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Foreword

Soils are considered as increasingly important in global development issues such as 
food security, land degradation, and the provision of ecosystem services. Land Use 
and Soil Resources synthesizes scientific knowledge about the impact of different 
land uses on soils in a manner that resource managers can use it. The book offers 
contribution to the challenge of food production and soil management as population 
continues to grow in parts of the world already experiencing food insecurity and 
shrinking arable land. Improved management on existing arable lands is imperative 
to guarantee food security for the increasing population.

Food importation is important to augment production in Africa, Asia, and Latin 
America. Countries in these regions are consequently among the largest net import-
ers of nitrogen, phosphorus, and potassium as well as of virtual water in traded 
agricultural commodities. Nevertheless, soil-fertility decline and water scarcity 
persist in many countries in the regions. Land Use and Soil Resources offers an 
explanation on the driving factors of nutrient and water flows across world regions, 
and the need to factor environmental costs into nutrient and water management.

Irrigation is crucial for crop production in many areas of the world characterized 
by hydrologic scarcity and variability, but poor irrigation practices often saturate 
land with salts and render croplands barren in the long run. Salinization and water-
logging constitute a threat to the sustainability of irrigation projects in both 
developed and developing countries. Land Use and Soil Resources combines 
agronomic and environmental facts in a coherent manner to highlight the conditions 
for the sustainability of irrigation.

The systemic links between cities and rural areas has always posed a formidable 
challenge to humankind vis-à-vis producing enough crops to feed the populace, and 
encroachment of cities on agricultural lands and sensitive ecosystems, amongst 
other problems. As cities develop as centers of nonagricultural production, they 
also introduce pollutants into the environment. Soil pollution in most cities is at 
levels warranting instant and urgent action.

Assessment and management of soil quality for land-use planning is increas-
ingly important due to increasing competition for land among many land uses and 
the transition from subsistence to market-based farming in many countries. The 
major challenges include predicting land-use suitability and assessing land-use 
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impacts on soil quality to sustain land productivity. This book presents methods for 
soil-quality assessment using land-evaluation principles and geospatial information 
technology.

The rate at which soil organic carbon is lost through cultivation and other distur-
bances undermines the role of soils in buffering climate change. Besides, soil 
erosion by water associated with early agriculture is currently the most destructive 
form of soil degradation with profound effects on rural livelihood and environmental 
sustainability. Land Use and Soil Resources documents the strategies to stem 
further soil carbon losses. It also highlights the successes and challenges of soil and 
water conservation measures. Soil management strategies require broader sustainable 
development policy frameworks for success. In the twenty-first century, soils will 
become more important as an economic and social resource. Soil is vital for human 
survival on Earth, but paradoxically our cavalier attitude to this natural resource 
makes its ecosystems one of the most degraded. The task of disseminating knowl-
edge about soils is extremely urgent. The challenges of soil management vis-à-vis 
human well-being are presented in a scientifically coherent manner in this book. 
I count it a great privilege to introduce Land Use and Soil Resources at this crucial 
moment of human history.

Rector, United Nations University, Tokyo Hans van Ginkel
Under-Secretary-General of the United Nations
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Chapter 1
Impact of Land Use on Soil Resources

Ademola K. Braimoh and Paul L.G. Vlek

The land system is a coupled human–environment system comprising land use, land 
cover, and terrestrial ecosystems (Global Land Project, 2005). Land use connects 
humans to the biophysical environment. Conversely, the characteristics and changes 
in the biophysical environment influence our land-use decision-making. Thus, there 
is a continuum of states resulting from the interactions between natural (biophysical) 
and human (social) subsystems of land (Fig. 1.1). Though not always, the dynamics 
of this continuum generally moves toward increasing human dominance and impact. 
Thus, mitigating adverse environmental changes requires an improved knowledge of 
human impact on natural processes of the terrestrial biosphere.

Soil is a basic resource for land use. It is the foundation of all civilizations 
(Hillel, 1992), serves as a major link between climate and biogeochemical systems 
(Yaalon, 2000), supports biodiversity, and plays an important role in the ability of 
ecosystems to provide diverse services necessary for human well-being (Young & 
Crawford, 2004). Thus, soils must not be neglected in any development endeavor 
either at local, regional, or global level.

Good soils are not evenly distributed around the world. Depending on parent 
material, climate, relief, vegetation, and time that determine soil formation, soils 
have inherent constraints that limit their productivity for various uses. Most soil 
constraints are not mutually exclusive. For instance, highly acidic soils with alumi-
num toxicity also have high phosphorus-fixation capacity. The inherent constraints 
of soils for agricultural production vary widely across regions. For example, erosion 
hazard, defined as very steep slopes (>30%) or moderately high slope (8–30%) 
accompanied by a sharp textural contrast within the soil profile, varies from 10% for 
soils of North Africa and Near East to 20% for soils of Europe. On the other hand, 
shallowness, the occurrence of rocks close to the soil surface, varies from 11 percent 
for soils of South and Central America to 23% for soils of North Africa and Near 
East (FAO, 2000).

Human impact is an additional challenge to the inherent constraints of soils to 
support life on earth. Soil degradation is largely an anthropogenic process driven 
by socioeconomic and institutional factors. At the global level, five major human 
causative factors of soil degradation are overgrazing, deforestation, agricultural 
mismanagement, fuelwood consumption, and urbanization (UNEP, 2002). Soil 
degradation often occurs so creepingly to the extent that land managers hardly 
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contemplate initiating timely ameliorative or counterbalance measures (Vlek, 
2005). It is often associated with food insecurity, decline in living standard, social 
upheavals, and the collapse of civilizations (Weiss et al., 1993; Wood, Sebastian, 
& Scherr, 2000).

The past few years have witnessed considerable interest in land-use research as 
a result of the realization of the influence of land-use and land-cover changes on 
Earth System functioning. Land use still faces large-scale changes and modifica-
tions in the near future due to population growth, political and socioeconomic 
changes related to globalization, and changes in land-related policies. Like the 
inherent biophysical constraints, human-induced changes on soil ecosystems are 
highly complex, vary across the world, and are profoundly impacting ecosystem 
services and human well-being. Though not all human impacts are negative, the 
environmental crises associated with adverse land-use changes have created a com-
pelling need for a unifying volume that addresses the multifaceted impacts of land 
use on soils.

This book synthesizes information on the impact of various uses on soils. It is 
written with scientific clarity to inform policies for sustainable soil management. 
In Chapter 2, Smith writes on soil organic carbon (SOC) dynamics and manage-
ment. SOC dynamics, the link between climate and biogeochemical systems, is a 
major pathway to understanding and predicting human impacts on the Earth 
(Yaalon, 2000). SOC losses arise from converting grasslands, forests, or other 
native ecosystems to croplands, or by draining or cultivating organic soils. On the 
other hand, positive impacts on SOC arise from restoring grasslands,  forests, or 
native vegetation on former croplands, or by restoring organic soils to their native 
condition. With growing demand for food, more land is required to produce 
crops, implying greater potentials for SOC losses. Globally, the carbon sink capac-
ity of agricultural and degraded soils is about 50–60% of historical  carbon loss 
(Lal, 2004). While the rate of soil carbon sequestration depends on soil properties, 
climate, and farming practices, Smith argues for a broader sustainable manage-
ment framework for the adoption of successful soil carbon management in devel-
oping countries. This includes policies to encourage fair trade, reduced subsidies 
for agriculture in developed countries, and less onerous interest on loans and for-
eign debts.

Recent estimates indicate that 854 million people are undernourished world-
wide, with the highest proportion (about 61%) residing in Asia and the Pacific 
(FAO, 2003). Sub-Saharan Africa where 10% of the world’s human population 
resides has the highest prevalence of undernourished people of 33%. Food produc-
tion in many developing countries is hampered by decreasing per capita cropland, 
soil nutrient depletion, lack of access to intensification inputs, and lack of enabling 
policy environments that favor smallholders. In Chapter 3, Ramankutty, Foley, and 
Olejniczak review the major changes in global distribution of croplands during the 
twentieth century. Between 1900 and 1990, per capita cropland area decreased from 
0.75 ha to 0.35 ha—less than the minimum 0.5 ha required to provide an adequate 
diet (Lal, 1989). Population growth was not met by a corresponding increase in 
cropland expansion first because increases in food production were achieved by 
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agricultural intensification, and also because cropland expansion did not always 
occur in the regions with the highest population growth. Thus, food security by 
nations with insufficient agricultural production was achieved primarily through 
food aid and trade. As cropland and settlement expansion has claimed prime agri-
cultural land, there is increasing reliance on technology for improved agricultural 
productivity. Even though food production is generally adequate at the global level, 
the global food production system is becoming increasingly vulnerable owing to 
the dependence on technology to increase productivity.

Since the transition from hunting and foraging to agriculture about 10,000 years 
ago, human dependence and impact on soils have become more apparent, with soil 
erosion standing out as the most destructive form of soil degradation. Three epochs 
of soil erosion can be identified since cultivation began in the Fertile Crescent in 
the Middle East (McNeill & Winiwarter, 2004). The first epoch occurred in the 
second millennium BC during the expansion of early river basin civilizations, when 
farmers cleared forested slopes for agriculture. In the next 3,000 years, conversion 
of forests to farmlands also occurred in Africa, Eurasia and the Americas. The sec-
ond epoch occurred during the sixteenth to nineteenth century when the  introduction 
of agricultural machinery (plowshares) in Eurasia, North America, and South 
America accelerated soil erosion on farmers’ fields. The third epoch occurred after 
1945 when rapid population growth amongst other factors encouraged migration 
into tropical rainforests. On the average, the soils of the world have lost 25.3 million 
tons of humus per year since 10,000 years ago. Over the last 300 years the average 
loss was 300 million tons per year. The last 50 years in particular have brought 
human-induced soil resources degradation to exceptionally high levels. On the 
average, 760 million tons of humus has been lost per year in the last half-century 
(Rozanov et al., 1990). Ethiopia in East Africa is among the countries with the 
highest soil erosion rates. Its highlands lose over 1.5 billion tons of topsoil per year, 
leading to a reduction of about 1.5 million tons of grain in the country’s annual 
harvest (Taddese, 2001). While there may be some uncertainties in these statistics, 
the magnitude of soil erosion problem is largely indubitable.

It is noteworthy that from the 1930s, modern soil conservation endeavors 
(mostly sponsored by governments) has broadened significantly (McNeill & 
Winiwarter, 2004), utilizing several techniques, including contour plowing, use 
of cover crops, and conservation tillage. In Chapter 4, Hurni et al. highlight the 
development of agriculture since 1950, and elaborate on progress in soil and 
water  conservation techniques. They reveal that social factors (land tenure secu-
rity, market access, and increased level of participation in decision-making) are 
necessarily involved in soil water conservation. While measures developed for 
modern agricultural systems have begun to show positive impacts, external sup-
port in the form of investment in sustainable land-management technologies is 
still required for small-scale farming. In an empirical study reported in Chapter 
5, Tamene and Vlek applied soil erosion models to identify high-risk areas to tar-
get management intervention in Ethiopia. The model generally predicted higher 
erosion than deposition, implying that soil loss is higher than the amount that 
can be redistributed within the catchments, thereby increasing the potential for 
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sediment export. The study further indicates that a land-use planning approach 
could help reduce erosion problems in Ethiopia, and other parts of the world with 
similar environmental conditions.

Degradation of soils and the depletion of water resources that caused the col-
lapse of irrigation-based societies about 6,000 years ago are threatening the viability 
of irrigation at present. The fact that irrigation is vital for increased productivity is 
well appreciated by farmers, governments, and international donors. However, the 
expansion of irrigation, which had been a principal focus of agricultural develop-
ment for the past few years, has lately been offset by the abandonment of older 
irrigated areas due to depletion of groundwater reserves, waterlogging and salina-
tion, or diversion of water supplies to alternative uses. Chapter 6 by Vlek, Hillel, 
and Braimoh focuses on the prerequisites of sustainable irrigation. The authors 
explain the process of waterlogging and salt buildup and factors that accentuate the 
problems. Case studies on how irrigation problems manifest in different parts of the 
world were also reviewed. The case studies generally indicate the importance of 
early warning systems to detect the onset of problems in irrigated agriculture. The 
prospects of climate change further calls for adroit management of irrigation as 
well as proactive environmental policies. The continuous diminution of good-quality 
water for irrigation calls for stepping up research to produce crop varieties that 
require less water and nutrients and have increased salt tolerance. There is also the 
need to develop economic incentives that encourage water conservation.

The impact of globalization on nutrient and water flows is the focus of Chapter 7 
written by Grote, Craswell, and Vlek. The differences between the nutrient and 
water balance in nutrient- and water-deficit and surplus countries largely reflect the 
large disparities in resources and agricultural policies between less developed and 
industrialized countries, respectively. The international net flows of nitrogen, 
 phosphorus, potassium (NPK) nutrients amounts to about 5 Tg (1 Tg = 1012 g) in 
1997 and are projected to increase to about 9 Tg in 2020. This represents a major 
human-induced perturbation of global nutrient cycles. The major net importers of 
NPK and virtual water in traded agricultural commodities are West Asia/North 
Africa and sub-Saharan Africa. Countries with a net loss of NPK and virtual water 
in agricultural commodities are the major food exporting countries—the USA, 
Australia, Canada, and Latin America. Agricultural trade liberalization and the 
reduction of subsidies could reduce excessive nutrient and water use in nutrient- and 
water-surplus countries and possibly make inputs more affordable to farmers in 
nutrient- and water-deficient countries. Institutional strengthening and infrastruc-
ture development are also required in nutrient- and water-deficient countries. 
Grote, Craswell, and Vlek also advocate factoring environmental costs into nutrient 
and water management.

Despite the fact that sub-Saharan Africa is a major net importer of nutrients, the 
problem of soil-nutrient depletion still persists in the region. Soil-nutrient depletion 
is one of the major causes of food crises in sub-Saharan Africa. Opinions are how-
ever diverse as to the causes of the depletion in the world’s most ancient landmass. 
In Chapter 8, Breman, Fofana, and Mando write on strategies for ameliorating 
nutrient deficiencies in soils of sub-Saharan Africa. They state that farmers in 
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sub-Saharan Africa deplete soils primarily because the soils are poor by nature. 
The extremely poor resource base, unfavorable value–cost ratio, and inadequate 
socioeconomic and policy environments caused the green revolution to bypass 
Africa. Breman, Fofana, and Mando further explain how the redistribution of 
organic matter and the nutrients it contains can help in transitioning agriculture in 
sub-Saharan Africa from extensive to intensive phase.

The concept of soil quality experienced the most rapid adoption in the 1990s as 
a consequence of the effects of land use on the dynamic aspects of soil quality 
indicators (Karlen, 2004). Soil quality is a notion that is much broader, but 
includes the capacity of the soil to supply nutrients, maintain suitable biotic habi-
tat, and resist degradation. Soil quality is the key to agricultural productivity; 
especially in low-input production systems where productivity-enhancing tech-
nologies are largely out of reach of the farmers. Soil quality is not often considered 
a policy objective by policymakers unless soil degradation threatens other devel-
opment objectives (Scherr, 1999). The decline in long-term productivity currently 
constitutes a threat to livelihood in many developing countries, necessitating the 
development of indicators for soil quality management. Methods to assess soil 
quality are discussed by de la Rosa and Sobral in Chapter 9. Acknowledging that 
the task of assessing soil quality is complicated, the authors nonetheless argue for 
an approach based on knowledge derived from agroecological land evaluation. 
They also make a case for the incorporation of spatial information technology in 
soil quality prediction. General trends in soil quality management strategies that 
can be adapted to different farming situations are discussed.

Urban sprawl is a ubiquitous phenomenon in developed and developing countries. 
Globally, urban land-use activities potentially remove about 7% (2.4 million km2) of 
all cultivated systems from agricultural production, of which a proportion is high-qual-
ity farmland (McGranahan et al., 2005). As the world continues to urbanize, we have 
lost contact with soils and the services they provide to sustain life. In Chapter 10, 
Marcotullio, Braimoh, and Onishi provide a review of the multiscale impact of cities 
and urban processes on soils. Though urbanization is not accompanied by economic 
growth in developing countries, soil pollutant contamination in their cities continues to 
increase to levels warranting immediate action. The authors argue for a global assess-
ment of urban soils to  identify the patterns and processes of anthropogenic impacts. 
This should help in developing appropriate intervention measures.
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Chapter 2
Soil Organic Carbon Dynamics 
and Land-Use Change

Pete Smith

Abstract Soils contain more than twice the amount of carbon found in the 
 atmosphere. Historically, soils have lost 40–90 Pg C globally through cultivation 
and disturbance. Current rates of carbon loss due to land-use change are about 1.6 
± 0.8 Pg C y−1, mainly in the tropics. The most effective mechanism for soil carbon 
management would be to halt land-use conversion, but with a growing population 
in the developing world, and changing diets, more land is likely to be required for 
agriculture.

Maximizing the productivity of existing agricultural land and applying best 
management practices to that land would slow the loss of, or is some cases restore, 
soil carbon. However, there are many barriers to implementing best management 
practices, the most significant of which in developing countries are driven by pov-
erty and in some areas exacerbated by a growing population. Management practices 
that also improve food security and profitability are most likely to be adopted. 
Soil carbon management needs to be considered within a broader framework of 
sustainable development. Policies to encourage fair trade, reduced subsidies for 
agriculture in developed countries, and less onerous interest on loans and foreign 
debt would encourage sustainable development, which in turn would encourage the 
adoption of successful soil carbon management in developing countries.

Keywords Soil organic carbon (SOC), land-use change, sequestration, barriers, 
sustainable development, climate mitigation

2.1 Introduction

2.1.1 Soils and the Global Carbon Cycle

Globally, soils contain about 1,500 Pg (1 Pg = 1 Gt = 1015 g) of organic carbon 
(Batjes, 1996), about three times the amount of carbon in vegetation and twice the 
amount in the atmosphere (IPCC, 2000a).
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