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Preface

This is the second volume of the book series entitled “The Tumor Microenviron-
ment.” This volume will focus on the “regulation of gene expression in tumor and
non-tumor cells in the tumor microenvironment.”

It is now becoming very clear that the development and progression of tumor
towards the malignant (metastatic) phenotype depend tightly on the interaction be-
tween the tumor cells and the tumor microenvironment. Tumor cells respond to
stimuli generated within the tumor microenvironment for their growth advantage
while the tumor cell themselves reshape and remodel the architecture and function
of their extracellular matrices. The term tumor microenvironment is a wide umbrella
consisting of stromal cells such as fibroblasts and endothelial cells and infiltrating
immune cells including T and B cells, macrophages, and other inflammatory cells
(PMNs). These different components of the tumor microenvironment could have
stimulatory and inhibitory effects on tumor progression by regulating the gene ex-
pression repertoire within the tumor cells on one hand and the stroma cells on the
other. In this volume we have seven contributors who will discuss several different
aspects on the cross talk within the tumor microenvironment components leading to
the acquisition of the metastasis phenotype. It is our hope that these state-of-the-art
studies will shed further light on our understanding of these complicated processes.
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Chapter 1
Regulation of Melanoma Progression
by the Tumor Microenvironment: The Roles
of PAR-1 and PAFR

Gabriel J. Villares and Menashe Bar-Eli

Abstract The interaction of tumor cells and the host stroma (microenvironment)
is essential for tumor progression and metastasis. The melanoma tumor microen-
vironment has emerged within the last decade as a significant player in melanoma
progression from the radial growth phase to the vertical growth phase by providing
the necessary elements for growth, invasion and survival. Two receptors involved in
this transition that are not only activated by factors from the tumor microenvironment
but also in turn secrete factors into the microenvironment are the Protease Activated
Receptor 1 (PAR-1) and the Platelet Activating Factor Receptor (PAFR). Throm-
bin, which is abundant in the microenvironment milieu, activates PAR-1 causing cell
signaling via G-proteins resulting in upregulation and secretion of gene products in-
volved in adhesion (integrins), invasion (MMP-2) and angiogenesis (IL-8, VEGF,
PDGF, bFGF). PAF, which is secreted by platelets, macrophages, neutrophils, en-
dothelial cells and keratinocytes within the tumor microenvironment, will activate
PAFR and signal through p38 MAPK to phosphorylate the CREB/ATF-1 transcrip-
tion factors. Phosphorylation of CREB/ATF-1 results in overexpression and secretion
of MMP-2 and MT1-MMP. Since only metastatic melanoma cells express activated
CREB/ATF-1, we propose that they are better equipped to respond to PAF than their
non-metastatic counterparts. These two G-protein coupled receptors that play major
roles in melanoma progression highlight the crucial interactions between the tumor
microenvironment and melanoma cells in the acquisition of the metastatic phenotype.

Keywords Melanoma progression · Metastasis · Invasion · Angiogenesis ·
Thrombin · Protease activated receptor-1 · Platelet activating factor · Tumor
microenvironment · Transcription factors · Metalloproteinase · G-protein coupled
receptor

Melanomas, as with all other cancers, are not comprised of a group of stand-alone
cells with similar characteristics or capabilities. They are, however, comprised of
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a group of heterogeneous cells that co-exist and interact with an infrastructure
of other cells(keratinocytes, fibroblasts, endothelial cells, inflammatory cells) and
stromal components, all together known as the tumor microenvironment [1]. The
tumor microenvironment is comprised of diverse cell types and elements such as
extracellular matrix components (lamin, collagen), growth factors (VEGF, bFGF,
thrombin), proteases and interleukins involved in invasion (MMP-2, IL-8, uPA) as
well as varying concentrations of oxygen [2]. Furthermore studies have shown that
inflammatory cells within the tumor microenvironment contribute to malignancies
by releasing growth factors and chemokines [3]. It seems evident that the interac-
tion of tumor cells and the host stroma (microenvironment) is, therefore, essential
for tumor progression and, eventually metastasis. Following these same lines, the
melanoma tumor microenvironment has emerged within the last decade as a key
player in melanocyte transformation and transdifferentiation by providing these nec-
essary elements for growth, invasion and survival [2].

In melanoma, there are several cell types within the tumor microenvironment that
influence melanoma progression. For example, keratinocytes, which are found within
normal skin, form interactions with melanocytes that are mediated by E-cadherins.
Keratinocyte-regulated expression of E-cadherins affects the phenotypic behavior of
melanocytes [1].Disturbances innormalkeratinocyte–melanocyteadhesionmaycon-
tribute to malignant transformation by releasing melanocytes from contact-mediated
regulatory controls leading to the advancement of melanoma [4]. Furthermore, ker-
atinocytes induce several pro-angiogenic interleukins (IL-6, IL-8) as well as pro-
inflammatory factors (PAF), which may also lead to melanoma progression [3].

Fibroblasts, once thought to play a minimal role in tumorigenesis, have been
found to play an important role in potentiating tumor growth. A bi-directional model
between melanoma cells and fibroblasts has been proposed in which melanoma
cells first produce growth factors such as PDGF, bFGF and TGF-� to activate fi-
broblasts and endothelial cells and, subsequently, fibroblasts produce a series of
growth factors (IGF-1, HGS/SF, bFGF, TGF-�) that further supports the growth and
proliferation of melanoma cells [1, 4]. These paracrine signaling loops act to create
an environmental niche conducive to tumor growth [1].

As can be seen, transformed melanocytic cells will recruit and interact with host
cells in the microenvironment. These cells will then become activated and in turn
elicit survival, proliferation and invasion signals [4]. The progression of melanoma
from radial growth phase to vertical growth phase is accompanied by a myriad of
molecular changes that are involved in this transition. Two of the factors involved in
this transition that are not only activated by the tumor microenvironment but also in
turn affect the microenvironment are the thrombin receptor (PAR-1) and the Platelet
Activating Factor Receptor (PAFR).

1.1 PAR-1

Thrombin is a serine protease abundant in the tumor microenvironment milieu,
which not only plays a crucial role in blood coagulation but also initiates various
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cellular responses through the activation of the thrombin receptor, PAR-1 [5]. In
fact, activation of coagulation factors have been implicated in tumor growth and
are hallmarks of advanced cancers [5,6]. Studies have also demonstrated that tissue
factor (TF) is constitutively expressed in melanoma cells and can activate throm-
bin in a coagulation independent manner, thereby promoting melanoma metasta-
sis [7, 8]. In fact, the hypoxic tumor microenvironment also induces TF expression
by endothelial cells, tumor associated macrophages and myofibroblasts, thereby also
augmenting thrombin in the tumor microenvironment [6].

Furthermore, thrombin-treated tumor cells (including melanoma) enhance their
adhesion to platelets and fibronectin in vitro [9]. Thrombin also promotes endothe-
lial cell alignment in Matrigel in vitro and angiogenesis in vivo [10]. It induces
the differentiation of endothelial cells into capillary structures in a dose-dependent
manner on Matrigel [10]. Furthermore, in the in vivo Matrigel system of angiogen-
esis, there is a 10-fold increase in endothelial cell migration infiltration in response
to thrombin. In lung epithelial cells, thrombin was also found to stimulate the ex-
pression of PDGF [11]. Blocking of the coagulation pathways at the level of tissue
factor, factor Xa, or thrombin, inhibits metastasis of human melanoma cells in SCID
mice [8].

Thrombin can also activate several signal transduction pathways through its
receptor. The thrombin receptor is a 7-pass transmembrane G-protein coupled re-
ceptor. Unlike typical ligand-receptor interactions, thrombin does not activate PAR-
1 upon binding. Rather, it cleaves the N-terminus of PAR-1 at serine 42. Upon
cleavage, the new amino terminal peptide acts as a tethered ligand that will now
bind to the body of the receptor thereby causing cell signaling via G proteins
resulting in upregulation of gene products involved in adhesion (�IIb�3, �v�5,
�v�3 integrins) [12–14], invasion (MMP-2) [15], and angiogenesis (IL-8, VEGF,
bFGF, PDGF) [11, 16–18]. This suggests that activation of the thrombin receptor
may facilitate tumor invasion and metastasis through the induction of cell adhe-
sion molecules, matrix degrading proteases, and stimulating the secretion of angio-
genic factors into the melanoma tumor microenvironment, thus contributing to the
metastatic phenotype of melanoma.

In human melanoma cells, thrombin acts as a growth factor and is mitogenic,
suggesting that signaling by PAR-1 is involved in the biological response of these
cells [8]. PAR-1 can also be activated by ligands other than thrombin such as fac-
tor Xa, granzyme A, trypsin and plasmin [19–21]. In addition to melanoma, over-
expression of PAR-1 has been observed in a variety of human cancers, such as
breast, lung, colon, pancreatic and prostate [5, 22–26]. It has also been recently
reported that PAR-1 in breast cancer cells can also be proteolytically cleaved and
activated by membrane metalloprotease-1 (MMP-1) [27]. Our laboratory has pre-
viously demonstrated that PAR-1 is differentially expressed in melanoma cell lines
with overexpression being found in highly metastatic cells as compared to non-
metastatic melanoma cell lines [5, 28]. Moreover, we found that the overexpression
of PAR-1 correlates with the loss of the activator protein-2� (AP-2�), which is a
crucial event in the progression of human melanoma [28]. In fact, we observed an
inverse correlation between AP-2 and PAR-1 from primary melanoma cell lines
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Fig. 1.1 Schematic representation of molecules involved in cell invasion and angiogenesis via
activation of PAR-1, which is overexpressed in metastatic melanoma cells. Thrombin from the
microenvironment cleaves the N-terminus of PAR-1 to activate the receptor. The tumor-promoting
signals transduced by PAR-1 through G-proteins upregulate molecules involved in angiogenesis
and invasion

up to highly invasive and aggressive melanomas [28]. Overexpression of PAR-1 is
predominantly seen in patients with malignant melanoma tumors and in metastatic
lesions as compared to common melanocytic nevi and normal skin [29]. Further-
more, our laboratory has found a significantly higher percentage of PAR-1 positive
cells in metastatic melanoma specimens as compared to both dysplastic nevi and
primary melanoma specimens [30] attesting to the role of PAR-1 in regulating tumor
growth and metastasis of melanoma.

As can be seen, activation of PAR-1 in melanoma cells through different ligands
present in the tumor microenvironment will subsequently cause activation of the
angiogenic and invasive gene products that are released into the tumor microen-
vironment (Fig. 1.1). This will also cause activation of fibroblasts and endothelial
cells that subsequently forms a more pro-invasive and proliferative environment for
melanoma growth and metastasis.

1.2 PAFR

As mentioned previously, it has been shown through genetic and functional exper-
iments that inflammatory cells such as tumor-infiltrating monocytes/macrophages,
neutrophils, mast cells, eosinophils, and activated T-lymphocytes contribute to
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malignancies by the secretion of growth and survival factors, proteases,
pro-angiogenic factors and chemokines into the tumor microenvironment [31–34].
In fact, cancer cells promote the recruitment of inflammatory cells, thereby produc-
ing inflammatory mediators and angiogenic factors [3].

PAF is secreted into the tumor microenvironment by several cell types, including
inflammatory cells, vascular endothelial cells and keratinocytes, which in turn also
respond to PAF. Furthermore, platelets in response to thrombin can also secrete
PAF. PAF binds and activates the Platelet Activating Factor Receptor (PAFR), a
pro-inflammatory mediator, which is also a G-protein coupled receptor. PAFR, in
a similar manner to PAR-1, activates signal transduction pathways including MAP
kinase, PI3 kinase, PKA and Src pathways [3, 35–39]. Furthermore, our group and
others have demonstrated that in human metastatic melanoma cells, PAF can stim-
ulate the activity of p38 MAP kinase [39–41]. PAF activation of these signal trans-
duction pathways results in upregulation of effectors of tumor growth, angiogenesis
and malignant progression such as NF-�B, STAT-3 and MMPs [3].

Through the use of PAFR-overexpressing transgenic mice, it was shown that
these mice exhibited keratinocyte hyperplasia soon after birth, accompanied by hy-
perpigmentation, increased melanocytes in ear and tail as well as consequent de-
velopment of melanoma tumors later in life [42, 43]. These studies also suggested
that the recruitment of melanocytes to the dermis was driven by keratinocytes and
possibly accumulating fibroblasts and mast cells as the PAFR transgene expression
was not seen in melanocytes but was present in keratinocytes. Furthermore the role
of PAFR in human melanoma metastasis was further elucidated with in vivo ex-
periments using the PAFR antagonist PCA4248. PCA4248 significantly inhibited
experimental human melanoma lung metastasis in nude mice [3].

However, it has been shown that PAFR is expressed not only on the surface of
keratinocytes but also our lab has shown that all cultured melanoma cell lines regard-
less of their metastatic potential express constitutively active PAFR [39, 44]. PAFR
in melanoma cells is constitutively active in human melanoma cells and mediates
gene expression [3].

Our lab also hypothesized that PAFR activation via PAF can phosphorylate and
activate the transcription factors cAMP response element-binding (CREB) and acti-
vating transcription factor 1 (ATF-1). Expression of these two transcription factors
correlate with the transition from radial growth phase to vertical growth phase of
human melanoma cells and with their metastatic potential in nude mice [45, 46].
PAF induces CREB and ATF-1 via a PAFR-mediated signal transduction mecha-
nism requiring the G�q and adenylate cyclase. Furthermore, addition of PAF to the
metastatic melanoma A375SM cells stimulated CRE-dependent transcription [39].
Studies have shown that PAF can transactivate membrane type 1-MMP (MT1-
MMP) and TIMP-2 genes resulting in proteolytic activation of MMP-2 in human
umbilical vein endothelial cells [47]. In human melanoma cells PAF also activated
MMP-2 expression and gelatinase activity. Furthermore, MMP-2 activation corre-
lated with an increase in PAF-induced MT1-MMP in human melanoma cells [3,39].

We propose that all melanoma cells express PAFR regardless of their metastatic
potential and secrete basal levels of MMP-2 and MT1-MMP. However, within the
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melanoma tumor microenvironment where PAF secreting cells such as platelets,
endothelial cells and inflammatory cells come into contact with melanoma cells,
activation of the PAFR will cause phosphorylation of CREB and ATF-1 through the
p38 MAP kinase and PKA signal transduction cascades. Consequently, this results
in overexpression and secretion into the microenvironment of MMP-2 and MT1-
MMP (Fig. 1.2). However, since only metastatic melanoma cells overexpress CREB

Fig. 1.2 A schematic for the stimulation of MMP-2 and MT1-MMP by PAF via activation of
CREB/ATF-1. When melanoma cells come into contact with PAF-producing cells within the tumor
microenvironment, PAFR is activated. Through G-proteins and adenylate cyclase, p38 MAPK and
PKA phoshporylate CREB and ATF-1. This results in overexpression and secretion of MMP-2 and
MT1-MMP
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and ATF-1, they are better equipped to respond to the effect of PAF within the tumor
microenvironment.

1.3 Conclusion

It is apparent that early inflammatory and angiogenic response and the remodeling
of the extracellular proteins are essential factors in creating a microenvironment
that sustains tumor growth and metastasis [48]. As we described in this chapter, all
these different cell types and factors found within the tumor microenvironment play
a significant role in homeostasis and behavior of melanocytes as well as directly
affect melanoma growth and malignant invasion [1]. Thrombin, which is abundant
in the tumor microenvironment, causes activation of PAR-1, which is found to be
upregulated in metastatic melanoma cells. This activation promotes secretion of ad-
hesion, angiogenic and survival factors into the tumor microenvironment allowing
for increased metastatic potential of melanoma. Furthermore, PAFR is activated by
PAF produced from an array of inflammatory cells, endothelial cells, keratinocytes
and platelets found within the tumor microenvironment. Activated PAFR will cause
upregulation of the CREB and ATF-1 transcription factors, which in turn increase
the secretion of MMP-2 and MT1-MMP. Therefore, melanoma cells will be sur-
rounded by these factors that increase the potential for basement membrane degra-
dation and thereby increase their metastatic potential. Continuing to study the inter-
actions between the tumor microenvironment and melanoma cells will drastically
help us understand the mechanisms and key players involved in the transition of
human melanoma from radial growth phase to vertical growth phase.
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