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 Chapter 1 
Introduction 

          This chapter gives general information on Battery Management Systems 
(BMSs) and State-of-Charge (SoC) indication that will be required as a 
background in later chapters. A general block diagram of a BMS is shown in 
section 1.1. One of the main tasks of a BMS is to keep track of a battery’s SoC, 
which is the main subject of this book. Section 1.2 gives a definition of SoC 
indication and discusses its importance. The goal and motivation of the research 
described in this book are discussed in section 1.3. Finally, section 1.4 presents the 
contents of this book. 

 
  

1.1 Battery Management Systems 
 

          Battery-powered electronic devices have become ubiquitous in modern 
society. The recent rapid expansion of the use of portable devices (e.g. portable 

battery technologies at an unprecedented rate [1].  

Fig. 1.1. Examples of portable devices on the market [2]. 

computers, personal data assistants, cellular phones, shavers, etc. (see Fig. 1.1)) and 
Hybrid Electrical Vehicles (HEVs) creates a strong demand for fast deployment of 

for Battery-Powered Applications. 
doi: 10.1007/978-1-4020-6945-1_1, © Springer Science + Business Media B.V. 2008 
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          The design of a battery-powered device requires many battery-management 
features, including charge control, battery-capacity monitoring, remaining run-time 
information, charge-cycle counting, etc. For it to be able to offer high precision, 
each part of the system must be near to perfection. The basic task of a BMS can be 
defined as follows [1]: 
 
The basic task of a Battery Management System (BMS) is to ensure that 
optimum use is made of the energy inside the battery powering the portable 
product and that the risk of damage to the battery is prevented. This is 
achieved by monitoring and controlling the battery’s charging and 
discharging process. 
 
          A general block diagram of a BMS is shown in Fig. 1.2. The basic task of the 
power module (PM) is to charge the battery by converting electrical energy from 
the mains into electrical energy suitable for charging the battery. The PM can either 
be a separate device, such as a travel charger, or it can be integrated within the 
portable device, as, for example, in shavers [1]. A protection Integrated Circuit (IC) 
connected in series with the battery is generally needed for lithium-ion (Li-ion) 
batteries. The reason for this is that battery suppliers are particularly concerned 
about safety issues due to liability risks. The battery voltage, current and tempe-
rature have to be monitored and the protection IC ensures that the battery is never 
operated under unsafe conditions. The battery manufacturer determines the 
operating conditions under which it is assumed to be safe to use Li-ion batteries. 
Outside the safe region, destructive processes may take place [1]. 

 
Fig. 1.2. General architecture of a Battery Management System. 

 
          The DC/DC converter is used to efficiently condition the unregulated battery 
voltage (3–4.2 V in Li-ion chemistry) for compatibility with stringent load 

  Chapter 1 2



requirements (see Fig. 1.2). The basic task of the load is to convert the electrical 
energy supplied by a battery into an energy form that will fulfil the load’s function, 
such as mechanical energy, light, sound, heat, EM radiation, etc. The battery status 
can be indicated in one light-emitting diode (LED) or several such diodes 
connected in series or on a liquid-crystal display (LCD) that indicates the SoC and 
the battery’s condition (e.g. the State-of-Health (SoH)) [1]. The processor is used to 
run the battery-management software, including the SoC algorithm (see Fig. 1.2). 
Communication between the BMS and other devices is another important task of 
the BMS. Depending on the application, various systems can be used for data 
exchange, such as an inter-integrated-circuit bus interface (I2C) or some other form 
of serial interface (see Fig. 1.2). The battery state is used as an input parameter for 
the portable device’s electrical management and it is an important parameter for the 
user. The battery state can be used to estimate the battery’s expected lifetime. It can 
be simply described by two parameters: SoC and SoH. Both parameters depend on 
each other and influence the battery performance. More information on these two 
parameters will be given in the next section.  
 
          
1.2 State-of-Charge definition 
    
         Three terms are relevant with respect to accurately implementing the monitor 
function of the battery state in a Battery Management System. These three terms 
are the State-of-Charge (SoC), the State-of-Health (SoH) and the remaining run-
time (tr). The SoC can be defined as follows: 
 
State-of-Charge (SoC) is the percentage of the maximum possible charge that 
is present inside a rechargeable battery. 
 
          The SoC indication involves battery measurements and modelling [1]. As a 
simple example the battery voltage (V) can be measured and the V-SoC relationship 
can be stored in a look-up table function in a microcontroller [3]–[6]. The size and 
accuracy of the look-up tables in SoC indication systems depend on the number of 
stored values, i.e. the number of stored V-SoC data points. A problem is that the 
battery voltage changes with temperature, discharge rates and aging. Making the 
look-up table temperature and discharge-rate dependent can solve the first two 
dependencies [7]. However, aging of the battery is a complex process that involves 
many battery parameters (e.g. impedance, capacity). The process is too complex to 
be tackled with simple look-up table implementation [7].  
          The State-of-Health (SoH) is an indication of the point that has been reached 
in the battery’s life cycle and is a measure of its condition relative to a fresh 
battery. The SoH can be defined as follows: 
 
State-of-Health (SoH) is a ‘measure’ that reflects the general condition of a 
battery and its ability to deliver the specified performance in comparison with 
a fresh battery.  
 
          The SoH indication may involve for example cycle-counting. In the simplest 
case the number of full charge/discharge cycles (Cn) can be counted and the SoH 
can be calculated on the basis of a stored maximum capacity-Cn function [1]. 
However, a user doesn’t always wait until a battery reaches an empty or a full SoC 
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state. The system should therefore also take into consideration SoC levels other 
than “empty” and “full”, e.g. levels defined by the last discharge/charge SoC value 
before a user starts charging/discharging. Another problem is the spread in both 
battery and user behaviour. Due to this spread the SoH evolution will be different 
for each user and application, and will consequently be rather unpredictable. It is  
not possible to deal with such unpredictable behaviour with a simple charge/ 
discharge cycles counting implementation. An adaptive system must therefore be 
used to ensure an accurate SoC indication when the battery ages. Examples of 
possible adaptive systems are neural networks [8], [9], Kalman filters [10]–[13] and 
fuzzy logic [14].   
          The SoC is usually displayed to the user in a graphic bar or in [%]. In the 
latter case 100% implies a full battery state and 0% the empty state. However, for a 
user it is convenient to know how long a portable device battery will still be able to 
deliver power. An SoC indication with a couple of bars does not provide sufficient 
information. The remaining time-of-use indication will be the most interesting and 
attractive solution for a portable device user. The remaining run-time can be 
defined as follows [1]: 
 
The remaining run-time (tr) is the estimated time that the battery can supply 
current to a portable device under valid discharge conditions before it will 
stop functioning.  
 
          The remaining run-time can be inferred from the remaining capacity in two 
ways, depending on the type of load: in the case of a current-type load the 
remaining capacity in mAh, so expressed as charge, is divided by the drawn current 
in mA and in the case of a power-type load the remaining capacity in mWh, so 
expressed as energy, is divided by the drawn power in mW [1]. In this book only 
current-type loads will be considered for simplicity. 
          To conclude, an accurate SoC and run-time determination method combined 
with a SoH calculation will improve a battery’s performance and reliability, and 
will ultimately lengthen its lifetime.    
 
 
1.3 Goal and motivation of the research described in this book 
 
          Accurate SoC and remaining run-time indication for portable devices is 
important for user convenience and for prolonging the lifetime of batteries. In a 
survey conducted by market research group TNS involving almost 7,000 mobile 
users in 15 countries, over 75% of respondents said better battery life is the main 
feature they want from a future converged device [15]. This motivates the request 
for an accurate and reliable SoC, run-time and SoH indicator system in portable 
applications. At the moment Li-ion is the most commonly used battery chemistry in 
portable applications. Therefore, the focus in this book is on SoC indication for Li-
ion batteries. The chosen battery in this work is Sony’s US18500G3 Li-ion battery.   
          Accurate SoC information allows a battery to be used within its design limits, 
so the battery pack does not need to be over-engineered. This allows the use of a 
smaller, lighter battery, which costs less. However, many examples of poor 
accuracy and reliability are found in practice. This can be pretty annoying, 
especially when a portable device suddenly stops functioning whereas sufficient 
battery capacity is indicated. Poor reliability of the SoC indication system may 
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induce the use of only part of the available battery capacity. For example, a user 
may be inclined to recharge a battery every day, even when enough battery capacity 
is indicated on the portable device. This will lead to more frequent recharging than 
strictly necessary, which in turn leads to earlier wear-out of the battery. The effect 
of inaccuracy of SoC indication may be even worse when the SoC value is also 
used to control charging. The battery is either not fully charged or it is overcharged. 
In the former case, the battery will be recharged more often than needed, which will 
lead to earlier wear-out. In the latter case, frequent overcharging will lead to a 
lower cycle life [1].  
          Many leading semiconductor companies (e.g. Philips, Texas Instruments, 
Microchip, Maxim, etc.) are paying more and more attention to accurate State- 
of-Charge (SoC) indication. Following the technological revolution and the 
appearance of more power-consuming devices on the automotive electronics and 
portable devices markets (e.g. Third-Generation cellular phones) the simple SoC 
indication systems of the thirties based on voltage and temperature measurements 
[16]–[19] have been replaced by more complicated and accurate SoC systems [1], 
[20]–[27].  
          Of these, the system presented by Bergveld et al. in 2000 [1], [25]–[27], 
implementing the mathematical models described in [1], has been found to be the 
most accurate [28], [29]. The developed method refers to SoC estimation for a Li-
ion battery. The method is based on current measurement and integration during the 
charge and discharge state (referred to as Coulomb counting [1], [7], [30]) and 
Electro-Motive Force (EMF) measurements during the equilibrium state (state in 
which no current is flowing into or out of the battery and the battery is fully 
stabilized) [1]. The EMF method is also used for calibrating the SoC system, 
because the same SoC level in percentage has been found for a certain measured 
EMF irrespective of the age and temperature of the battery. This calibration is 
important, because in charge and discharge states the calculated SoC will 
eventually drift away from the real value due to e.g. measurement inaccuracy in the 
current and the integration over time of this inaccuracy [1]. Apart from simple 
Coulomb counting, the effect of the overpotential is also considered in the 
discharge state. Due to this overpotential, the battery voltage during discharge is 
lower than the EMF. The value of the overpotential depends on the discharge 
current, SoC, age and temperature. 
          A couple of shortcomings of the developed method have been revealed [1]. 
In the first place, the implementation of an accurate battery model is essential for 
accurate SoC indication. The model applied in the proposed SoC indication system 
describes the battery EMF and overpotential behaviour, neither of which can be 
measured directly. Drawbacks of the measurement methods described in [1] have 
been discussed in [34], [35] along with possible solutions. Secondly, false entries in 
the equilibrium state have been detected [1]. They influence the EMF estimation 
and the system’s calibration accuracy [1]. Furthermore, the overpotential model 
presents parameters that are temperature and age dependent. A better model that 
includes temperature and age dependence needs to be developed.  
          A designer of a BMS in a portable device will also be interested in the 
implementation requirements of the mathematical functions used in the SoC 
indication algorithm in a practical application. Close quantitative agreement 
between the results of laboratory simulations using the battery models and 
measurements on a real-time system in which the SoC system is implemented is 
then of course important. Part of the research described in this book is devoted to 
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optimising such quantitative agreement. The optimised SoC system implementation 
must agree with the portable device hardware speed and memory requirements. Part 
of the research described in this book is aimed at finding an optimum 
implementation method of the SoC algorithm in a real-time system.  
          The final aim of the method presented in this book is to design and test 
an SoC indication system capable of predicting the remaining capacity of any 
Li-based battery and the remaining run-time with an accuracy of 1 minute  
or better under all realistic user conditions, including aging, a wide variety  
of load currents and a wide temperature range.  The designed SoC indication 
system must moreover agree with the portable application hardware and 
software requirements.    
 
 
1.4 Scope of this book 
 
          This book presents the results of research into battery measurements and 
electrochemical modelling obtained by combining the expertise of electrical 
engineering with that of electrochemical and computer science. The result is an 
adaptive method for indicating the SoC and remaining run-time that can be applied 
to all Lithium systems [31]–[35].  
          This book is organized as follows. Chapter 2 presents an overview of battery 
technologies and the state-of-the-art State-of-Charge (SoC) methods. The general 
operational mechanism of batteries and information on existing SoC indication 
methods will be discussed. This general information is required as a background in 
the remaining chapters of this book. 
           There are several practical methods available for SoC indication. Special 
attention will be paid to the SoC indication system presented by Bergveld et al. in 
[1], [25], [26], which represents the starting point of this book. This SoC system 
has been chosen because it is one of the most advanced SoC systems so far 
proposed in the literature [28], [29]. The main advantages and drawbacks of this 
system will be presented in Chapter 3. In chapters 4–7 improvements on this 
algorithm will be presented.  
           A complete study of a better EMF determination method developed in-house 
will be presented. This method will lead to a better understanding of the EMF 
dependence on temperature and aging and of new topics such as the EMF 
hysteresis. A new EMF model that includes temperature dependence will be 
developed. This will enable the use of the EMF at different temperatures, which 
will finally improve the SoC indication accuracy. A new model that predicts the 
EMF from the first minutes of relaxation will also be presented. Accurate EMF 
prediction is important because the EMF will also be used as a calibration method 
in our system. These efforts will be described in chapter 4. 
          The main drawback of the EMF method is that it does not provide continuous 
indication of the SoC. Therefore the SoC algorithm also uses Coulomb count-
ing and overpotential prediction. A complete study of a new overpotential 
determination method also developed in-house will be presented. This method will 
lead to a better understanding of new topics such as overpotential symmetry and 
overpotential dependence on C-rate current and aging. A new overpotential model 
that includes C-rate current dependence will be developed. This will enable the use 
of the overpotential at different currents and will finally improve the SoC indication 
accuracy. These efforts will be presented in chapter 5. 
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