \text { where } \\
& \Delta \mathrm{a}(\mathrm{t}+1)=\mathrm{c} 1 * \text { rand } *(\mathrm{a},-\mathrm{a})+\mathrm{c} 2 * \text { rand } *(\text { global }-\mathrm{a})+ \\
& \mathrm{w}(\mathrm{t})^{*} \Delta \mathrm{a}(\mathrm{t})
\end{aligned}
$$

' $w(t)$ ' is the weight at $t^{\text {th }}$ iteration. The value for ' w ' is adjusted at every iteration as given below, where 'iter' is total number of iteration used.

$$
\mathrm{w}(\mathrm{t}+1)=\mathrm{w}(\mathrm{t})-\mathrm{t} * \mathrm{w}(\mathrm{t}) /(\text { iter }) .
$$

Decision taken in the previous iteration is also used for deciding the next position to be shifted by the swarm. But as iteration increases, the contribution of the previous decision is decreases and finally reaches zero in the final iteration.

1.3 M - program for PSO Algorithm

```
psogv.m
function [value]=psogv(fun,range,ITER)
%psogv.m
%Particle swarm algorithm for maximizing the function fun with two variables x
%and y.
%Syntax
%[value]=psogv(fun,range,ITER)
%example
%fun='fl'
%create the function fun.m
%function [res]=fun(x,y)
%res=sin(x)+\operatorname{cos}(x);
%range=[-pi pi;-pi pi];
%ITER is the total number of Iteration
error=[];
vel1=[];
vel2=[];
%Intialize the swarm position
swarm=[];
x(1)=rand*range(1,2)+range(1,1);
y(1)=rand*range(2,2)+range(2,1);
x(2)=rand*range(1,2)+range(1,1);
y(2)=rand*range(2,2)+range(2,1);
%Intialize weight
w=1;
c1=2;
c2=2;
%Initialize the velocity
v1=0;%velocity for x
v2=0;%velocity for y
for i=1:1:ITER
[p,q]=min([fl(fun,x(2),y(1)) fl(fun,x(1),y(2))]);
if (q==1)
    capture=x(2);
else
    capture=y(2);
end
```

Continued...
$\mathrm{v} 1=\mathrm{w} * \mathrm{v} 1+\mathrm{c} 1 *$ rand $^{*}(\mathrm{x}(2)-\mathrm{x}(1))+\mathrm{c} 2 *$ rand ${ }^{*}($ capture $-\mathrm{x}(1))$;
$\mathrm{v} 2=\mathrm{w} * \mathrm{v} 2+\mathrm{c} 1 * \mathrm{rand}^{*}(\mathrm{y}(2)-\mathrm{y}(1))+\mathrm{c} 2 *$ rand*(capture-y(1));
vel1=[vell v1];
vel2=[vel2 v2];
\%updating $\mathrm{x}(1)$ and $\mathrm{y}(1)$
$\mathrm{x}(1)=\mathrm{x}(1)+\mathrm{v} 1$;
$y(1)=y(1)+v 2 ;$
\%updating $x(2)$ and $y(2)$
$\operatorname{if}((f 1(f u n, x(2), y(1)))<=(f l(f u n, x(1), y(1))))$
$\mathrm{x}(2)=\mathrm{x}(2)$;
else
$x(2)=x(1)$;
end;
$\operatorname{if}((f 1(f u n, x(1), y(2)))<=(f l(f u n, x(1), y(1))))$
$y(2)=y(2)$;
else
$y(2)=y(1)$;
end
error=[error fl(fun, $\mathrm{x}(2), \mathrm{y}(2))]$;
$\mathrm{w}=\mathrm{w}-\mathrm{w} * / /$ ITER;
swarm=[swarm;x(2) y(2)];
subplot($3,1,3$)
plot(error,'-')
title('Error(vs) Iteration');
subplot($3,1,1$)
plot(swarm(:,1),'-')
title('x (vs) Iteration');
subplot($3,1,2$)
plot(swarm(:,2),'-')
title('y (vs) Iteration');
pause(0.2)
end
value $=[x(2) ; y(2)]$;

f1.m

function [res]=f1(fun, x, y);
$\mathrm{s}=$ strcat(fun,'(x,y)');
res=eval(s);

1.4 Program Illustration

Following the sample results obtained after the execution of the program psogv.m for maximizing the function 'f1.m'

/ MMatIab	
File Edi. Devug Desktap Winow Hep	
Startats [Howto Add [Whatisew	
$\begin{aligned} & \text { >help psogv } \\ & \text { psogv,m } \\ & \text { Particle swarm algorithro for maximizing the function fun vith two variables x } \end{aligned}$	
and P .	AFigure 1
Syntax [value] $=p \operatorname{pogog}($ fun, range, , TTER) $)$	File edt. Yiew Insert Took Desstrop Window Hep
example	
$f u n=1 \mathrm{f}^{1}$	$x($ (s) Iteration
create the function fun.m function [res] $\operatorname{fun}(x, y)$	$50 \square^{1}$ । 1 । 1 1
function [res] $=$ fun (x, y) res=sin $(x)+\cos (x) ;$	아
range=[-pi pi--pi pi];	
ITER is the total number of Iteration	
	100 1 1 1 1 1 1 1 1 1 1
Fle Edt Text Cell Took Defuy Pestow Whindout Hep y x x	$\underline{y(s) l \mid l e a t i o n ~}$
	$0 \text { O. }$
》	Emot(is) Iteration
	5000
\ggg [res] =psogvर ('f $\left.22^{\prime},[-100100 ;-100100], 100\right)$	
res $=\square$	
$\begin{array}{r} 10.1940 \\ 4.8433 \end{array}$	

2. GENETIC ALGORITHM

A basic element of the Biological Genetics is the chromosomes. Chromosomes cross over each other. Mutate itself and new set of chromosomes is generated. Based on the requirement, some of the chromosomes survive. This is the cycle of one generation in Biological Genetics. The above process is repeated for many generations and finally best set of chromosomes based on the requirement will be available. This is the natural process of Biological Genetics. The Mathematical algorithm equivalent to the above behavior used as the optimization technique is called as Artificial Genetic Algorithm.

Let us consider the problem for maximizing the function $f(x)$ subject to the constraint x varies from ' m ' to ' n '. The function $\mathrm{f}(\mathrm{x})$ is called fitness function. Initial population of chromosomes is generated randomly. (i.e.) the values for the variable ' x ' are selected randomly between the range ' m ' to ' n '. Let the values be $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots \mathrm{x}_{\mathrm{L}}$, where ' L ' is the population size. Note that they are called as chromosomes in Biological context.

The Genetic operations like Cross over and Mutation are performed to obtain ' $2 *$ L' chromosomes as described below.

Two chromosomes of the current population is randomly selected (ie) select two numbers from the current population. Cross over operation generates another two numbers y1 and y 2 using the selected numbers. Let the randomly selected numbers be x 3 and $\mathrm{x} 9 . \mathrm{Y}_{1}$ is computed as $\mathrm{r} * \mathrm{x} 3+(1-$ $\mathrm{r}) * \mathrm{x} 9$. Similarly y_{2} is computed as $(1-\mathrm{r}) * \mathrm{x}_{3}+\mathrm{r}{ }^{*} \mathrm{x}_{9}$, where ' r ' is the random number generated between 0 tol.

The same operation is repeated ' L ' times to get ' $2 * L$ ' newly generated chromosomes. Mutation operation is performed for the obtained chromosomes to generate ' 2 *L' mutated chromosomes. For instance the generated number ' y_{1} ' is mutated to give z_{1} mathematically computed as $r_{1} * y$, where r_{1} is the random number generated. Thus the new set of chromosomes after crossover and Mutation are obtained as $\left[z_{1} z_{2} z_{3} \ldots z_{2 L}\right]$.

Among the ' 2 L ' values generated after genetic operations, ' L ' values are selected based on Roulette Wheel selection.

