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Preface

Computational methodologies of signal processing and imaging analysis, namely
considering 2D and 3D images, are commonly used in different applications of
the human society. For example, Computational Vision systems are progressively
used for surveillance tasks, traffic analysis, recognition process, inspection pur-
poses, human-machine interfaces, 3D vision and deformation analysis.

One of the main characteristics of the Computational Vision domain is its inter-
multidisciplinary. In fact, in this domain, methodologies of several more fundamen-
tal sciences, such as Informatics, Mathematics, Statistics, Psychology, Mechanics
and Physics are usually used. Besides this inter-multidisciplinary characteristic, one
of the main reasons that contributes for the continually effort done in this domain
of the human knowledge is the number of applications in the medical area. For
instance, it is possible to consider the use of statistical or physical procedures on
medical images in order to model the represented structures. This modeling can
have different goals, for example: shape reconstruction, segmentation, registration,
behavior interpretation and simulation, motion and deformation analysis, virtual
reality, computer-assisted therapy or tissue characterization.

The main objective of the ECCOMAS Thematic Conferences on Computational
Vision and Medical Image Processing (VIPimage) is to promote a comprehensive
forum for discussion on the recent advances in the related fields trying to iden-
tify widespread areas of potential collaboration between researchers of different
sciences.

The present book contains the extended versions of sixteen papers selected from
the works presented in the first ECCOMAS thematic conference on Computational
Vision and Medical Image processing (VIPimage 2007), held in Faculty of Engi-
neering of University of Porto, Portugal. It collects the state-of-the-art on the sub-
ject of Computational Vision and Medical Image processing contributing for the
development of these areas of knowledge.

The Editors would like to take this opportunity to thank to the European Com-
munity on Computational Methods in Applied Sciences, the Portuguese Association
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of Theoretical, Applied and Computational Mechanics, the University of Porto, all
sponsors, all members of the International Scientific Committee, and to all Invited
Lecturers and Authors.

Faculty of Engineering, João Manuel R.S. Tavares
University of Porto, Portugal R. M. Natal Jorge
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Chapter 1
Modeling Cardiovascular Anatomy
from Patient-Specific Imaging

Chandrajit Bajaj and Samrat Goswami

1.1 Introduction

The importance of modern imaging techniques for capturing detailed structural
information of a biological system cannot be understated. Unfortunately images
do not reveal the “full functional story” and a spatially realistic computer model
is often necessary for a comprehensive understanding of the complicated struc-
tural and physiological properties of the biological system’s entities under investiga-
tion [1]. Deeper insights into structure-to-function relationships of different entities
is achieved via finite element simulations of the modeled biomedical process. A 3D
(three dimensional) finite element meshed computer model of the biological system
is therefore a first step to perform such simulations.

The behavioral attributes of a biological entity or the physiological interaction
between different participating components of a biological system are often mod-
eled mathematically via a coupled set of differential and integral equations, and
quite often numerically evaluated using finite element (or boundary element) simu-
lations. To further emphasize the premise of cardiac modeling from imaging data,
we state a few computational biomedical modeling and simulation examples: 3D
computational modeling of the human heart for a quantitative analysis of cyclical
electrical conductance on the heart membrane [2–6]; the biomechanical properties
(stress-strain, elasticity) of the heart ventricular walls [7–12]; 3D modeling and sim-
ulation of pulsatile blood flow through human arteries/veins for vascular by-pass
surgery pre-planning on a patient specific basis [13–18]. A finite element decom-
position of the geometric domain, capturing the detailed spatial features that can be
gleaned from the imaging, is therefore the essential first step toward performing the
necessary numerical simulations [19–22].

C. Bajaj and S. Goswami
Computational Visualization Center, Institute of Computational Engineering and Sciences,
University of Texas, Austin, Texas 78712
e-mail: bajaj@cs.utexas.edu; samrat@ices.utexas.edu
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and Medical Image Processing, Computational Methods in Applied Sciences 13,
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2 C. Bajaj and S. Goswami

Fig. 1.1 Cardiovascular Modeling from Imaging Data. Top row illustrates the modeling of patient
heart from imaging data. From left to right: an illustration of internal structure of human heart
(Courtesy [23]), volume visualization of a typical Computed Tomography (CT) reconstructed
imaging volume, the extracted geometric model of a patient heart from the rest of the thoracic bone
and tissue and the annotated (multi-colored) segmentation of the same into biologically meaningful
components, namely Aorta, Pulmonary Artery, Left and Right Ventricle and Atrium (colored dif-
ferently). Bottom row illustrates the modeling of coronary artery. From left to right: an illustration
of annotated coronary arterial tree (Courtesy http://en.wikipedia.org/wiki/Coronary circulation),
a geometric model extracted from CT volumetric imaging, segmentation into left and right subtree
(colored red and blue), and the NURBS model of a small portion that was used for Isogeometric
analysis of blood flow in [24]

Modeling of human vasculature from three-dimensional (3D) Computed Tomo-
graphy (CT) images of the thorax is a critical step for computer-aided diagno-
sis (CAD) in disease domains such as lung nodules [25], coronary artery disease
[26], and pulmonary embolism (PE) [27]. Even though there are many published
approaches, the problem is still unsolved. Survey of various techniques on this topic
can be found in [28,29] (Fig. 1.1). Thoracic CT angiography (CTA) imaging is often
performed for patients suspected of having a PE that is defined as a thrombus (or
a clot of blood) [30]. Therefore, in order to detect pulmonary embolism, a suitable
model of vasculature distnguishing between arterial and venous blood vessel trees
is a crucial step.

In subsequent subsections we highlight the computational pipeline, the main
algorithmic components and a few descriptive results of our Cardio Vascular Mod-
eling from Imaging software.

1.2 Data Processing

The Imaging-to-Modeling software system for cardiovascular data employs both
Image Processing and Geometry processing functionalities to produce a suitable lin-
ear or higher order meshed model of the anatomy. Figure 1.2 describes the data-flow
layout. We describe the major algorithmic components of each of the processing
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Fig. 1.2 Data Flow of Cardio-Vascular Modeling from 3D Imaging Data: There are two major data
processing algorithmic modules – Image Processing and Geometry Processing. The Image Pro-
cessing module consists of sub-modules for Contrast Enhancement, Classification/Segmentation,
Filtering, Skeletonization and Alignment. The Geometry Processing module consists of Surface
Extraction, Curation, Segmentation, Skeletonization, Alignment and Meshing, which itself is fur-
ther subdivided into linear and higher order boundary and finite element mesh generation compo-
nents. The 3D CT Imaging data is first passed through the Image Processing module for improve-
ment of image quality which is then processed by the Geometry Processing module for extraction
of a clean geometry annotated with the present features. Finally the clean geometry is converted to
a linear or higher-order mesh. Occasionally, to deal with incomplete or low quality imaging data, a
twin data processing pipeline is employed where a template geometry is processed to extract vital
geometric information which is then passed to robustly model patient specific anatomical model
from low-quality imaging data

modules in Sections 1.2.1 and 1.2.2. The reader must note that, the modules are
selectively used depending on the nature and quality of the input imaging data
(Section 1.3).

1.2.1 Image Processing

(A) Contrast Enhancement:
The three dimensional intensity data often possesses a low contrast between
structural features and the background, thereby making further processing all
the more difficult. Image contrast enhancement is a process used to improve
the image quality for better visual appearance for subsequent operations. The
most commonly used methods utilize global contrast manipulation based on
global [31, 32] or local histogram equalization [31–34], retinex model [35, 36]
and wavelet decomposition [37, 38].
We have developed a fast method for image contrast enhancement [39] based
on a localized version of the classical contrast manipulation [31, 32]. In this
method, we design an adaptive transfer function for each individual voxel,
based on the intensities in a suitable local neighborhood. First, we compute the
local statistics (local average, local minimum, and local maximum) for each
voxel using a fast propagation scheme [40, 41]. Then a transfer function is
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Fig. 1.3 The performance of the contrast enhancement algorithm is shown for one slice of the CTA
data

designed based upon the calculated local statistics. Various linear or nonlinear
functions can be used here to stretch the contrast profile. We build a transfer
function which consists of two pieces: a convex curve in the dark-intensity
range and a concave curve in the bright-intensity range. The overall function is
C1 continuous. Finally, we map the intensity of each voxel to a new one using
the calculated transfer function. The performance of this algorithm is shown in
Fig. 1.3.

(B) Filtering:
The input images are often contaminated with noise and are therefore need
to be filtered. Traditional image filters include Gaussian filtering, median fil-
tering, and frequency domain filtering [31]. Compared to these, anisotropic
filters are preferred as they tend to preserve the features better. Bilateral fil-
tering [42–45] is a straightforward extension of Gaussian filtering by simply
multiplying an additional term in the weighting function. Partial differential
equation (PDE) based techniques, known as anisotropic geometric diffusion,
have also been studied [46, 47]. Another popular technique for anisotropic
filtering is by wavelet transformation [48]. By carefully designing the filter,
one can smooth image noise while maintaining the sharpness of the edges
in an image [49]. Finally, the development of nonlinear median-based fil-
ters in recent years has also produced promising results [50, 51]. Among the
aforementioned techniques, two methods for noise reduction have been sug-
gested for tomographic data sets, namely wavelet filtering [52] and non-linear
anisotropic diffusion [53] (Fig. 1.4).
Our approach, utilizing a bilateral pre-filtering coupled with an evolution
driven anisotropic geometric diffusion PDE (partial differential equation), has
shown significant results in enhancing the features of intensity maps. The PDE
model is :

∂tφ −‖∇φ‖div
(

Dσ ∇φ
‖∇φ‖

)
= 0
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Fig. 1.4 The performance of the bilaterally pre-filtered (left) and anistropic diffusion filtered
(right) algorithm is shown for one slice of the CTA data

The efficacy of our method is based on a careful selection of the anisotropic
diffusion tensor Dσ based on estimates of the normal and two principal curva-
tures and curvature directions of a feature isosurface (level-set) in three dimen-
sions [54–56]. The diffusivities along the three independent directions of the
feature isosurface are determined by the local second order variation of the
intensity function at each voxel. In order to estimate continuous first and sec-
ond order partial derivatives, a tricubic B-spline basis is used to locally approx-
imate the original intensity.

(C) Classification/Segmentation:

Voxel Classification:

The Fuzzy C-Means (FCM) algorithm [57] and the Expectation Maximiza-
tion (EM) algorithm [58] have been used for soft clustering in data-mining
and image classification. Pham et al. proposed an Adaptive Fuzzy C-Means
(AFCM) algorithm to classify inhomogeneous medical images and volume
datasets [59, 60]. Ahmed et al. proposed a bias corrected FCM algorithm to
compensate inhomogeneities of images of volume datasets [61, 62]. Each of
these algorithms minimizes an objective function through iterative methods.
Gopal et al. proposed a maximum likelihood estimate algorithm with a Spa-
tially Variant Finite Mixture model (SVFMM) for image classification [63].
Laidlaw suggested a partial-volume Bayesian classification algorithm based
on Bayes theorem [64].
Our goal of 3D map segmentation is to partition the map into a number of
connected regions of interest. We have compared and implemented several
classification algorithms [64–67]. We first locate the seed points by gradi-
ent vector diffusion [68]. We then compute the min-max range of every seed
point’s neighbors and cluster the seed points to belong to the same region
if the min-max ranges overlap. We then apply GVF snake [69, 70] to clus-
ter the voxels falling into separate regions. In addition, the contour spectrum
is used to identify the number of materials in the image and is also used to
select critical isovalues based on volume fraction of the material [71]. We
have also developed a multi-dimensional signature based voxel classification
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(a) (b) (c)

Fig. 1.5 Voxel Classification: a single slice of CTA image of a patient (a) is classified to tag voxels
belonging to different anatomical regions (b). The intensity values are also marked (b). The final
classified voxelized image is shown with most important regions (c)

scheme [72] appropriate for medical imaging data. Figure 1.5 shows the results
of the classification on a single slice of the patient scan where the voxels have
been classified into the background, lungs and vasculature.

Segmentation via Fast Marching Method:

Segmentation is a way to electronically dissect the significant biological
components, and thereby obtain a clear view into the machinery’s architec-
tural organization [73]. Segmentation is usually carried out either manually
[74–78] or semi-automatically [79, 80]. Current efforts on the decomposition

still largely rely on manual work with an assistance of a graphical user inter-
face [81,82]. Manual segmentation can be tedious and often subjective [76,83].
Automated segmentation is still recognized as one of the hardest tasks in the
field of image processing although various techniques have been proposed for
automated or semi-automated segmentation. Commonly used methods include
segmentation based on edge detection, region growing and/or region merging,
active curve/surface motion and model based segmentation. In particular, two
techniques were discussed in details in the electron tomography community.
One is called water-shed immersion method [79] and the other is based on
normalized graph cut and eigenvector analysis [80].
In [84–86] we adopted a variant of the fast marching method [87–89]. In this
method a contour is initialized from a pre-chosen seed point, and the contour is
allowed to grow until a certain stopping condition is reached. Traditionally this
method is designed for a single object segmentation. We present an approach
based on an idea of “re-initialization” by simply regarding and classifying the
critical points as seeds. Every seed initiates one contour and all contours start to
grow simultaneously and independently. We further classify the critical points
into clusters and merge the growing contours which are initiated by the criti-
cal points in the same cluster. This multi-label idea has been used elsewhere
(e.g. [90]), but the detection and classification of seeds are different in our
approach. Figure 1.6 shows the process of segmentation, namely the seed point
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Fig. 1.6 Segmentation via Fast Marching Method: leftmost subfigure shows a single slice of the
CTA image of a patient along with manually placed seeds for each of the main compartments of
the human heart to be identified. The middle subfigure shows the segmentation on a single slice
colored by segmented regions. The rightmost subfigure shows the three dimensional segmented
model of heart via isosurface rendering. The different colors represent left and right ventricle and
aorta

classification and region growing on a single slice of the image followed by the
final segmented three dimensional model of human heart from patient imaging
data.

(D) Skeleton Extraction:
Extraction of skeletal description often leads to a complexity-reducing bet-
ter understanding of the image as it amplifies lower dimensional key features
present in the data. Image based skeletonization algorithms are abound in the
field of image processing. The previous efforts on this topic by other authors
can be categorized into three approaches – one based on isotropic diffusion,
governed by a set of linear PDEs [91,92], one using scale-space theory [93–95]
and one based on pseudo-distance map [96].
We have developed two distinct approaches to extract skeletons from imaging
data which offer robustness and efficiency. First approach is based on the crit-
ical point structure of the imaging data. We first compute the gradient vector
field at every voxel of the imaging data. Because of the noise, the vector field
is somewhat arbitrary and do not carry much useful information. To bring out
the underlying structure, we then apply gradient vector diffusion (GVF). The
resulting vector field is then analyzed to detect the critical points and these
critical points are joined to form a skeletal structure of the foreground of the
image. The details of the process is given in [56].
The second approach for skeletonization starts with an isosurface and the dis-
tance function induced by it [28]. It then places a sequence of inner medial balls
in a greedy fashion, capturing as much inner volume as possible. A neighbor-
hood graph, based on the intersection pattern of these inner medial balls, is then
constructed which provides the one dimensional skeletal structure. Figure 1.7
shows an example result of this algorithm applied on the CTA data of human
heart.

(E) Flexible Alignment:
Image registration is a commonly employed to flexibly match two different
instances of a biological structure. In the context of cardiovascular modeling,
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A.1 A.2 A.3 A.4

Fig. 1.7 Skeletonization: a slice of the imaging data, its distance map and the extracted skeletal
graph using the algorithm in [28] are shown

the problem is to fit one image of the anatomy in question with its counter-
part observed at a different time, or imaged from a different patient. Based on
the transformation model that is to be applied on one instance (source) to fit
the other (target), image resgistration is primarily of two types – Affine and
Elastic/Deformable.
In case of affine registration, the relationship between the source and target
image is established via a set of transformation parameters, and then those
parameters are estimated by minimizing a quadratic error function. Algoithms
under such approaches can be found in [97–99]. We have developed an algo-
rithm in [100] which exploits the non-equispaced Fourier transformation tech-
niques [101, 102] to speed up the affine image registration process.
The task is far more challenging when deformation of one image needs to be
taken into account to properly fit it into the other image. For a nice survey
on affine and deformable image registration algorithms, see [103]. However
this survey is old, and since its publication many other algorithms have been
published. Bajcsy and Kovacic modeled the elastic image registration problem
by the deformation of elastic plates [104]. Christensen et al. considered the
deforming image to be embedded in a viscous fluid whose motion is governed
by Navier-Stokes equation [105]. Based on a similar viscous fluid registration
scheme, Yanovsky et al. designed a new energy function introducing Jacobian
maps [106] and this method was shown to perform better than [105] in terms
of converegence and stability. There are other level-set based methods, e.g.
by Clarenz et al. [107], and via edge matching technique by Mumford and
Shah [108].

1.2.2 Geometry Processing

(A) Surface Extraction:
Geometry extraction from three dimensional volumetric data is a primary step
toward further analysis. There are several approaches for accomplishing this
task.
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Contouring:

Isosurfacing is a popular method to extract surface geometry from scalar vol-
ume containing intensity values of the scanned anatomy. There are typically
two types of contouring method frequently used in the literature – Primal Con-
touring and Dual Contouring. The most widely used primal contouring tech-
nique is the Marching Cubes Method [109] which extracts the geometry in a
piecewise fashion by visiting every voxel of the volume data. There are several
improvements of this technique that has been reported since the first appear-
ance of the algorithm [110]. Dual contouring technique is similar to primal
contouring in a sense that it also extracts the isosurface in a piecewise fashion.
However it samples every voxel, instead of every edge of the voxel, to better
approximate possible sharp features in the extracted geometry. We have exper-
imented with both techniques for extracting a geometry from Cardiac CT data
and we have seen that they perform similarly without rendering any significant
advantage of any technique over the other. Figure 1.8 shows sample isocontours
extracted from CTA imaging data of human heart.
Other than isocontouring, one can also apply level set based methods where
a seed is grown to capture the boundary of a region in the image based on
the intensity values. In literature, such technique is commonly known as snake
[69, 70]. Note, this is similar to the image segmentation technique described
earlier.

Point Cloud Reconstruction:

Both of these approaches are very sensitive to the noise present in the data
and especially isosurfacing techniques suffer when the imaging data is inho-
mogeneous. To circumvent these problems we adopt a third approach which is
based on scattered data interpolation. After performing image segmentation on

(a) (b) (c)

Fig. 1.8 Contouring: a single annotated slice of human cardio-vasculature and the geometry
extracted from the imaging data via contouring (isosurfacing) are shown from left to right. In
the rightmost subfigure, the heart of the patient is shown in green while the blood vessel tree is
color coded by red and blue depending on if a branch is an artery or a vein
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the CT image, we obtain a set of voxels belonging to every region of interest.
We then apply the point based reconstruction technique to extract the geometry
from the cloud of boundary voxels.
The point based reconstruction technique has been researched extensively in
the last decade. We refer the readers to some recent surveys for prior work in
this area, e.g. [111]. We have adopted two recent techniques for our purpose of
reconstruction – TightCocone and RobustCocone. TightCocone algorithm by
Dey and Goswami [112] reconstructs a watertight triangulated surface from
possibly undersampled input point cloud. A variant of this algorithm, called
RobustCocone, was also developed in 2004. This algorithm is particularly suit-
able for noisy data. In our case, we often encounter noise in the segmented
image even after applying image segmentation techniques, and to tackle such
cases, we use RobustCocone for a reconstruction of the geometry. Figure 1.9
shows the results of surface reconstruction on the pointsets sampling compart-
ments of human heart.
Surface reconstruction from scattered data has also been approached using
variational approach. These techniques typically formulate an energy function
based on the input data points and try to extract a surface that minimizes that
energy. Such approach was first advocated by Zhao et al. in [113] who formu-
lated the energy function as the integral of the distance function weighted by
the area element of the input set of primitives for which a surface needs to be
fit. Then they evolved an initial guess using a convection based approach.
We adopt an approach based on higher order level set spline (HLS) method.
Given a non-negative energy function g(x), the surface Γ is defined to be the
one that minimizes the energy function E(Γ ) =

∫
Γ g(x)dx + ε

∫
Γ h(x,n)dx.

Given a input set of points, one then formulates this energy using the distance
function and evolves an initial approximation to guide the evolution so that
the resulting deformation minimizes the energy. Details of this method can be
found in [114].

(B) Curation/Filtering:
The cardiovascular geometry extracted from imaging data typically has topo-
logical anomalies, namely small components, spurious noisy features etc.
Therefore a careful investigation and subsequent removal of the spurious fea-
tures present in the data is essential. Following are different scenarios.

Fig. 1.9 Surface Reconstruction from Point Cloud Data: major components of the human heart are
reconstructed using the voxels surrounding the boundaries of the individual regions
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Regularization:

Geometry from volume data is often reconstructed via image segmentation.
However the set of voxels segregated from the imaging data does not always
conform with the true surface topology. As a result, we encounter subsets of
voxels which do not sample a two dimensional manifold. Therefore it is impor-
tant to recognize the dimension of the underlying space of the voxels marked by
the segmentation process and remove the spurious ones. To perform this task,
we use the technique described in [115]. A similar Voronoi-based approach was
also reported in [116]. Following [115] we first construct a k-neighborhood
graph. Then for every point we collect the neighboring points and perform
Principal Component Analysis (PCA) on that subset. The eigenvalues of the
covariance matrix determines the underlying dimension of the manifold. More
precisely if all the eigenvalues are almost equal, the voxel is inside the seg-
mented region and the point samples a three dimensional manifold. If two
eigenvalues are almost equal and one is much smaller than the other two, the
voxel lies on the boundary surface of the segmented region and is a true candi-
date for subsequent geometry reconstruction. Finally if two of the eigenvalues
are much smaller than the third one, then the voxel samples a dangling one
dimensional strand and such voxels must be removed.

Volumetric Feature Quantification:

Given a set of points P sampling the entire shape, possibly contaminated with
topological artifacts like small connected components and thin tunnels, we syn-
thesize a distance function hP which assigns every point in R

3 the distance to
the nearest sample point in P. There are four types of critical points of hP,
namely maxima, index 2 saddles, index 1 saddles and minima. It was shown
that these critical points can be detected efficiently using the duality of Voronoi
and Delaunay diagram of the original pointset P [117]. It was further shown
that the stable manifolds of the maxima interior and exterior to the shape con-
tains useful information connecting to the primal and complementary feature
space of the shape [118, 119]. Figure 1.10 shows how the bone, ribs and thin
blood vessels are removed via volumetric feature quantification process since
they are not essential for creating a suitable model of human heart.

(C) Segmentation:
Based on the critical points of the distance function induced by the input geom-
etry, we perform the geometry segmentation as follows. The detail of the algo-
rithm is given in [118].
The geometric shape is given by a set of points P sampling the shape. The
feature of the shape is then defined in terms of the stable manifold of the
maxima of the distance function hP. The maxima are first computed by iden-
tifying the Voronoi vertices which lie inside their dual tetrahedra. Applying a
Delaunay-based reconstruction technique on the pointset, one can further clas-
sify the tetrahedra holding the maxima into inside or outside. For our purpose
we use only the interior maxima. We compute the stable manifold of these
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Fig. 1.10 Geometry Curation: geometry of human heart extracted from the imaging data, which is
cluttered with bone and other unnecessary parts, is cleaned up using the curation process

Fig. 1.11 Geometry Segmentation: different components – Aorta (A.1), Pulmonary Artery (A.2),
Left Atrium (A.3), Right Atrium (A.4), Left Ventricle (A.5) and Right Ventricle (A.6) are extracted
from the point sample of the whole heart

maxima using the algorithm in [118]. The adjacent stable manifolds are then
merged if the generating maxima have almost same value of hP as measured
by a parameter δ . Figure 1.11 shows the performance of this algorithm on the
cardiovascular geometries. In this figure, the six main components of a human
heart, namely aorta, pulmonary artery, left and right atrium and ventricle are
segmented out from a set of points sampling the boundary of heart.

(D) Skeletonization:
Computing skeletons of a geometric shape is a research issue that has been
around for a long time. Medial axis cite (Blum) is considered a standard
skeletal description of a shape and there are algorithms [120, 121] and pub-
licly available software to compute the Medial Axis Transform (MAT) of a
shape from its pointsample [122]. However, medial axis is composed of pla-
nar (two dimensional) and linear (one dimensional) parts. In order to com-
pute such dimension-dependent decomposition of the medial axis, as well as
pruning away hairy branches from the medial axis one requires some extra
gadgets which we describe in the next paragraph. There are some previous
works which focussed on computing a linear skeleton of an arbitrary shape.
Some of these are topological thinning [123], distance field based methods
[124–127], potential field based methods [128], thinning via medial geodesic
function [129] and others [130–132]. Cornea et al. [133] give a comprehensive
survey of these techniques.
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Fig. 1.12 Skeletonization: (A). Skeleton of the template geometry is extracted. (B). The skeletal
structure of the abdominal aorta is extracted. Note, compared to the medial axis (B.1), the unstable
manifold of index 2 saddles is a much cleaner one dimensional skeletal structure

Once a suitable description of the geometry is obtained either by reconstruction
or by contouring, the distance function based approach is used to compute a
skeletal structure of the shape. As for segmentation, the critical points of the
function hP is computed for a set P of input points sampling the shape. The
index 1 and index 2 saddle points are then detected using the Voronoi-Delaunay
duality [117]. To generate the skeletal structure, we then compute the unstable
manifold of these critical points. The unstable manifold of an index 2 saddle
point (U2) is one dimensional and the unstable manifold of an index 1 saddle
point (U1) is two dimensional. Moreover, every U1 is bounded by some U2’s.
The details of the computation of U1 and U2 are given in [134]. Figure 1.12
shows two instances where the skeletal structures have been constructed using
this method.

(E) Alignment:
Alignment of two similar but not identical geometric objects is a difficult prob-
lem. There are relatively few papers in the geometric modeling community
that address this problem. Recently, an interesting technique was reported by
Eckstein et al. [135] where generalized surface flow was used for non-rigid
alignment of a template geometry into the patient data. The authors design an
energy function based on pseudo-Hausdorff distance between the two geome-
tries and evolve the template geometry to fit the patient geometry following the
gradient of the energy function.
We experimented with a different approach for non-rigid fitting of the segments
of the template heart into the patient data in order to inherit the correct topo-
logical structure from the template geometry as well as retrieve the missing
information in the patient data. We construct a skeletal description of differ-
ent parts of the template geometry as described earlier. Every segment is then
described as a union of balls centered at the one dimensional skeleton following
a popular approach due to [136]. A mass-spring network is then built where
each ball’s mass is proportional to its radius and the spring constant is taken
to be constant. The normal mode analysis (NMA), which is a popular way to
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depict the vibrational nature of a molecule [137], is then applied to the net-
work which produces a spectrum of possible deformed shapes. We choose one
deformed shape from the spectrum that best fits the patient geometry.

(F) Quality Meshing:
The final goal of this Imaging to Modeling software system is to produce suit-
ably discretized meshed model of the imaged biological entity. The task of
meshing is primarily divided into two parts – Boundary Element and Finite
Element. Each of Boundary Element and Finite Element meshing again has
three sub-parts.

Boundary Elements:

Boundary Element meshing refers to the meshing of the surface geometry.
Depending on the smoothness and shape of every patch forming the surface
mesh.

(a) Triangle/Quadrilateral Elements: Given a CT image, the task is to com-
pute a triangulated or quadrangulated discretization of the boundary of the
cardio-vascular anatomy. In a sense the task is similar to contouring the
zero-set of the original intensity function or a distance function induced by
the reconstructed geometry. There are numerous algorithms to accomplish
such tasks as mentioned in the previous subsection. However in this step
our goal is to build a boundary element mesh of superior quality than what
is typically output by the contouring routines. The mesh quality metrics are
described in [138].
We approach the problem in two steps. First we apply the dual contouring
method proposed by Ju et al. [139] and apply geometric flow to improve
the quality of the surface mesh. Figure 1.13 shows the performance of the
boundary element meshing algorithm.

(b) B-Spline Elements: Building B-Spline model for free-form geometric
objects has been an active area of research in the past. Given a triangu-
lated or quadrilateral surface mesh, there have been numerous approaches

Fig. 1.13 Meshing: triangle-tetrahedral, A-patch, NURBS meshes
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to build a smooth network of B-Spline patches to model the underlying sur-
face [140]. Subdivision based methods, namely Catmull-Clark [141], Doo-
Sabin [142, 143] and Loop subdivision [144] for producing quadratic and
cubic B-Spline models from triangulated and quadrilateral control meshes
have also gained popularity due to their simplicity. However in most of the
cases, it is not straight-forward how to generate the initial control mesh for
free-form shapes especially when the input is a set of scattered set of points
or a set of voxels representing the boundary of a segmented region inside a
three dimensional volume.
Until recently there were very works that dealt with the problem of build-
ing a control quadrilateral mesh from a free-form geometry of arbitrary
topology [145, 146]. Recently there have been substantial research works
in the computer graphics community that tackled the problem of quadran-
gulating a surface mesh following the intrinsic anisotropy of the geome-
try [147–149]. Following these approaches, one can build a quadrilateral
base surface mesh on which any of the standard subdivision scheme can be
applied to build the desired B-Spline model.

(c) A-Patch Elements: The linear meshes do not always provide the ade-
quate smoothness for them to be effectively used further. This is the reason
a higher order meshed description of the geometry is often desired. Bajaj
et al. presented a solution for this problem in 1995 where they devised a
scheme that takes a triangulated surface mesh and builds a higher order
(cubic) patch complex to describe the same surface. Under certain condi-
tions, they also showed that these patches meet in a C1 continuous manner.
They called this patched description of a two dimensional geometry an
algebraic surface patch or an A-patch [150].
The construction of A-patches proceeds as follows. First a triangle mesh is
created that linearly approximates the given geometry. A tetrahedral scaf-
folding is then built around it so that the triangle mesh lies inside it. By
assigning a suitable weight at every node of the scaffold, a polynomial
inside each tetrahedron is constructed in such a way that its zero set satisfies
certain properties that makes the higher order patch inside the tetrahedron
free of singularity. Moreover the pacthes are derivative-continuous across
the tetrahedra. The patch complex then provides a higher order smooth
description of the geometry. Details of this method can be found in [150].
This method of construction of surface A-patches has also been general-
ized to hexahedral elements, as well as to the multi-resolution construction
of shell finite elements [151, 152]. Figure 1.13 shows a higher order geo-
metric model of human heart.

3D Finite Elements:

Finite Element meshing refers to the techniques of producing the discretization
of the volume enclosed by the surface geometry.
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(a) Tetrahedral/Hexahedral Elements: There have been prior works done
on building volumetric (finite element) tetrahedral and hexahedral meshes
from imaging data. For a detailed survey on the prior works see [153].
We have developed two algorithms for such purposes – TetMesh and
HexMesh. The approach is as follows. First we extract a correct boundary
using the boundary element meshing. For tetrahedral mesh generation we
use the triangulated boundary and for hexahedral mesh generation we use
the quadrangulated boundary meshing scheme as described above. Next,
we design a series of templates to build a solid tetrahedral or hexahedral
mesh from that conforms with the boundary mesh. The details about the
templates are given in [138, 154]. As with the boundary element mesh, we
further improve the quality of the finite element mesh by applying geo-
metric flow [155]. Figure 1.13 shows the tetrahedral mesh cut-away for a
template human heart.

(b) B-Spline Elements: As the most highly developed and widely utilized
technique, NURBS (Non Uniform Rational B-Splines) [156–158] has
evolved into an essential tool for a semi-analytical representation of geo-
metric entities. Sometimes NURBS solid models are taken as input for
finite element mesh generation [159]. Anderson et al. proposed a fast
generation of NURBS surfaces from polygonal mesh models of human
anatomy [160]. An enhanced algorithm was developed for NURBS evalua-
tion and utilization in grid generation [161]. In isogeometric analysis [162],
NURBS basis functions are used to construct the exact geometry, as well
as the corresponding solution space.
We have developed a skeleton-based approach for building NURBS model
of vasculature. Using the skeletonization approach described in the earlier
paragraph, a one dimensional polylinear skeletal structure is first extracted
from the tubular geometry of vasculature. Then we design a set of tem-
plates that builds a hexahedral mesh around the skeleton. The details about
the templates can be found in [24]. The hexahedral mesh is used as the
control mesh for further NURBS mesh generation. Figure 1.13 shows the
NURBS model of the inner blood volume of human heart.

(c) Shell A-Patch Elements: Shell structures appear frequently in biological
entities. The muscle wall of heart and blood vessels are perfect examples of
such surfaces. It is desired to model such fat surfaces with desired smooth-
ness. Bajaj et al. presented algorithms that model smooth shell structures
using shell A-patch finite elements [151, 152].
The algorithm takes a pair of triangle mesh as input where the correspon-
dence between the triangle meshes is implicit. It then decimates both the
meshes simultaneously to build a coarser representation and occasionally
merges the adjacent triangles to form quadrilaterals wherever possible.
Using the correspondence between the triangles and quadrilaterals in the
two-sheeted surface, the interval volume is then filled with 3-sided (trian-
gular) and 4-sided (quadrilateral) prisms. A C1 piecewise trivariate func-
tion is then constructed over this collection of prisms. The range of the
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function varies from −1 to 1. For any scalar α ∈ [−1,1], the 0-set thus
gives the higher order approximation of the intermediate surface within the
shell element. When α equals −1 or 1, the resulting patch gives a higher
order approximation of the inner and outer boundaries of the shell.

1.3 Implementation Results

We exhibit the implementation results of our image and geometry processing algo-
rithms on modeling the Heart and Vasculature (Coronary Artery, Pulmonary Arterry,
Abdominal Aorta and Thoracic Aorta).

1.3.1 Heart

We have experimented with images of patient hearts. For illustration of the perfor-
mance of the algorithms, we have selected two datasets one of which is a low quality
image whereas the other is of relatively better quality.

The first heart dataset is of dimension 512× 512× 432 and the spacing in x,y,z
directions are respectively 0.390625, 0.390625, 0.3 mm. We first applied the con-
trast enhancement to the original image and then applied the fast marching based
segmentation on the contrast-enhanced image to separate the subvolumes corre-
sponding to the aorta, pulmonary artery, right atrium and left atrium. Because of
the poor quality of the image, the ventricles could not be recovered well. The result
of the image processing on this dataset is shown in Fig. 1.14B. After the four com-
ponents of the patient heart are segmented from the volume, we took the bound-
ary voxels of each of these four regions and applied surface reconstruction from
scattered points to build the initial triangulated geometric models. As one can see
these models have a reasonable amount of spurious parts as well as some missing
information that could not be retrieved from the patient data. We analyzed each of
the recovered geometries using the critical point structure of the distance function
described in Section 1.2.2. Using curation and geometry segmentation, we identified
the portions which most prominently correspond to the portions of a template heart
model while pruning away the undesired portions. Figure 1.14C shows the relevant
portions that have high correlation with the corresponding portions of the template
geometry. Parallel to the processing of the patient heart, we also performed geomet-
ric analysis of the template heart model. We construct the one dimensional skeletal
structure of all the six components of the template, as well as we segmented the tem-
plate into aorta, pulmonary artery, right and left ventricle and atrium (Fig. 1.14D).
From there we could draw a correspondence between the segmented portions of the
patient heart with the template heart (Fig. 1.14E).

The second dataset was of better quality in terms of contrast and noise present.
We first extracted the geometry via isocontouring. However using a single isovalue
could not entirely serve the purpose as it also extracts the surrounding vasculature
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Fig. 1.14 Result: heart I. (A) One slice of the original data and isocontour-enhanced volume ren-
dering of the input. (B) Due to relatively poor quality, the imaging data is first passed through the
image processing unit that enhances the contrast and segments the volume into major components
using fast marching based image segmentation. (C) The extracted geometry from the segmented
image is then curated to keep only the (green) portions which can be matched with the correspond-
ing portions from the template heart model (D, E)

as shown in Fig. 1.15A. We therefore resorted on curation to extract just the geom-
etry of heart by pruning away the surrounding thin blood vessels using curation
(Fig. 1.15B). After this step we were left with the geometry of heart which we
further segmented using the stable manifold of the maxima of the distance function
induced by the geometry. The segmentation step was crucial as it was able to sepa-
rate the six main components of the patient heart, namely aorta, pulmonary artery,
right and left ventricle and atrium as shown in Fig. 1.15C. We were then able to
draw the correspondence between each of the segmented parts with the correspond-
ing ones from the template geometry as shown in Fig. 1.15D.

1.3.2 Vasculature

1.3.2.1 Pulmonary Artery

The primary objective behind modeling pulmonary artery was to detect pulmonary
embolism (PE) automatically [29]. This required an initial artery-vein separation
from the CT scans of the vasculature which was performed directly from the input
imaging data by the image skeletonization technique described in Section 1.2.1.
The skeletons are traced from the end of the branches and traversed upward toward
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Fig. 1.15 Result: heart II. Starting with an isocontour extracted from the raw imaging data (A),
the model is first curated to extract a clean geometry without the nearby bone structure or the thin
blood vessels which are otherwise irrelevant for the specific task of modeling heart (B). This initial
model is then geometrically segmented into six main components (C) and further a correspon-
dence is drawn with the segmented template. The processing of the template heart model, namely,
skeletonization and annotated segmentation is shown in (D)

the heart. Once the trace reached the patient heart through a series of disambigua-
tion, as needed because of the poor image quality, one of the branches was tagged
arterial while the other is tagged venous. At the same time, the rest of the volume
was classified using the voxel classification technique as described in Section 1.2.1
(Fig. 1.16b, c). This led to a complete characterization of the CT data into the major
components along with the artery and vein separated (Fig. 1.16d–f).

1.3.2.2 Abdominal Aorta

Starting with the CT scan of the abdominal section of the patient, we first extracted
the geometry using an isovalue that best captures the geometry of the abdominal
aorta along with the surrounding bone structure and other anatomical parts which
are however irrelevant for the modeling of the aorta itself. To separate the aorta, we
performed geometry segmentation, using the stable manifold of the maxima of the
distance function. The segmented aorta is shown in green in Fig. 1.17a, b. We then
performed geometry skeletonization on this segmented geometry and as a result a
one-dimensional skeletal structure was produced (Fig. 1.17c, d). This skeleton was
then used for building a swept hexahedral volume that best represented the geometry
of the aorta, as well as served the purpose of a control mesh which was then used to
build a solid NURBS model of the abdominal aorta (Fig. 1.17e, f).
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(a) (b) (c)

(d) (e) (f)

Fig. 1.16 Result: pulmonary artery. The imaging data (one slice is shown in (a)), is first classified
to identify the voxels belonging to lungs and the vasculature (b, c). Using the skeletonization
technique from Section 1.2.1, the arterial (red) and venous (blue) trees are detected. The vasculature
and heart (green) are shown in (d–f) superimposed with the volume rendering of the CTA image

Fig. 1.17 Result: abdominal aorta. Volume rendering of the original imaging data is shown in
(a). An isocontour is extracted from the imaging data from which the abdominal aorta (green) is
segmented (b). The medial axis and the linear skeleton extracted from it are shown in (c, d) from
which an initial control polyhedron (e) and the final NURBS model (f) are created

1.3.2.3 Thoracic Aorta

Starting with the scan of the patient heart, we first segmented out and extracted
the geometry of the thoracic aorta via isocontouring. We then performed the
skeletonization of this geometry in order to obtain an one-dimensional polylin-
ear skeletal (Fig. 1.18 A.1). An external pathway is added to the skeletal structure in
order to simulate the LVAD used in time of open-heart surgery. Using the skeleton
as a sweeping path, we then built a hexahedral control mesh that best represented the
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A.1 A.2 A.3
B.1 B.2 B.3 B.4 B.5

Fig. 1.18 Result: (A) Thoracic aorta. Skeleton is extracted from the geometric model (A.1). An
artificial pathway is added to simulate the LVAD. The hexahedral control mesh and the resulting
NURBS model are shown in (A.2, 3). (B) Coronary artery. The coronary artery is segmented into
left and right subtrees (B.1, 2). NURBS mesh of a small portion of the tree is then built using the
extracted skeleton (B.3–5)

aorta along with its inner volume (Fig. 1.18 A.2). This control mesh was then used
to construct a solid NURBS mesh of the thoracic aorta as shown in Fig. 1.18 A.3.

1.3.2.4 Coronary Artery

Starting with a CT scan of the patient heart, first the coronary artery was extracted
as shown in Fig. 1.18B.1. The coronary artery has two main branches – right
and left, which were then geometrically segmented from the whole vascular struc-
ture. Figure 1.18B.2 shows both the vasculature trees colored in red and blue.
We then computed the skeletal structure for each of these substructures using the
skeletonization method described earlier (Fig. 1.18B.3) and subsequently a NURBS
mesh model was constructed using the swept volume technique as described in the
meshing subsection earlier (Fig. 1.18B.4, B.5).

1.4 Conclusions

We have developed a comprehensive software collection (http://cvcweb.ices.utexas.
edu/software/) of data processing tools (http://cvcweb.ices.utexas.edu/cvc/projects/
medx/pipeline.php) that can be utilized in producing patient specific, and spa-
tially realistic, linear and curved, boundary and finite element models of human
cardio-vasculature. Such a combination of geometry extraction and geometric mod-
eling are the necessary enablers for quantitative and interrogative querying, anal-
ysis and visualization. These boundary and finite elements are additionally useful
for a variety of physiological, bio-chemical modeling and simulation of normal or
diseased conditions. They are also useful for virtual surgical training, treatment
planning and drug or dosage delivery. Current imaging modalities we have suc-
cessfully processed through our software include Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), and their blood perfused variations for cardio-
vasculature modeling and micro-CT for osteoporotic bone modeling.
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