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Preface

On June 19th 1999, the European Ministers of Education signed the Bologna Dec-
laration, with which they agreed that the European university education should be
uniformized throughout Europe and based on the two-cycle bachelor-master’s sys-
tem. The Institute for Theoretical Physics at Utrecht University quickly responded
to this new challenge and created an international master’s programme in Theoret-
ical Physics which started running in the summer of 2000. At present, the master’s
programme is a so-called prestige master at Utrecht University, and it aims at train-
ing motivated students to become sophisticated researchers in theoretical physics.
The programme is built on the philosophy that modern theoretical physics is guided
by universal principles that can be applied to any subfield of physics. As a result,
the basis of the master’s programme consists of the obligatory courses Statistical
Field Theory and Quantum Field Theory. These focus in particular on the general
concepts of quantum field theory, rather than on the wide variety of possible applica-
tions. These applications are left to optional courses that build upon the firm concep-
tual basis given in the obligatory courses. The subjects of these optional courses in-
clude, for instance, Strongly-Correlated Electrons, Spintronics, Bose-Einstein Con-
densation, The Standard Model, Cosmology, and String Theory. The master’s pro-
gramme in Theoretical Physics is preceded by a summer school that is organized in
the last two weeks of August to help prospective students prepare for the intensive
master’s courses. Short courses are offered in quantum mechanics, electrodynam-
ics, statistical physics and computational methods, and are aimed at overcoming
possible deficiencies in any of these subjects.

The idea of writing this book came about during the period of 2000-2005,
when one of us was teaching the course on Statistical Field Theory for the above-
mentioned master’s programme in Theoretical Physics. The lecture notes used for
this course were an extended version of the lecture notes for the Les Houches sum-
mer school on Coherent Atomic Matter Waves that took place in 1999. Although
these lecture notes, in combination with the lectures and tutorials, were supposed
to be self-contained, in practice students often expressed a desire for more calcula-
tional details, applications and background material.

v



vi Preface

It was also during this period that the research field of ultracold atomic gases,
pushed in particular by the impressive experimental progress since the first observa-
tion of Bose-Einstein condensation in 1995, made rapid developments that helped
shape the field as we know it today. Nowadays, many experimental groups around
the world can routinely prepare quantum degenerate gases of bosons, fermions, and
various mixtures thereof. Moreover, the microscopic details of these atomic gases
are well known and can be controlled very accurately, leading to the exciting pos-
sibility of addressing fundamental questions about interacting quantum systems in
unprecedented detail. Because of this, it is also possible to perform ab initio theo-
retical calculations that allow for a quantitative comparison with experiments, such
that the connection between theory and experiment is particularly close in this field
of physics. There are various ways to perform these calculations, but most research
topics can be dealt with in a unified manner by using quantum field theoretical meth-
ods. Although there are several textbooks available on quantum field theory, to date
there does not exist a textbook that applies advanced quantum field theory, and in
particular its functional formulation, to ultracold atomic quantum gases.

The level of this textbook is geared to students beginning with their master’s and
to graduate students already working in the field of ultracold atoms. To overcome
the differences in educational background between the various students, the book
has been divided into three parts which can in principle be read independently of
each other. The first part briefly introduces elementary concepts from mathematics,
statistical physics, and quantum mechanics which are indispensable for a full un-
derstanding of the rest of the book. Various important concepts that return later in
the language of quantum field theory are introduced here in a more familiar setting.
At the end of each chapter, there are references to various excellent textbooks that
provide more background on each of the discussed topics. This part of the book is
particularly aimed at the Utrecht Summer School in Theoretical Physics and pro-
vides the participants with the appropriate background material for the obligatory
field theory courses that form the basis of the master’s programme in Theoretical
Physics. The second part of the book is devoted to laying the conceptual basis of
the functional formulation of quantum field theory from a condensed-matter point
of view. This part forms the core of the above mentioned Statistical Field Theory
course, in which also the canonical topics of superfluidity and superconductivity
of interacting Bose and Fermi gases are treated. The third part of the book is then
largely aimed at applications of the developed theoretical techniques to various as-
pects of ultracold quantum gases that are currently being explored, such that the
chosen topics give an idea of the present status of the field. It is our hope that, after
having read this part, students will be well prepared to enter this exciting field of
physics and be able to start contributing themselves to the rapid developments that
are taking place today.

The knowledge presented in this book has been acquired through many collab-
orations and interactions with our colleagues over the last two decades. Here, we
would like to sincerely thank everybody involved for that. It is unfortunately im-
possible to give everybody the proper credit for their contribution. As a result, both
in this short word of thanks, as well as in citing references throughout the book,
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subjective choices are made and important contributions left out. Our main aim
in citing has been to provide students with interesting additional reading material,
and not to give an exhaustive overview of the enormous amount of literature in the
field of ultracold atoms. We hope to be forgiven for that. With this in mind, we
thank the following persons together with the members of their groups, namely Im-
manuel Bloch, Georg Bruun, Keith Burnett, Eric Cornell, Peter Denteneer, Steve
Girvin, Randy Hulet, Allan MacDonald, Cristiane Morais Smith, Guthrie Partridge,
Chris Pethick, Subir Sachdev, Cass Sackett, Jörg Schmiedmayer, Kevin Strecker,
Peter van der Straten, Stefan Vandoren, and Eugene Zaremba for the collaborations
that have led to joint publications. We also thank the postdoctoral researchers Us-
ama Al Khawaja, Jens Andersen, Behnam Farid, Masud Haque, Jani Martikainen,
Pietro Massignan, and Nick Proukakis, and the graduate students Michel Bijlsma,
Marianne Houbiers, Michiel Bijlsma, Rembert Duine, Dries van Oosten, Gianmaria
Falco, Lih-King Lim, Mathijs Romans, Michiel Snoek, Arnaud Koetsier, and Jeroen
Diederix of the Utrecht Quantum Fluids and Solids Group. In particular, we men-
tion Usama Al Khawaja, Rembert Duine, Dries van Oosten, and Nick Proukakis for
their direct contributions to the recent applications that are discussed in the third
part of the book. We also thank our experimental colleagues Immanuel Bloch, Eric
Cornell, Randy Hulet, Wolfgang Ketterle, and Wenhui Li, for kindly providing us
with the experimental data that has allowed us to compare the theory to experiment
in this book. We thank Rembert Duine for providing several exercises and for many
helpful comments on the manuscript. Furthermore we express our gratitude to Tom
Spicer from Canopus Publishing for all his effort in bringing forth this book. We are
especially grateful to Randy Hulet for more than 15 years of friendship and fruitful
collaboration, from which we benefitted greatly, both personally and professionally.

Finally, we wish to thank Jolanda, Maurice, Inèz, Joke, Harry, Winy, Theo, Roos,
Hein, Paulien, Ryoko, Miguel, and the rest of our families and friends for all their
unconditional support and for sharing the joy of life.

Utrecht, May 2008 Henk Stoof
Koos Gubbels

Dennis Dickerscheid
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Chapter 1
Introduction

The field of many-body quantum physics has a long history of fundamental discov-
eries, many of which have gone far beyond our wildest imagination. These include
the study of novel states of matter, the observation of previously unseen phase tran-
sitions, and the discovery of new macroscopic quantum effects which arise when
the intriguing rules of quantum mechanics are no longer restricted to the subatomic
world, but rather determine the collective behavior of systems that are observable
with the naked eye. In the past, it has often been proven difficult to obtain the un-
derlying theory that yields an accurate description of the collective quantum phe-
nomenon on the microscopic level. A good example is the discovery of superflu-
idity in liquid 4He by Pyotr Kapitsa, John Allen and Don Misener in 1938 [1, 2],
where superfluidity refers to the fact that the liquid can flow without experiencing
resistance, which leads for example to the spectacular fountain effect [3]. Since the
atoms interact very strongly, the precise internal state of liquid helium is notoriously
difficult to determine.

An exception to this rule, however, is the question of what happens to a nonin-
teracting gas of bosons when it is cooled down to zero temperature. This question
was already theoretically answered long before the discovery of superfluid helium.
In fact, the answer was already obtained before the final formulation of quantum
mechanics and before a good understanding of phase transitions was achieved. The
question found its origin in the early 1920s, when Satyendra Bose introduced a dif-
ferent way of counting microstates than was usual in classical statistical mechanics
[4]. In this way, he was able to rederive Planck’s law for the energy spectrum of
black-body radiation. Albert Einstein generalized this result in 1924 to the case of
indistinguishable noninteracting massive bosons by including the effect of particle-
number conservation, which led to the famous Bose-Einstein distribution [5]. Ein-
stein also realized that a remarkable consequence of this Bose-Einstein distribution
is that below a certain critical temperature

Tc =
2π

ζ (3/2)2/3

h̄2n2/3

mkB
, (1.1)

1
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it predicts that a macroscopic fraction of the bosons occupies the same one-particle
quantum state. Here h̄ is Dirac’s constant, i.e. Planck’s constant h divided by 2π ,
m is the mass of the particles, kB is Boltzmann’s constant, n is the particle density
of the gas, and ζ (3/2) ' 2.612. This promotes the wavefunction of that particular
one-particle quantum state to the macroscopic level and gives rise to a new state of
matter that is known as a Bose-Einstein condensate or BEC. It is believed that Bose-
Einstein condensation is also the mechanism behind the superfluid behavior of liquid
helium. However, in liquid helium the density is high and the interaction between
the helium atoms is very strong, such that it is far from an ideal Bose gas. As a
result, Einstein’s theory needs to be modified considerably, and so far the properties
of liquid helium have been impossible to determine analytically. Furthermore, the
presence of a macroscopic occupation of a one-particle quantum state has never
been directly observed in this system.

The microscopic theory for the phenomenon of superconductivity, which was
discovered experimentally in 1911 by Heike Kamerlingh Onnes [6], also turned
out to be an extremely challenging task. After superconductivity had been found
it was studied experimentally in a wide variety of metals, leading to many impor-
tant discoveries. A crucial example, known as the Meissner effect [7], reveals that
a superconductor is a perfect diamagnet because any applied magnetic field is com-
pletely expelled from its interior. It took almost fifty years before John Bardeen,
Leon Cooper, and Robert Schrieffer [8] finally realized that superconductivity is
actually caused by a Bose-Einstein condensation of loosely bound fermion pairs.
The Bardeen-Cooper-Schrieffer or BCS theory of superconductivity is based on
the description of the electrons in a metal as a gas, where the electrons need an
effectively attractive interaction to form stable Cooper pairs. Physically, this attrac-
tive interaction is the result of the rather subtle effect that the electrons can deform
the positively charged ionic lattice that is present in the metal. It is perhaps ironic
that if the theory was invented before the experimental discovery of Kamerlingh
Onnes, physicists would probably have never started looking for superconductivity
in metals, because electrons do not usually form pairs due to their strongly repulsive
Coulomb interaction. In 1986, high-temperature superconductors were discovered
in ceramic materials [9]. However, the precise microscopic mechanism governing
these cuprates is still not clear today.

1.1 Ultracold Atomic Quantum Gases

From the moment that Bose-Einstein condensation was finally achieved in trapped
dilute gases of bosonic alkali atoms in 1995 by the groups of Eric Cornell and
Carl Wieman, Randy Hulet, and Wolfgang Ketterle [10, 11, 12], a completely new
category of systems became available for studying macroscopic quantum effects.
The most important ingredients for this accomplishment were the precooling of the
atoms using laser cooling [13], the trapping of the atoms in a magnetic trap [14],
the final cooling of the atoms using evaporative cooling [15], and the imaging of the
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gas either in situ or after expansion. In particular, the trapping of atoms and cooling
by means of evaporation turned out to be crucial. The reason for this is hidden in
the prediction of (1.1) that for the relevant low densities of 1012− 1015 atoms per
cubic centimeter, extremely low temperatures of 1− 100 nK are required to reach
Bose-Einstein condensation. These are impossible to achieve if the gas is in con-
tact with material walls. Once the atomic gas is magnetically or optically trapped,
evaporative cooling can be relatively easily implemented by lowering the trap depth,
so that only the most energetic atoms can escape from the trap and the remaining
gas cools after re-thermalization. Because of their complete isolation these ultracold
gases are, unlike solid-state systems, very clean in the sense that there are essentially
no impurities unless deliberately added. Moreover, due to the low densities, inter-
action effects can be sufficiently small as to be treated with perturbation theory. As
a result, it is possible to obtain an accurate microscopic description of these ultra-
cold atomic quantum gases using advanced field-theoretical methods. This is one of
the main goals of this book. Furthermore, these systems have also turned out to be
very flexible, as the external trapping potential and the interatomic interaction are
under complete experimental control. This allows for a systematic study of an enor-
mous variety of interesting many-body systems, ranging from weakly interacting
to strongly interacting, from one dimensional to three dimensional, from homoge-
neous to periodic, where the microscopic parameters are always precisely known
and tunable.

Shortly after the achievement of Bose-Einstein condensation, it was predicted
that the superfluid regime could also be reached in a dilute gas of fermionic atoms
[16]. However, the realization of this intriguing possibility turned out to be even
more difficult than reaching BEC. This comes about because the previously men-
tioned BCS theory for the condensation of fermion pairs predicts that the critical
temperature is exponentially dependent on the inverse of the (negative) scattering
length a, which describes the strength of the attractive interactions between the
fermions. Namely, we have that

Tc =
4(9π)1/3

e2−γ
h̄2n2/3

mkB
exp

{
− π

2kF|a|
}

, (1.2)

where γ ' 0.5772 is Euler’s constant and kF = (3π2n)1/3 is the Fermi wavevector.
This in general shifts the required temperature beyond the reach of experiments with
ultracold gases, which are dilute and therefore usually characterized by kF|a| ¿ 1.
Also, it turns out that it is more difficult to obtain an experimental signature for the
onset of the superfluid phase in the Fermi system than in the case of bosons. The
use of Feshbach resonances, which were theoretically discovered in the alkalis by
Eite Tiesinga, Boudewijn Verhaar and Henk Stoof [17], has fortunately solved both
of these problems.

In a Feshbach-resonant atomic collision, two atoms collide and virtually form
a long-lived molecule with a different spin configuration than the incoming two
atoms, where the molecule ultimately decays into two atoms again. The scattering
properties of the colliding atoms depend very sensitively on the energy difference
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of the molecular state with respect to the threshold of the two-atom continuum. This
energy difference is known as the detuning and can be changed with an applied mag-
netic field, because the different spin states of the incoming atoms and the molecule
lead to a different Zeeman shift. In particular, the Feshbach resonance allows for
a precise tuning of the scattering length a, which opens up the exciting possibil-
ity of reaching the superfluid regime for fermionic atoms. Namely, the interactions
can be made strongly attractive, i.e. kF|a| À 1, which leads to a critical temperature
comparable to that of an atomic Bose gas. This objective was ultimately achieved
in a series of ground-breaking experiments by the group of Debbie Jin using 40K
[18] and the groups of Wolfgang Ketterle, John Thomas, Rudi Grimm, Christophe
Salomon, and Randy Hulet using 6Li [19, 20, 21, 22, 23]. A number of these ex-
periments exploit the Feshbach resonance to its fullest by also using it to actually
observe the Bose-Einstein condensate of Cooper pairs.

To understand the latter better, we realize that there is an intimate connection
between the Bose-Einstein condensation of bosons and the Bose-Einstein conden-
sation of loosely-bound fermionic Cooper pairs. Note that the first is responsible for
the superfluidity of weakly-interacting Bose gases, while the latter is responsible
for both the superfluidity of weakly-interacting Fermi gases and the superconduc-
tivity of metals. The connection between the two condensates might have already
been anticipated from the fact that the critical temperatures in (1.1) and (1.2) are
very similar in the strongly-interacting limit kF|a| À 1. Moreover, the atomic Bose-
Einstein condensation experiments make use of alkali atoms, which are hydrogen-
like composite bosons that can be seen as an outer electron bond to an inner core
consisting of the fermionic nucleus and a surrounding electron cloud with an even
number of electrons. As a result, a condensate of bosonic atoms can also be seen as
a Bose-Einstein condensate of tightly-bound fermion pairs. We may thus conclude
that fermionic superconductivity and bosonic superfluidity are in fact two sides of
the same coin, differing only in the strength of the attraction between the fermions.
If the attraction is weak, the Cooper pairs are very weakly bound and their size
is much larger than the average interparticle distance n−1/3, which is also called
the superconductivity or BCS limit. However, in the superfluidity or BEC limit, the
attraction is strong and the pairs are much smaller than the average interparticle
distance, such that they act as composite bosons.

With an atomic Fermi gas near a Feshbach resonance, we can now for the first
time experimentally explore both sides of the coin in one and the same system, i.e.
study the full physics of the BEC-BCS crossover as first envisaged by David Ea-
gles and Tony Leggett [24, 25]. By changing the magnetic field we can go from a
large positive detuning above the Feshbach resonance, in which case we have no
stable molecular state and a weakly-attractive interaction, to a large negative de-
tuning below the Feshbach resonance, in which case there exists a deeply bound
molecular state. In this manner, we thus evolve from a condensate of loosely bound
Cooper pairs to a condensate of tightly bound molecules. The evolution between
these two extremes turns out to be a smooth crossover, such that the transition be-
tween diatomic molecules and Cooper pairs is continuous. As mentioned above, this
feature has been used to detect the Bose-Einstein condensate of Cooper pairs, by
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conveniently converting it into a Bose-Einstein condensate of tightly bound bosonic
molecules with the use of an adiabatic magnetic-field sweep across the Feshbach
resonance. The reason why it is so easy to observe a condensate of ideal bosons can
be readily understood from their macroscopic occupation of the same one-particle
ground state, which has a minimal kinetic energy. As a result, the atoms or diatomic
molecules hardly spread out upon releasing the condensate from the trap, which
leads to a very distinct peak in the velocity distribution at low velocities. The first
atomic Bose-Einstein condensate was observed [10] in exactly the same manner.

Presently, there are many exciting directions that are being explored with ultra-
cold atomic gases. First of all, we remark that the fermionic atoms that form the
pairs in the BEC-BCS crossover must have two different spin states due to the Pauli
principle. As a result, this crossover physics is usually studied in a balanced Fermi
mixture with an equal number of atoms in each of the two different spin states. At
the moment, a hot topic is to explore what precisely happens to the gas when the
Fermi mixture becomes imbalanced, so that it is impossible for all the atoms to pair
up simultaneously. Understanding this problem may also shed light on the physics
in the core of a neutron star, where an imbalanced mixture of free quarks with at-
tractive interactions can exist. These quarks may then form what is known as a color
superconductor [26].

Another important direction is associated with the possibility of creating an
intense standing wave of light with counter-propagating laser beams. This gives
rise to a periodic potential for the atoms due to the Stark effect, which is also
known as an optical lattice [27]. These optical lattices are very interesting for var-
ious reasons. An important one is that they can be used to simulate ionic lattices,
which offers the opportunity to explore various aspects of solid-state physics in
the very controlled environment of ultracold atoms. A particularly exciting possi-
bility in this respect is to study systematically the microscopic models that have
been proposed to govern high-temperature superconductors. Moreover, optical lat-
tices can also be used to create low-dimensional atomic gases. In particular, with
a very deep two-dimensional optical lattice we can make a two-dimensional array
of one-dimensional gases, whereas a one-dimensional optical lattice creates a one-
dimensional stack of two-dimensional systems. Low-dimensional quantum gases
are interesting, because they often give rise to intriguing strongly-correlated behav-
ior that is very different from the three-dimensional case. In various cases, low-
dimensional many-body systems even allow for exact theoretical solutions.

Also of much interest in current research is the use of Feshbach resonances
between two different atomic species to create ultracold heteronuclear molecules.
These kind of molecules can have a large electronic dipole moment, which leads
to a strong anisotropic dipole-dipole interaction. Since this interaction has a long-
range nature it can possibly be used in combination with an optical lattice to create
a new kind of superfluid, first proposed by Geoffrey Chester in 1970 [28], called a
supersolid. This unusual new state of matter, which shares the properties of both a
solid and a superfluid, has recently drawn a lot of attention in the context of solid
4He. However, these experiments appear to be inconclusive at present [29], such
that ultracold atomic gases may be a better system to explore this intriguing possi-
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bility [30]. To conclude, we remark that many other directions are being explored
at present, leading us to believe that ultracold atomic quantum gases will remain an
exciting area of physics for many years to come.

1.2 Outline

To facilitate the use of this book, we end this introduction by presenting a short
overview of its contents. The book is divided into three parts that to a large extent can
be read independently of each other. Part I contains the introductory material that is
necessary for understanding the formulation of the functional-integral approach to
quantum many-body physics, which is the method of choice for most condensed-
matter theorists active in research today. Part II is then the core of the book, where
the functional formalism is constructed, developed and used to discuss the canonical
topics of superfluidity in interacting Bose and Fermi gases. In Part III, we discuss
various more recent applications of the many-body techniques that are developed in
Part II in order to explain important experiments that have recently been performed
in the field of ultracold quantum gases.

1.2.1 Part One

Part I consists of Chaps. 2 to 6. We start in Chap. 2 with the mathematical foun-
dations that are needed to follow the calculations in the rest of the book. A con-
sequence of using the functional-integral approach to quantum field theory is that
we very often have to perform integrations over infinitely many variables. Most fre-
quently used is the Gaussian integral, because it is one of the few functional integrals
that we can solve exactly. In Chap. 2 we therefore discuss Gaussian integration over
an arbitrary number of variables, where we not only consider real variables, but also
complex variables and Grassmann variables. These last kind of variables change
sign upon permutation, which is very convenient when describing indistinguishable
fermions, whose antisymmetric behavior leads to precisely the same property. In
Chap. 3, we briefly review the basics of quantum mechanics that are relevant to
our purposes. In particular, we discuss the exact solution to the harmonic oscillator
problem, which is important for two reasons. First of all, in order to perform ex-
periments on ultracold atomic gases these gases are always trapped in space, and
the trapping potential is typically well approximated by a harmonic potential. Sec-
ond, the interacting many-body system described with quantum field theory turns
out to be equivalent to an infinite number of interacting harmonic oscillators. As a
result, we can already introduce various important concepts in the familiar setting of
a single harmonic oscillator, where later these concepts are generalized to the more
abstract language of quantum field theory. Examples are the coherent states and the
use of perturbation theory, whose generalization is a way to describe interaction ef-
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fects in many-body systems. Finally, we also consider some aspects of scattering
theory, because for ultracold atomic gases it turns out that we can calculate many-
body interaction effects from first principles if we know the two-atom scattering
properties at low kinetic energy.

Chap. 4 is devoted to statistical physics. Since interacting quantum gases typi-
cally consist of at least millions of particles, an exact treatment of all microscopic
degrees of freedom is unfeasible. However, we are usually only interested in the
averaged macroscopic quantities, whose description actually becomes more conve-
nient as the number of particles increases. This is the domain of statistical physics,
which also tells us how to deal with the effects of thermal fluctuations. Since exper-
iments with ultracold atomic gases are never performed at exactly zero temperature,
it is usually not sufficient to consider only the many-body ground state. We then
find from statistical physics that all macroscopic quantities can be directly obtained
from the partition function of the gas, such that the main challenge of a many-body
theoretical physicist is to determine this quantity in a sufficiently accurate approxi-
mation. For the ideal Bose and Fermi gases, this quantity can be computed exactly,
and we find that these two systems behave very differently at low temperatures. In
particular, the ideal Bose gas undergoes a phase transition to a new state of matter
called a Bose-Einstein condensate, as was already mentioned in the discussion of
(1.1). The precise knowledge of the noninteracting quantum gases is then a good
starting point to discuss the effects of interactions, which is treated in the second
part of the book.

In Chap. 5, we discuss quantum mechanics using Feynman’s path-integral ap-
proach, which is rather different from the more familiar operator formalism of Chap.
3. Path integrals turn out to be very well suited for a generalization to quantum field
theory, such that a thorough knowledge of them is very useful to fully understand
all the calculations in the later chapters. Many subtleties of the functional-integral
formalism already show up in this chapter, where we also immediately show how to
deal with them. In particular, we derive the path-integral expression for the partition
function of a single trapped atom. To also be able to derive the functional integral
for the partition function of an interacting many-body system, we need to reformu-
late the quantum mechanics of a many-body system in a somewhat more convenient
way. This is achieved in Chap. 6 via a procedure which is known as second quanti-
zation. In the second-quantized approach to many-body quantum theory, the parti-
cles are represented by creation and annihilation operators, which are conveniently
constructed such that they automatically incorporate the quantum statistics of the
particles. The eigenstates of these annihilation operators are called coherent states,
and are the final ingredient needed to derive the functional formulation of quantum
field theory.
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1.2.2 Part Two

This is then achieved in Part II of the book, which consists of Chaps. 7 to 14. Part II
forms the core of the book, in which we develop all the functional tools in quantum
field theory that are needed to understand the equilibrium properties of ultracold
atomic quantum gases. In fact, the introduced methods have a much wider range of
applicability, such that they can actually be used as a starting point to tackle any
quantum condensed-matter problem. However, in order to keep the book coherent,
most applications we discuss are from the field of ultracold atoms. A reader with
a good undergraduate education in quantum mechanics and statistical physics can
most likely enter the discussion here, after a quick study of Gaussian integrals and
Grassmann variables in Chap. 2 and the second-quantization formalism in Chap. 6.
Part II starts off with Chap. 7, in which we derive the functional integral for the
partition function of an interacting many-body system. We also reconsider the ideal
quantum gases, for which the partition function reduces to a Gaussian functional
integral such that it can be calculated exactly. We perform this calculation in three
different ways to familiarize ourselves with functional integration, and to introduce
various concepts that come back time after time throughout the rest of the book.

In Chap. 8 we discuss the effects of interactions between the particles, which in
general leave the partition function unsolvable, such that we have to resort to appro-
priate approximation methods. A first way to systematically study interaction effects
is by performing a perturbative expansion in the interaction. The general structure of
the resulting perturbation theory is then very conveniently visualized with the use of
Feynman diagrams. We also explain several features of the expansion that are valid
up to any order in the interaction strength, and that are therefore especially useful for
arriving at accurate approximations. In particular, we discuss the famous Hartree-
Fock approximation, which is a selfconsistent approximation that sums an infinite
number of Feynman diagrams and is used very often in condensed-matter physics
to obtain a first understanding of the importance of interaction effects. We derive
the Hartree-Fock theory by using a variational approach and by using a Hubbard-
Stratonovich transformation. This exact transformation turns out to be a very ver-
satile and powerful tool which comes back in many different guises throughout the
book.

In Chap. 9 we discuss the Landau theory of phase transitions, where an impor-
tant concept is the order parameter. This is the observable that distinguishes the two
phases involved in the phase transition by quantifying the occurrence of order in the
system. We then show that a nonzero value of the order parameter is often associated
with a spontaneous breakdown of symmetry, which means that an equilibrium state
of the system has less symmetry then the underlying microscopic Hamiltonian. The
usefulness of the Hubbard-Stratonovich transformation introduced in the previous
chapter becomes particularly obvious in the context of phase transitions, because it
can be used to bring the order parameter exactly into the many-body theory. More-
over, we show that fluctuations of the order parameter field can become crucial close
to the phase transition, such that they can even cause a breakdown of Landau the-
ory. To go beyond Landau theory turns out to be an exceedingly difficult task and
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requires advanced field-theoretical methods to which we return in Chap. 14. In or-
der to reach our goal of obtaining an ab initio microscopic description for the phase
transition to the superfluid state in interacting atomic Bose and Fermi gases, we still
need to understand some specific properties of the alkali atoms that are involved in
the actual experiments. In particular, the spin structure of the atoms is important,
because it affects the scattering properties of two atoms, where the resulting inter-
action strength is an input parameter for the quantum field theory of the trapped
atomic quantum gas. Chap. 10 deals in more detail with both the spin structure and
the scattering of atoms.

In Chap. 11 we apply the developed field-theorical machinery to discuss the
famous Bogoliubov and Popov theories of Bose-Einstein condensation, leading,
amongst others, to the equally famous Gross-Pitaevskii equation for the conden-
sate wavefunction. The Bogoliubov theory is only valid for temperatures close to
zero Kelvin, while the range of validity for the Popov theory is larger, because it
takes into account fluctuation effects in a similar manner to the Hartree-Fock the-
ory discussed in Chap. 8. The historically most important success of the Bogoli-
ubov theory was the correct prediction for the vibrational eigenfrequencies of a
fully Bose-Einstein condensed atomic cloud. In view of this success, we discuss
these collective modes in some detail using a hydrodynamic-like approach. We also
briefly discuss what happens when we try to bring the Bose-Einstein condensed gas
into rotation, which leads to interesting properties due to the superfluid nature of
the gas. Finally, we show that a condensate with effectively attractive interatomic
interactions is metastable and ultimately collapses into a Bosenova. In Chap. 12, the
Bose-Einstein condensation of Cooper pairs in an ultracold Fermi gas is discussed.
In particular, we show how a Hubbard-Stratonovich transformation introduces the
appropriate order parameter of the phase transition into the theory. This order pa-
rameter describes the condensate of Cooper pairs, which means that the superfluity
of an atomic Fermi gas has the same physical origin as the superconductivity of met-
als. We also derive the critical temperature for the transition in mean-field theory, the
result already announced in (1.2). Finally, we also give a more detailed discussion of
the BEC-BCS crossover taking place in an atomic gas near a Feshbach resonance.

After having discussed these two explicit examples of phase transitions, we are
ready for a more general discussion of the consequences of symmetries and sym-
metry breaking in quantum field theory. This is the topic of Chap. 13, which has a
somewhat more formal nature than the two earlier chapters. However, its results are
of much importance to practical calculations. We remember that in order to compare
theory with experiments, we usually have to make approximations, because inter-
acting quantum field theories are often too difficult to solve exactly. Obviously, we
want to arrive at approximations that do not violate the underlying symmetries of the
theory, which is particularly important in the discussion of phase transitions. This is
because we need the corresponding symmetry breaking to occur spontaneously and
not by the approximation that we make. It turns out that it is possible to derive identi-
ties, known as the Ward identities, that check if our approximations still preserve the
underlying symmetries. We give a few explicit examples of these Ward identities,
and discuss how they can be used in the calculation of certain directly measurable
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quantities in experiments. Another fundamental issue that we touch upon is the fact
that spontaneous symmetry breaking can formally only occur for systems with an
infinite number of particles, while realistic experiments always deal with a finite
number of particles. We discuss how these two facts can be reconciled with each
other for the specific case of superfluid atomic Bose and Fermi gases by discussing
the phenomenon of phase diffusion.

In Chap. 14, we go beyond the Landau theory of phase transitions. This is neces-
sary when critical fluctuations extend over the whole many-body system, giving rise
to critical phenomena. Since the critical fluctuations now dominate at each length
scale, the system is actually scale invariant, which we can use to describe it re-
cursively at increasing wavelengths. This leads to the renormalization group theory
of critical many-body systems which, amongst other results, provides the explana-
tion for universality, i.e. the remarkable observation that very different microscopic
systems have identical critical properties. We also apply the renormalization group
approach to the imbalanced Fermi gas in the strongly-interacting regime, where we
can compare the resulting homogeneous phase diagram with beautiful experimental
results that were obtained recently.

1.2.3 Part Three

The last three chapters, 15 to 17, form Part III of the book, in which the functional
formalism is applied to various recent topics in ultracold atomic gases. In Chap. 15
we discuss low-dimensional, i.e. one and two-dimensional, atomic Bose gases. An
important challenge in this chapter is caused by the breakdown of Popov theory due
to the enhanced importance of fluctuations in low dimensions. It is then explained
in detail how the Popov theory can be modified in order to resolve these problems
and, in particular, to describe the famous Kosterlitz-Thouless phase transition in two
dimensions. The low-dimensional atomic gases are experimentally realizable with
the use of optical lattices, which are the topic of Chap. 16. These lattices also give
rise to interesting new physics in three dimensions, because they can be used to sim-
ulate solid-state-like periodic potentials, where the depth of the periodic potential is
now tunable by varying the laser intensity. As a result, if a shallow optical lattice is
loaded with a Bose-Einstein condensate of bosonic atoms, the superfluidity can be
destroyed by increasing the lattice depth, which then leads to the Mott-insulator state
with precisely one trapped atom at each lattice site. This phase transition happens at
zero temperature, and is thus an example of a quantum phase transition, which was
observed by Greiner et al. in 2002 [31]. The same experiment can also be performed
with an ultracold Fermi mixture, which leads to the possibility of observing the Néel
state, and hopefully eventually to new insights into high-temperature superconduc-
tors. Finally, we end the book in Chap. 17 with the theory for Feshbach resonances,
which now have many important applications in ultracold atomic physics experi-
ments. We start with the two-body atomic physics that causes the resonance, after
which we also explain how this two-body physics can be accurately captured in a
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quantum field theory of atoms and molecules. As an application, we finally consider
the coherent Josephson oscillations between a Bose-Einstein condensate of atoms
and a Bose-Einstein condensate of molecules, where we also compare the results
with some beautiful quantum-mechanical interference experiments that are the ul-
tracold atomic analog of the neutrino oscillations known from high-energy physics.



Part I



Chapter 2
Gaussian Integrals

We must admit with humility that, while number is purely a
product of our minds, space has a reality outside our minds, so
that we cannot completely prescribe its properties a priori.
– Carl Friedrich Gauss.

In this chapter, we lay the mathematical foundations for the functional-integral for-
malism that we develop in later chapters. We start with introducing the Gaussian
probability distribution together with the corresponding integrals over this distribu-
tion, called Gaussian integrals. These concepts are then generalized to higher dimen-
sions, to the complex plane, and to what are called Grassmann variables. The multi-
dimensional Gaussian integral is of great importance for the rest of this book. In
Chap. 7, we show that it leads to an exact solution of noninteracting quantum gases,
which then also forms the basis for a perturbative description of interacting quantum
gases. The goal of this chapter is to highlight the practical use of several important
mathematical results that are needed to understand the rest of the book. The chapter
is not intended to be a full mathematical account of all the above-mentioned topics,
meaning that proofs will often be omitted or replaced by illustrative examples. The
more experienced reader who is already familiar with Gaussian integrals, complex
analysis, and Grassmann algebras, can use this chapter for reference.

2.1 The Gaussian Integral over Real Variables

The Gaussian or normal probability distribution is the most common distribution in
statistical physics. The main reason for this is that the probability distribution for the
sum of N independent random variables, each with a finite variance, converges for
large N to the Gaussian distribution. This is called the central limit theorem of prob-
ability theory. Famous physical examples of Gaussian distributions are the Maxwell
distribution for the velocities of the atoms in a classical ideal gas, or the spatial dis-
tribution for an atom in the quantum-mechanical ground state of a harmonic trap.
The Gaussian probability distribution is given by

P(x) =
√

α
π

exp
{−αx2}, (2.1)

15
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such that it is properly normalized to 1. This follows from

∫ +∞

−∞
dx e−αx2

=
√

π
α

, (2.2)

which is left as an exercise to the reader. The probability distribution of (2.1) has a
maximum at x = 0, whereas in general the maximum could be at any arbitrary value
x0. Then, we have

P(x) =
√

α
π

exp
{−α(x− x0)2}, (2.3)

which corresponds, for example, to the probability distribution of the velocities in
a thermal beam of atoms which is travelling at an average velocity x0. The latter
distribution has the property that the expectation value of the quantity x is equal to
x0, that is

〈x〉 ≡
∫ +∞

−∞
dx x P(x) =

√
α
π

∫ +∞

−∞
dx x exp

{−α(x− x0)2} = x0, (2.4)

which is easily proven by performing the shift x→ x+ x0.
For our purposes, it is convenient to write the parameter α as−G−1/2 =−1/2G,

with G < 0. In the first instance, this looks overly complicated. However, it estab-
lishes a direct link with the notation used in later chapters for the Green’s function in
the functional-integral formalism. From now on, we also no longer explicitly denote
the lower and upper limit of the integration when these are given by −∞ and +∞,
respectively. With these changes, the Gaussian integral can be written as

∫
dx exp

{
1
2

G−1x2
}

=
√−2πG =

√
2π exp

{
−1

2
log(−G−1)

}
. (2.5)

2.1.1 Generating Function

By including a linear term Jx in the exponent, we introduce the generating function
Z(J) of the probability distribution. This is very useful because it allows us to cal-
culate the expectation value of all the higher moments, i.e. the expectation values of
xn, by simply differentiating with respect to the current J. Specifically, we have for
the Gaussian distribution

Z(J) =
∫ dx√

2π
exp

{
1
2

G−1(x− x0)2 + Jx
}

=
∫ dx√

2π
exp

{
1
2

G−1(x+GJ)2− 1
2

GJ2 + Jx0

}

= exp
{
−1

2
GJ2 + Jx0− 1

2
log

(−G−1)
}

, (2.6)
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where in the first step we performed the shift x → x + x0 before completing the
square. Note that the additional factor 1/

√
2π conveniently cancels the factor

√
2π

coming from the Gaussian integral. The expectation value of x is now readily calcu-
lated from

〈x〉=
1

Z(J)
d
dJ

Z(J)
∣∣∣∣
J=0

= x0, (2.7)

and for 〈x2〉, we obtain

〈x2〉=
1

Z(J)
d2

dJ2 Z(J)
∣∣∣∣
J=0

=−G+ x2
0 =−G+ 〈x〉2. (2.8)

Since we can always perform initially the shift x → x + x0, we consider from now
on without loss of generality the case with x0 = 0. A useful observation is that this
leads to

〈x2m+1〉= 0, (2.9)

where m is an integer. This is because the integrand of the integral

∫
dx x2m+1 exp

{
1
2

G−1x2
}

is odd and the integral vanishes consequently. By repeatedly applying the derivative
d/dJ an even number of times to the first line of (2.6) with x0 = 0, we find that

〈x2m〉=
1

Z(J)
d2m

dJ2m Z(J)
∣∣∣∣
J=0

. (2.10)

Explicitly calculating the right-hand side of (2.10), using the expression in the last
line of (2.6), generates a large number of terms that vanish when we eventually take
the limit J → 0. To simplify the calculation, it is therefore convenient to realize that
if we expand Z(J) in powers of J only the terms proportional to J2m contribute. In
this manner, we find for x0 = 0 that

1
Z(J)

d2m

dJ2m Z(J)
∣∣∣∣
J=0

=
Z(0)
Z(J)

d2m

dJ2m

∞

∑
n=0

1
n!

(
−1

2
GJ2

)n
∣∣∣∣∣
J=0

=
(2m)!
2mm!

(−G)m = (2m−1)!!(−G)m, (2.11)

where (2m−1)!! = (2m−1)(2m−3)(2m−5) . . .1. Hence, we conclude that

〈x2m〉= (2m−1)!!(−G)m. (2.12)

It is important to realize that (2m−1)!! is exactly the number of ways in which 2m
numbers can be divided into m pairs. Thus, we have found that the expectation value
of x2m is equal to the sum of all possible ways in which 〈x2m〉 can be factorized as
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〈x2〉m. This last statement is the essence of the famous Wick’s theorem that will turn
out to be of great importance in later chapters.

2.1.2 Multi-Dimensional Gaussian Integral

The previous results can be immediately generalized to higher-dimensional inte-
grals. Consider a diagonal n×n matrix G,

G =




G11
G22

G33
. . .


 , (2.13)

with again G j j < 0. Then, the inverse G−1 of G is clearly given by

G−1 =




1
G11

1
G22

1
G33

. . .




. (2.14)

We want to evaluate the Gaussian integral

∫ (
n

∏
j=1

dx j

)
exp

{
1
2

x ·G−1 ·x
}
≡

∫
dx exp

{
1
2

x ·G−1 ·x
}

, (2.15)

where x denotes the vector (x1,x2, . . . ,xn). Because the integral factorizes into a
product of n one-dimensional integrals, we find that

∫
dx exp

{
1
2

x ·G−1 ·x
}

=
(2π)n/2

√
∏n

j=1(−G−1
j j )

=
(2π)n/2

√
Det[−G−1]

, (2.16)

where Det[−G−1] denotes the determinant of the matrix−G−1. In the same way we
find that (2.6) generalizes to

Z(J) =
∫ dx√

(2π)n
exp

{
1
2

x ·G−1 ·x+J ·x
}

= exp
{
−1

2
J ·G ·J− 1

2
Tr[log

(−G−1)]
}

, (2.17)

where we have taken again without loss of generality x0 = 0. Here Tr[. . .] denotes
the trace of a matrix, which is the sum of all diagonal elements. The n-th order
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correlation function 〈x j1x j2 . . .x jn〉, given by the expectation value of the product of
n coordinates x j, is now easily calculated from

〈x j1 . . .x jn . . .〉=
1

Z(J)
∂ n

∂J j1 . . .∂J jn
Z(J)

∣∣∣∣
J=0

. (2.18)

Example 2.1. Because Z(J) depends quadratically on J, it immediately follows that

〈xi〉=
1

Z(J)
∂

∂Ji
Z(J)

∣∣∣∣
J=0

= 0. (2.19)

For the expectation value 〈xix j〉, we find

〈xix j〉=
1

Z(J)
∂ 2

∂Ji∂J j
Z(J)

∣∣∣∣
J=0

=−Gi j. (2.20)

The above results were obtained for the specific case of a diagonal matrix. How-
ever, (2.17) is valid for any positive definite, symmetric matrix −G−1, where pos-
itive definite means that the matrix has only positive eigenvalues. First, note that
−G−1 can always be assumed to be symmetric, because any antisymmetric part
would give a vanishing contribution to the term −x ·G−1 · x. Then, a symmetric
matrix can always be brought into diagonal form by a similarity transformation S,
which means that S ·G−1 · S−1 is diagonal and S is orthonormal. Orthonormality
implies that

|Det[S]|= 1, (2.21)

such that the Jacobian of the coordinate transformation x = S−1 ·x′ is equal to one.
Applying the above considerations to (2.17), we have

Z(J) =
∫ dx′√

(2π)n
exp

{
1
2

x′ ·S ·G−1 ·S−1 ·x′+J ·S−1 ·x′
}

= exp
{
−1

2
J ·S−1 ·S ·G ·S−1 ·S ·J

}
1√

Det[−S ·G−1 ·S−1]

= exp
{
−1

2
J ·G ·J

}
1√

Det[−G−1]
, (2.22)

where we also used the property that for an orthogonal matrix the inverse matrix
and the transposed matrix are the same. Thus, we find that (2.17) is valid for any
positive definite matrix −G−1.
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2.2 Complex Analysis

In the following, we generalize the results of the previous paragraph to Gaussian
integrals over n complex variables z j. Before doing so, we first review some con-
cepts from elementary complex analysis. The complex plane is a two-dimensional
linear space, meaning that any number in the complex plane can be written as x+ iy,
where x and y are real. Instead of using x and y as the independent variables to
parametrize the complex plane, it is more convenient for our purposes to make a
coordinate transformation that maps x and y onto the independent variables z and z∗
in the following way

z = x+ iy and z∗ = x− iy. (2.23)

Here, |z|2 = z∗z = x2 + y2 gives the square of the modulus of z, while the real and
imaginary parts of z are given by Re[z] = (z+ z∗)/2 and Im[z] = (z− z∗)/2i. Instead
of using the Cartesian coordinates x and y, it is also possible to introduce polar
coordinates. In that case, complex numbers are written as

z = reiϕ , (2.24)

where r =
√

z∗z is the complex modulus and ϕ = Arg[z] is the complex argument.

2.2.1 Differentiation and Contour Integrals

A general complex function f (x,y) is a map from the complex plane to the complex
plane and in general depends explicitly on both z and z∗. We write f (x,y) = u(x,y)+
iv(x,y), where u(x,y) = Re[ f (x,y)] and v(x,y) = Im[ f (x,y)]. In practise we will be
dealing mostly with analytic functions, which turn out to depend only explicitly on
z = x + iy. Because such a function f (x + iy) or f (z) only depends on z, we must
have that d f/dz = ∂ f/∂x =−i∂ f/∂y for an analytic function. Since

∂ f (x,y)
∂x

=
∂u(x,y)

∂x
+ i

∂v(x,y)
∂x

(2.25)

and

−i
∂ f (x,y)

∂y
=−i

∂u(x,y)
∂y

+
∂v(x,y)

∂y
, (2.26)

we have that the functions u and v are not independent, but rather satisfy the follow-
ing set of equations

∂u(x,y)
∂x

=
∂v(x,y)

∂y
and

∂u(x,y)
∂y

=−∂v(x,y)
∂x

. (2.27)


