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Preface 

The Algorithms such as SVD, Eigen decomposition, Gaussian Mixture 
Model, PSO, Ant Colony etc. are scattered in different fields. There is the 
need to collect all such algorithms for quick reference. Also there is the need 
to view such algorithms in application point of view. This Book attempts to 
satisfy the above requirement. Also the algorithms are made clear using 
MATLAB programs. This book will be useful for the Beginners Research 
scholars and Students who are doing research work on practical applications 
of Digital Signal Processing using MATLAB. 
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Chapter 1 

ARTIFICIAL INTELLIGENCE 
Algorithm Collections 

 
 

1. PARTICLE SWARM ALGORITHM 

Consider the two swarms flying in the sky, trying to reach the particular 
destination. Swarms based on their individual experience choose the proper 
path to reach the particular destination. Apart from their individual 
decisions, decisions about the optimal path are taken based on their 
neighbor’s decision and hence they are able to reach their destination faster. 
The mathematical model for the above mentioned behavior of the swarm is 
being used in the optimization technique as the Particle Swarm Optimization 
Algorithm (PSO). 

For example, let us consider the two variables ‘x’ and ‘y’ as the two 
swarms. They are flying in the sky to reach the particular destination (i.e.) 
they continuously change their values to minimize the function (x-10)2+(y-
5)2. Final value for ‘x’ and ‘y’ are 10.1165 and 5 respectively after 100 
iterations. 

The Figure 1-1 gives the closed look of how the values of x and y are 
changing along with the function value to be minimized. The minimization 
function value reached almost zero within 35 iterations. Figure 1-2 shows 
the zoomed version to show how the position of x and y are varying until 
they reach the steady state. 

1
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Figure 1-1.  PSO Example zoomed version

 

 
 

 
 
 
 
 
 
 

 
 
 

 
Figure 1-2.  PSO Example 

1.1 How are the Values of ‘x and y’ are Updated

The vector representation for updating the values for x and y is given in 
Figure 1-3. Let the position of the swarms be at ‘a’ and ‘b’ respectively as 
shown in the figure. Both are trying to reach the position ‘e’. Let ‘a’ decides 
to move towards ‘c’ and ‘b’ decides to move towards ‘d’. 

The distance between the position ‘c’ and ‘e’ is greater than the distance 
between ‘d’ and ‘e’. so based on the neighbor’s decision position ‘d’ is 
treated as the common position decided by both ‘a’ and ‘b’. (ie) the position 
‘c’ is the individual decision taken by ‘a’, position ‘d’ is the individual 
decision taken by ‘b’ and the position ‘d’ is the common position decided by 
both ‘a’ and ‘b’. 

in Every Iteration? 
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‘a’ based on the above knowledge, finally decides to move towards the 
position ‘g’ as the linear combination of ‘oa’ , ‘ac’ and ‘ad’  . [As ‘d’ is the 
common position decided].The linear combination of ‘oa’ and scaled ‘ac’ 
(ie) ‘af’ is the vector ‘of’. The vector ‘of’ combined with vector ‘fg’ (ie) 
scaled version of ‘ad’ to get ‘og’ and hence final position decided by ‘a’ is 
‘g’. 

Similarly, ‘b’ decides the position ‘h’ as the final position. It is the linear 
combination of ‘ob’ and ‘bh’(ie) scaled version of ‘bd’. Note as ‘d’ is the 
common position decided by ‘a’ and ‘b’, the final position is decided by 
linear combinations of two vectors alone. 

Thus finally the swarms ‘a’ and ‘b’ moves towards the position ‘g’ and 
‘h’ respectively for reaching the final destination position ‘e’. The swarm ‘a’ 
and ‘b’ randomly select scaling value for linear combination. Note that ‘oa’ 
and ‘ob’ are scaled with 1 (ie) actual values are used without scaling. Thus 
the decision of the swarm ‘a’ to reach ‘e’ is decided by its own intuition 
along with its neighbor’s intuition.

Now let us consider three swarms (A,B,C) are trying to reach the 
particular destination point ‘D’. A decides A’, B decides B’ and C decides 
C’ as the next position. Let the distance between the B’ and D is less 
compared with A’D and C’ and hence, B’ is treated as the global decision 
point to reach the destination faster. 

Thus the final decision taken by A is to move to the point, which is the 
linear combination of OA, AA’ and AB’. Similarly the final decision taken 

 

 

 

 

 

 

 

 

Figure 1-3.  Vector Representation of PSO Algorithm 
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by B is to move the point which is the linear combination of OB, BB’. The 
final decision taken by C is to move the point which is the linear 
combination of OC, CC’ and CB’. 

1.2 PSO Algorithm to Maximize the Function F (X, Y, Z)  

1. Initialize the values for initial position a, b, c, d, e 
2. Initialize the next positions decided by the individual swarms as a’, b’, c’ 

d’ and e’ 
3. Global decision regarding the next position is computed as follows. 

Compute f (a’, b, c, d, e), f (a, b’, c, d, e), f (a, b, c’, d, e), f (a, b, c, d’, e) 
and f (a, b, c, d, e’). Find minimum among the computed values. If f (a’, 
b, c, d, e) is minimum among all, the global position decided regarding 
the next position is a’. Similarly If f (a, b’, c, d, e) is minimum among all, 
b’ is decided as the global position regarding the next position to be 
shifted and so on. Let the selected global position is represented ad 
‘global’ 

4. Next value for a is computed as the linear combination of  ‘a’ , (a’-a) and 
(global-a) (ie) 

 
• nexta = a+ C1 * RAND * (a’ –a) + C2 * RAND * (global –a ) 
• nextb = b+ C1 * RAND * (b’ –b) + C2 * RAND * (global –b) 
• nextc = c+ C1 * RAND * (c’ –c) + C2 * RAND * (global –c ) 
• nextd = d+ C1 * RAND * (d’ –d) + C2 * RAND * (global –d ) 
• nexte = e+ C1 * RAND * (e’ –e) + C2 * RAND * (global –e ) 
 
5. Change the current value for a, b, c, d and e as nexta, nextb, nextc, nextd 

and nexte 
6. If f (nexta, b, c, d, e) is less than f (a’, b, c, d, e) then update the value for 

a’ as nexta, otherwise a’ is not changed.  
 
If f (a, nextb, c, d, e) is less than f (a, b’, c, d, e) then update the value for  
b’ as nextb, otherwise b’ is not changed 

       If f (a, b, nextc, d, e) is less than f (a, b, c’, d, e) then update the value       
       for c’ as nextc, otherwise c’ is not changed 
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7. Repeat the steps 3 to 6 for much iteration to reach the final decision.  
                         
The values for ‘c1’,’c2’ are decided based on the weightage given to 
individual decision and global decision respectively. 

Let  Δa(t)  is the change in the value  for updating the value for ‘a’ in t
iteration, then nexta at (t+1)th iteration can be computed using the following 
formula. This is considered as the velocity for updating the position of the 
swarm in every iteration. 

‘w ( t )’ is the weight at tth iteration. The value for ‘w’ is adjusted at every 
iteration as given below, where ‘iter’ is total number of iteration used.  

w(t+1)=w(t)-t*w(t)/(iter). 

Decision taken in the previous iteration is also used for deciding the next 
position to be shifted by the swarm. But as iteration increases, the 
contribution of the previous decision is decreases and finally reaches zero in 
the final iteration.  
 
 
 

 

       If f (a, b, c, nextd, e) is less than f (a, b, c, d’, e) then update the value       
       for d’ as nextd, otherwise d’ is not changed 

       If f (a, b, c, d, nexte) is less than f (a, b, c, d, e’) then update the value       
       for e’ as nexte, otherwise e’ is not changed 

 th  

nexta (t+1) =  (t) +

a(t+1) = c1 * rand * (a’ –a ) + c2 * rand * ( global –a ) + 
w(t)* Δa(t) 
Δ

a(t+1)Δ
where

 a
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1.3 M – program for PSO Algorithm            

psogv .m 
 
 
function [value]=psogv(fun,range,ITER) 
%psogv.m 
%Particle swarm algorithm for maximizing the function fun with two variables x 
%and y. 
%Syntax 
%[value]=psogv(fun,range,ITER) 
%example 
%fun='f1' 
%create the function fun.m 
%function [res]=fun(x,y) 
%res=sin(x)+cos(x); 
%range=[-pi pi;-pi pi]; 
%ITER is the total number of Iteration  
error=[]; 
vel1=[]; 
vel2=[]; 
 
%Intialize the swarm position 
swarm=[]; 
x(1)=rand*range(1,2)+range(1,1); 
y(1)=rand*range(2,2)+range(2,1); 
x(2)=rand*range(1,2)+range(1,1); 
y(2)=rand*range(2,2)+range(2,1); 
 
%Intialize weight  
w=1; 
c1=2; 
c2=2; 
%Initialize the velocity 
v1=0;%velocity for x 
v2=0;%velocity for y 
for i=1:1:ITER 
[p,q]=min([f1(fun,x(2),y(1)) f1(fun,x(1),y(2))]);  
if (q==1) 
    capture=x(2); 
else 
    capture=y(2); 
end 
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Continued… 
 
 
v1=w*v1+c1*rand*(x(2)-x(1))+c2*rand*(capture-x(1)); 
v2=w*v2+c1*rand*(y(2)-y(1))+c2*rand*(capture-y(1)); 
vel1=[vel1 v1]; 
vel2=[vel2 v2]; 
 
%updating x(1) and y(1) 
x(1)=x(1)+v1; 
y(1)=y(1)+v2; 
 
%updating x(2) and y(2) 
if((f1(fun,x(2),y(1)))<=(f1(fun,x(1),y(1)))) 
x(2)=x(2); 
else 
x(2)=x(1); 
end; 
if((f1(fun,x(1),y(2)))<=(f1(fun,x(1),y(1)))) 
y(2)=y(2); 
else 
y(2)=y(1); 
end 
error=[error f1(fun,x(2),y(2))]; 
w=w-w*i/ITER; 
swarm=[swarm;x(2) y(2)]; 
subplot(3,1,3) 
plot(error,'-') 
title('Error(vs) Iteration'); 
subplot(3,1,1) 
plot(swarm(:,1),'-') 
title('x (vs) Iteration'); 
subplot(3,1,2) 
plot(swarm(:,2),'-')   
title('y (vs) Iteration'); 
pause(0.2) 
end 
value=[x(2);y(2)]; 
 
__________________________________________________________________________ 

f1.m 
 
function [res]=f1(fun,x,y); 
s=strcat(fun,'(x,y)'); 
res=eval(s); 
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1.4 Program Illustration 

Following the sample results obtained after the execution of the program 
psogv.m for maximizing the function ‘f1.m’ 
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2. GENETIC ALGORITHM 

Chromosomes cross over each other. Mutate itself and new set of 
chromosomes is generated. Based on the requirement, some of the 
chromosomes survive. This is the cycle of one generation in Biological 
Genetics. The above process is repeated for many generations and finally 
best set of chromosomes based on the requirement will be available. This is 
the natural process of Biological Genetics. The Mathematical algorithm 
equivalent to the above behavior used as the optimization technique is called 
as Artificial Genetic Algorithm. 

Let us consider the problem for maximizing the function f(x) subject to 
the constraint x varies from ‘m’ to ‘n’. The function f(x) is called fitness 
function. Initial population of chromosomes is generated randomly. (i.e.) the 
values for the variable ‘x’ are selected randomly between the range ‘m’ to 
‘n’. Let the values be x1, x2…..xL, where ‘L’ is the population size. Note that 
they are called as chromosomes in Biological context. 

The Genetic operations like Cross over and Mutation are performed to 
obtain ‘2*L’ chromosomes as described below. 

Two chromosomes of the current population is randomly selected (ie) 
select two numbers from the current population. Cross over operation 
generates another two numbers y1 and y2 using the selected numbers. Let 
the randomly selected numbers be  x3 and x9.  1
r)*x9. Similarly y2 is computed as (1-r)*x3+r*x9, where ‘r’ is the random 
number generated between 0 to1. 

The same operation is repeated ‘L’ times to get ‘2*L’ newly generated 
chromosomes. Mutation operation is performed for the obtained 
chromosomes to generate ‘2*L’ mutated chromosomes. For instance the 
generated number ‘y1’ is mutated to give z1 mathematically computed as 
r1*y, where r1 is the random number generated. Thus the new set of 
chromosomes after crossover and Mutation are obtained as [z1 z2 z3 …z2L]. 

Among the ‘2L’ values generated after genetic operations, ‘L’ values are 
selected based on Roulette Wheel selection. 

 

A basic element of the Biological Genetics is the chromosomes. 

Y  is computed as r*x3+(1-


