Cosmic Rays in Magnetospheres of the Earth and other Planets
Cosmic Rays in Magnetospheres of the Earth and other Planets

Lev Dorman

Springer
Dedicated to the memory of my teachers both in science and in life: Professor, Academician Eugenie Lvovich Feinberg (in the former USSR, Physical Lebedev Institute) and Minister of Science of State Israel, Director of Advanced Study Institute of Tel Aviv University, President of Israel Space Agency, Professor Yuval Ne’eman

Eugenie Lvovich Feinberg (1912–2005)

Yuval Ne’eman (1925–2006)
The problem of cosmic ray (CR) geomagnetic effects came to the fore at the beginning of the 1930s after the famous expeditions by J. Clay onboard ship (Slamat) between the Netherlands and Java using an ionization chamber. Many CR latitude expeditions were organized by the famous scientists and Nobel Laureates R. Millikan and A. Compton. From the obtained latitude curves it follows that CRs cannot be gamma rays (as many scientists thought at that time), but must be charged particles. From measurements of azimuthally geomagnetic effect at that time it also followed that these charged particles must be mostly positive (see Chapter 1, and for more details on the history of the problem see monographs of Irina Dorman, M1981, M1989).

The first explanations of obtained results were based on the simple dipole approximation of the geomagnetic field and the theory of energetic charged particles moving in dipole magnetic fields, developed in 1907 by C. Störmer to explain the aurora phenomenon. Let us note that it was made about 5 years before V. Hess discovered CRs, and received the Nobel Prize in 1936 together with K. Anderson (for the discovery of CR and positrons in CR). Störmer’s theory, based only on the first, dipole harmonic of the earth’s internal magnetic field, played an important role for many years in the explanation of the basic properties of CR geomagnetic effects (see Chapter 2), and is usually used even today for rough estimations of geomagnetic cutoff rigidities and behavior of trapped radiation in the earth’s magnetosphere. This theory, developed by G. Lemaitre and M.S. Vallarta, extended the conception of Störmer’s cone of forbidden trajectories and introduced the conception of CR allowed cone with the existence of a penumbra region between these cones. From Störmer’s theory it follows, for example, that minimal CR intensity line on the earth, so-called CR equator, must coincide with the geomagnetic equator in dipole approximation. However, detailed experimental investigations of CR latitude effect along different meridians show that there are sufficient differences between CR and geomagnetic equators caused by important influence of higher harmonics of the geomagnetic field on CR energetic particles moving in that geomagnetic field. Moreover, besides internal sources of the geomagnetic field also are important external sources caused by different currents in the earth’s magnetosphere.
Several analytical and numerical methods for CR trajectory calculations were developed for determining cutoff rigidities for vertical and oblique directions at different zenith and azimuth angles, effective and apparent cutoff rigidities, effective asymptotic directions, impact zones, and acceptance cones in the real geomagnetic field including the higher harmonics (see Chapter 3). This chapter is based not only on original papers of the author and his colleagues N.G. Asaulenko, V.S. Smirnov, and M.I. Tyasto, but also on key works of P. Bobik, E.O. Flückiger, M. Kodama, I. Kondo, K. Kudela, K.G. McCracken, J.J. Quenby, E.C. Ray, M.A. Shea, D.F. Smart, M. Storini, I. Usoskin, W.R. Webber, G.J. Wenk, and many others who calculated these important parameters for CR behavior in the earth’s magnetosphere. Especially important are calculations during 1960–1970s of effective cutoff rigidities for vertical direction and effective asymptotic directions for all CR stations of the worldwide network by K.G. McCracken, M.A. Shea, and D.F. Smart (McCracken et al., M1962, M1965; Shea et al., M1965, M1976; Shea and Smart, M1975). M.A. Shea and D.F. Smart also regularly published articles every 5 years, starting from the epoch 1955.0 up to the present time, on data regarding 5° latitude ×15° longitude world grids of trajectory-derived effective vertical cutoff rigidities.

Theoretical results obtained in Chapter 3 were checked in many CR latitude surveys during the Japanese expeditions during 1956–1962 to Antarctica; in Swedish–USA latitude surveys during 1956–1959 in connection with International Geophysical Year; in Canadian expeditions during 1965–1966; in neutron monitor surveys in the Southern Ocean by USA, South Africa, and Australia; in latitude surveys of environmental radiation and soft secondary CR components by Italian expeditions to Antarctica; in annual CR latitude summer surveys over the territory of the former USSR during 1964–1982; in CR planetary surveys by USSR expeditions on the ships Kislovodsk and Academician Kurchatov; in South African latitude surveys on different altitudes from airplanes; and many CR latitude surveys on balloons and satellites (see Chapter 4). In this chapter we consider also: (1) the problem on CR latitude knee mainly in the frame of the key works by O.C. Allkofer and W.D. Dau, (2) CR latitude–altitude dependencies in the frame of the key work by A.V. Belov and colleagues, and (3) daily CR intensity dependencies from cutoff rigidity in the frame of key works by F. Bachelet and colleagues. Let us note that experimental data obtained in many CR expeditions during about 80 years are unique because the geomagnetic field changes sufficiently with time and consequently causes changes in planetary distributions of cutoff rigidities, asymptotic directions, and acceptance cones.

An example of detail analysis of CR latitude survey data obtained in the Italian expedition to Antarctica during 1996–1997 taking into account many different data, exact corrections on meteorological factors, CR worldwide variations, CR North–South and Forward–Backward asymmetries, exact account of oblique CR arriving in calculations of apparent cutoff rigidities along the latitude survey, and some other exact corrections are described in Chapter 5 based mainly on original works of Dorman and his colleagues O.A. Danilova, N. Iucci, M. Parisi, N.G. Ptitsyna, M.I. Tyasto, and G. Villoresi. This analysis made possible the finding of coupling functions for standard neutron monitors and for neutron counters without lead with the highest accuracy at present time.
Geomagnetic time variations of CR intensity (caused by variations of cutoff rigidities) are determined by internal and magnetospheric sources (see Chapter 6). This chapter considers the trajectory calculations of long-term variations of planetary distribution of cutoff rigidities caused mainly by internal source during the last 2,000 years, during 1600–2000 in steps of 50 years, and during 1950–2005 in steps of 5 years based mainly on key papers of M.A. Shea, D.F. Smart, and E.O. Flückiger. CR geomagnetic variations of magnetospheric origin were discovered in detailed investigations of CR Forbush-decreases during the main phase of great magnetic storms, when at middle latitude stations CR intensity increase caused by decrease of cutoff rigidity was observed. Through many investigations it was established that this decrease of cutoff rigidity is mainly caused by sufficient increase of ring current from about 10^6 A in quiet periods up to about 10^7 A during the main phase of a strong geomagnetic storm (the same phenomenon caused moving of aurora boundary to low latitudes, up to Egypt, in periods of big magnetic storms). CR variations of magnetospheric origin were investigated in detail theoretically and experimentally in key papers by H. Debrunner, E.O. Flückiger, M. Kodama, S. Kudo, T. Makino, T. Obayashi, P. Tanskanen, M.A. Shea, D.F. Smart, and M. Wada, as well as in papers of Dorman and his colleagues L.G. Asaulenko, L.M. Baisultanova, A.V. Belov, V.M. Dvornikov, V. Sdobnov, A.V. Sergeev, M.I. Tyasto, and V.G. Yanke. This chapter also shows that by using CR data inverse problems and estimated time variations of main parameters of ring current and other magnetospheric current systems during big magnetic storms may be solved.

In the last 20 years sufficient jumps were made in our understanding of the earth’s magnetospheric structure for different disturbance levels, thanks to key papers by N.A. Tsyganenko and his colleagues M.I. Sitnov and A.V. Usmanov, who developed magnetospheric models on the basis of a lot of satellite and ground observation data. The main matter of Chapter 7 is based on crucial results of Tsyganenko and on key papers which checked these results, and some other magnetospheric models by galactic and solar CR observations (see Contents and References for Chapter 7).

In Chapter 8 we consider very short atmospheric and magnetospheric effects of CR in other planets. It is a pity that this problem up to now is only weakly developed. We do not find any papers in scientific literature devoted to the problem of CR behavior in atmospheres and magnetospheres of other planets and satellites, except two papers of Dorman and colleagues which consider only the planets Venus, Mars, and Jupiter. However, we hope that in the near future this problem will receive higher attention of CR scientists and will be developed to a level comparable with the level of research on our planet.

Let me note, that in this book, as in the previous two (Dorman, M2004 and M2006), I often use extended nomination of CRs as particles with energy much bigger than average energy of background plasma’s particles. It means that we have extragalactic CR, galactic CR, solar CR, anomaly CR, interplanetary CR, and magnetospheric CR (there are also outer CR and local CR; for details, see Dorman, M2004, Chapter 1). Scientific literature often uses nomination energetic particles for CRs generated on the sun, in interplanetary space and in magnetospheres of the earth and other planets and their satellites.
The behavior of galactic, solar, and anomaly CRs in the planetary magnetospheres are determined not only by main planetary magnetic fields but also by very variable magnetospheric currents caused by drifts of local CR (energetic particles) in radiation belts and plasma processes from solar wind–magnetosphere interactions as well as interplanetary shock waves–magnetosphere interactions during substorms and magnetic storms. On the other hand, main sources of radiation belts are caused by interactions of galactic, solar, anomaly, and interplanetary CRs with upper atmosphere causing the formation of albedo and acceleration local CRs in many processes inside magnetospheres. So there are really very complicated non-linear interactions of CR, solar wind, and interplanetary shock waves with planetary magnetospheres.

The detailed Contents give information on the problems considered and discussed in the monograph. At the beginning of this monograph, there is a list of Frequently used Abbreviations and Notations. At the end of the book, in the Conclusion and Problems, we summarize the main results and consider some unsolved key problems, which are important for the development of the considered branch of research. In the References there are separate lists for Monographs and Books (with years starting by the letter M) as well as for each chapter. For the convenience of the reader, we have also prepared a Subject Index. At the end of the book there are Appendices, where we have placed big tables and complicated colored figures; ith labels starting with the letter A.

I would be grateful for any comments, suggestions, preprints, and reprints that can be useful in our future research, and can make the next edition of the book better and clearer. They may be sent directly to me by e-mail (lid@physics.technion.ac.il; lid010529@gmail.com), by fax [+972] 4 696 4952, or by post to the following address: Prof. Lev I. Dorman, Head of ICR&SWC and ESO, P.O. Box 2217, Qazrin 12900, ISRAEL.

July 2008
Qazrin, Moscow, Princeton

Lev I. Dorman
Acknowledgments

As a sign of my heartfelt gratitude, this book is dedicated to the memory of my teachers, both in science and in life: Eugenie Lvovich Feinberg, in former USSR, and Yuval Ne’eman, in Israel.

Contents

Frequently used Abbreviations and Notations ... xxxiii

1 First Measurements of Cosmic Ray Geomagnetic Effects and the Problem of CR Nature ... 1
 1.1 The First Measurements of CR Latitude Effect in Expeditions from Holland to Java and Problems in their Interpretation 1
 1.2 The First Correct Explanation of CR Latitude Survey Results and Nature of CR; Compton and Millikan’s CR Latitude Surveys ... 2
 1.3 The First Determination of Planetary Distribution of CR Intensity at Sea Level; Longitude Geomagnetic Effect 4
 1.4 The First Measurements of the CR Latitude Effect in the Stratosphere ... 6
 1.5 East–West CR Geomagnetic Effect and Determination of the Sign of Primary Charged Particles 6

2 Cosmic Rays in the Dipole Geomagnetic Field .. 9
 2.1 Dipole Approximation of Geomagnetic Field and Geomagnetic Equator ... 9
 2.1.1 Polar Aurora and Störmer’s Theory 9
 2.1.2 Equations for Particle Moving in Dipole Field and their Integrals ... 9
 2.2 Principles of Störmer’s Theory .. 12
 2.3 Störmer’s Cone of Forbidden Trajectories 15
 2.4 Lemaitre and Vallarta CR Allowed Cones in the Dipole Geomagnetic Field; Existence of Penumbra Region 17
 2.5 Drift Hamiltonian for a Dipole Magnetic Field 18
 2.5.1 The Matter of Problem .. 18
 2.5.2 Drift Hamiltonian .. 18
 2.5.3 Three Cases of the Choice of Parameters 19
 2.5.4 The Conditions for Drift Approximation 21
Contents

2.6 **Symplectic Method for the Tracing of CR Particle Motion in a Dipole Magnetic Field** .. 21

2.6.1 **The Matter of Problem** .. 21

2.6.2 **Hamiltonian Description of Energetic Charged Particle Motion in a Dipole Magnetic Field** 23

2.6.3 **Symplectic Integration Method of Calculations** 25

2.6.4 **Comparison with the Standard Runge–Kutta Method** 27

2.6.5 **Main Results and Discussion** .. 28

2.7 **Effective Cutoff Rigidity in Dipole Approximation** 29

2.8 **Checking of Dipole Model by Measurements of CR Equator** 32

2.9 **The Checking of Dipole Model by Direct Cutoff Rigidity Measurements** ... 34

2.10 **Checking of Dipole Model by Data on CR Variations** 35

2.11 **Initial Interpretations of the Differences Between CR and Geomagnetic Equators** ... 35

2.12 **Impact Zones, Asymptotic Directions, and Acceptance Cones in the Dipole Magnetic Field** ... 36

2.13 **Seasonal and Daily Variation of the Position of Impact Zones in Dipole Approximation** .. 41

2.14 **Asymptotic Accepted Cones and Expected Counting Rates of CR Detectors; Focusing Properties of Geomagnetic Field** 42

3 **Cosmic Rays in the Real Geomagnetic Field** 51

3.1 **Inner and Outer Sources of the Real Geomagnetic Field; Changing in Time** ... 51

3.2 **Presentation of the Real Geomagnetic Field by Series of Spherical Harmonics; Gauss Coefficients** .. 52

3.3 **Relative Role of Spherical Harmonics in the Formation of the Geomagnetic Field from Internal Sources** 55

3.4 **Analytical Methods of Trajectory Calculations in the Real Geomagnetic Field** ... 56

3.4.1 **General Equation** .. 56

3.4.2 **Störmer Method** .. 57

3.4.3 **Alfvén Method** ... 60

3.4.4 **Peculiarities at High Latitudes; Using Boltzmann Equation** ... 63

3.4.5 **The Case of High CR Energy Density in the Outer Magnetosphere and the Self-Consistent Nonlinear Problem** 63

3.4.6 **Regions of Applicability of Analytical Methods** 64

3.5 **Main Methods of Numerical Calculation of Charged-Particle Trajectories in the Real Geomagnetic Field** 64

3.5.1 **Gauss Coefficients and Expected Accuracy of Numerical Calculation of Trajectories in the Real Geomagnetic Field; Comparison with that Expected for Dipole Field** 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2</td>
<td>Störmer’s Method of Numerical Calculation of Trajectories in Dipole Geomagnetic Field: Why it cannot be Used for Real Geomagnetic Field</td>
<td>67</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Method Runge–Kutta of Fourth Order for Numerical Calculations of CR Trajectories in Real Geomagnetic Field</td>
<td>67</td>
</tr>
<tr>
<td>3.5.4</td>
<td>The Choice of the Value of the Step of Numerical Integration: The Gill’s Modification</td>
<td>69</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Kelsall’s Modification of the Runge–Kutta Method</td>
<td>70</td>
</tr>
<tr>
<td>3.5.6</td>
<td>The Merson’s Modification of the Runge–Kutta Method</td>
<td>70</td>
</tr>
<tr>
<td>3.5.7</td>
<td>The Stability of CR Trajectory Integration and Control of Accuracy</td>
<td>71</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Numerical CR Trajectory Integration in Spherical Geographical System of Coordinates</td>
<td>72</td>
</tr>
<tr>
<td>3.5.9</td>
<td>Divergence-Free Magnetic Field Interpolation and Symplectic Method of Charged-Particle Trajectory Integration</td>
<td>75</td>
</tr>
<tr>
<td>3.5.10</td>
<td>Symplectic Tracing of High-Energy Charged Particles in the Inner Magnetosphere</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>Asymptotic Directions, Impact Zones, and Acceptance Cones in the Geomagnetic Field Including the Higher Harmonics</td>
<td>85</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Examples for Different CR Stations</td>
<td>85</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Classification of Stations by their Acceptance Cones</td>
<td>86</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Acceptance Cones for Russian and Former Soviet Net of Stations</td>
<td>88</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Asymptotic Directions for the Worldwide Net of CR Stations</td>
<td>90</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Asymptotic Directions for Solar CR During Some Great Events</td>
<td>90</td>
</tr>
<tr>
<td>3.6.6</td>
<td>Asymptotic Directions for Several Selected CR Stations</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>On the Connection of CR Cutoff Rigidities in the Real Geomagnetic Field with the L-Parameter of McIlwain</td>
<td>92</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Results for Dipole Field</td>
<td>92</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Results for Trajectory Calculations for Quiet Time</td>
<td>93</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Using the Relation between R_c and McIlwain L-Parameter for Estimation of R_c Variations during Disturbed Periods</td>
<td>98</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Estimation of R_c for Any Altitude on the Basis of the Relationship Between R_c and L</td>
<td>98</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Global Rigidity Cutoff Maps Based on the Relation Between R_c and L</td>
<td>99</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Calculations of R_c and L for Different Models: Comparison</td>
<td>101</td>
</tr>
</tbody>
</table>
3.8 Planetary Distribution of Cutoff Rigidities at Altitude 20 km . . . 102
 3.8.1 Offset Dipole and CR Cutoff Rigidity Coordinates 102
 3.8.2 CR Vertical Cutoff Rigidity Planetary Distribution
 for the Epoch 1955.0 104
 3.8.3 CR Vertical Cutoff Rigidity Planetary Distributions
 for Epochs 1965.0 and 1975.0 106
 3.8.4 The Change of CR Vertical Cutoff Rigidity Planetary
 Distribution During 20 Years, from 1955 to 1975 106
 3.8.5 CR Vertical Cutoff Rigidity Planetary Distribution
 for Epoch 1980 .. 106
 3.8.6 CR Vertical Cutoff Rigidity Planetary Distribution
 for Epoch 1990.0 .. 106
 3.8.7 CR Vertical Cutoff Rigidity Planetary Distribution
 for Epoch 1995.0 .. 107
 3.8.8 CR Vertical Cutoff Rigidity Planetary Distribution
 for Epoch 2000.0 .. 107
 3.9 CR Effective Cutoff Rigidity Planetary Distribution
 for Satellite Altitudes 107
 3.10 Cutoff Rigidities for the Worldwide Network of CR Stations 109
 3.10.1 Calculations of Cutoff Rigidities for CR Stations
 and Checking by Data on CR Variations 109
 3.10.2 Comparison of Different Models of Calculation 110
 3.10.3 Comparison of Different Models of the Geomagnetic
 Field .. 111
 3.10.4 Cutoff Rigidities for Inclined Directions 111
 3.11 The CR Penumbral Effects in the Real Geomagnetic Field 111
 3.11.1 The CR Penumbra in Dependence of Delineated Value 111
 3.11.2 The Concept of the First Forbidden Band in the CR
 Penumbra .. 113
 3.11.3 Penumbral Width in Dependence of Vertical Cutoff
 Rigidity for Different Epochs 114
 3.11.4 Effective Vertical Cutoff Rigidities for Different CR
 Detectors and Types of CR Variations 114
 3.12 CR Rigidity Transmittance Functions 119
 3.12.1 The Concept of the Transmittance Function and Two
 Methods of Calculation 119
 3.12.2 The Dependence of Transmittance Function Calculation
 Accuracy from the Delineated Value 121
 3.12.3 The Dependence of Transmittance Function Calculation
 Accuracy from the Number of Azimuthal Directions 122
 3.12.4 On the Influence of Ionization Losses
 on the Transmittance Function 122
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.12.5</td>
<td>On the Checking of the Theoretically Calculated CR Rigidity Transmittance Functions by Balloon Experiments</td>
<td>125</td>
</tr>
<tr>
<td>3.12.6</td>
<td>On Checking the Theoretically Calculated CR Rigidity Transmittance Functions by Satellite Experiments</td>
<td>128</td>
</tr>
<tr>
<td>3.12.7</td>
<td>Transmittance Function Approach to Disentangle Primary from Secondary CR Fluxes in the Penumbra Region</td>
<td>129</td>
</tr>
<tr>
<td>3.13</td>
<td>Obliquely Incident Particles and Apparent Cutoff Rigidities</td>
<td>136</td>
</tr>
<tr>
<td>3.14</td>
<td>Simulation of the Geomagnetic Cutoff Rigidity Angle Distribution with the GEANT-3 Computing Program using the Data of the International Geomagnetic Reference Field</td>
<td>140</td>
</tr>
<tr>
<td>3.14.1</td>
<td>Importance of the Exact Knowledge of the CR Cutoff Rigidity Angle Distribution for the Problems of Atmospheric Neutrino and Other Secondary Particles Generated in the Earth’s Atmosphere</td>
<td>140</td>
</tr>
<tr>
<td>3.14.2</td>
<td>Using the Backtracking Method for the Precise Calculation of the Geomagnetic Cutoff Rigidities</td>
<td>141</td>
</tr>
<tr>
<td>3.14.3</td>
<td>Calculations and Results for the Planetary and Angle Distributions of CR Geomagnetic Cutoff Rigidity</td>
<td>142</td>
</tr>
<tr>
<td>3.14.4</td>
<td>Comparison with AMS Measurements of the Geomagnetic Cutoff on Shuttle</td>
<td>143</td>
</tr>
<tr>
<td>3.15</td>
<td>Geomagnetic Field Influence on Secondary CR Generated and Propagated in the Atmosphere</td>
<td>144</td>
</tr>
<tr>
<td>3.15.1</td>
<td>On the Possible Geomagnetic Effects in Secondary CRs</td>
<td>144</td>
</tr>
<tr>
<td>3.15.2</td>
<td>The Main Conditions for Calculations and Principal Sources</td>
<td>144</td>
</tr>
<tr>
<td>3.15.3</td>
<td>Expected Ratios of Secondary CR Neutrons to Muons with and without Allowance for the Geomagnetic Field</td>
<td>145</td>
</tr>
<tr>
<td>3.15.4</td>
<td>Expected Differential Energy Spectra N(E) of Secondary Neutrons and Muons at Sea Level and at $H = 5 \text{ km}$ from Primary CR Protons with Energy 3 and 10 GeV According to Calculations with and Without Geomagnetic Field Influence on their Propagation in the Atmosphere</td>
<td>147</td>
</tr>
<tr>
<td>3.15.5</td>
<td>Differential Energy Spectra of Neutrons, Protons, Charged Pions and Muons at Sea Level and Altitudes 5, 10, 15 km Generated from Primary Protons with Energies 3 and 10 GeV According to Calculations Taking into Account the Geomagnetic Field Influence on Secondary CR Particles Propagation</td>
<td>148</td>
</tr>
<tr>
<td>3.15.6</td>
<td>On the Detector’s Integral Multiplicity Taking Account of Geomagnetic Field Influence on Secondary CR Particle Propagation</td>
<td>149</td>
</tr>
</tbody>
</table>
3.15.7 On Checking Geomagnetic Field Effects on Secondary CRs During their Propagation in the Atmosphere using Data from High-Latitude CR Stations 150

3.16 On the Influence of IMF on the CR Entry into the Earth’s Magnetosphere ... 151
 3.16.1 The Matter of Problem ... 151
 3.16.2 The MHD Model of the Magnetosphere for Different IMF Conditions ... 151
 3.16.3 Calculations of CR Particle Trajectories .. 154
 3.16.4 Particle Distribution in Velocity Space .. 155
 3.16.5 How the Magnetosphere Reaches a Quasi-Steady Configuration Consistent with Each IMF Direction 156
 3.16.6 Calculation Results for IMF in a Southward Orientation 156
 3.16.7 Calculation Results for IMF in a Dawnward Orientation 159
 3.16.8 Calculation Results for IMF in a Northward Orientation 161
 3.16.9 Comparison of the Time-Dependent and Time-Independent Cases 164
 3.16.10 On the Energy Change of Particles Entering Inside the Magnetosphere ... 166
 3.16.11 Demonstration of the Magnetospheric Configuration’s Control of the Entry of High-Energy Particles 170
 3.16.12 On the 3He Ion Trajectories for Southward IMF 173
 3.16.13 Main Results and Discussion .. 173

3.17 Propagation of Protons in the Energy Range 0.1–50 MeV through the Earth’s Bow Shock, MagnetoSheath, and Magnetopause Inside the Magnetosphere ... 174
 3.17.1 The Matter of Problem ... 174
 3.17.2 Three Categories of Energetic Protons Incoming to the Earth 175
 3.17.3 Energetic Proton Propagation through Bow Shock with Shock-Drift Acceleration ... 176
 3.17.4 Energetic Particles Propagation through Bow-Shock with Diffusive Shock Acceleration ... 177
 3.17.5 MHD Simulation ... 177
 3.17.6 The Grid System for Simulation .. 178
 3.17.7 The Efficiency of the Shock-Drift Acceleration 178
 3.17.8 Calculation of Proton Trajectories for Three Regions 179
 3.17.9 Results for the Shock-Drift Acceleration at the Bow Shock (Case A) ... 180
 3.17.10 Energetic Particle Entry into the Magnetosphere and Expected Polar Map of Proton Precipitation at $4r_e$ (Case A) ... 182
3.17.11 Relation Between Proton Entry and Shock-Drift Acceleration ... 184
3.17.12 Statistical Results for Proton Entry and Shock-Drift Acceleration ... 187
3.17.13 Results for Large Solar Wind Density Increase
(Case B) .. 187
3.17.14 Comparison Between Cases A and B 187
3.17.15 Discussion on the Main Results and Observational
Evidence .. 189

4 Cosmic Ray Planetary Surveys on Ships, Trains, Tracks, Planes,
Balloons, and Satellites .. 191
 4.1.1 The Routes and CR Apparatus in Japanese and Some Previous Latitude Surveys 191
 4.1.2 Corrections of Japanese CR Latitude Survey Data on the Barometric Effect and Worldwide CR Variations ... 191
 4.1.3 Database of Japanese CR Latitude Surveys 194
 4.1.4 Geomagnetic Latitude CR Curves for Neutron and Muon Components 195
 4.1.5 CR Equator According to Measurements in Japanese Expeditions ... 195
 4.1.6 Longitude Effect Along the CR Equator 196
 4.1.7 The Position of Latitude Knee According to Japanese Expeditions ... 197
 4.1.8 Planetary Distribution of CR Neutron Intensity 197

4.2 Swedish–USA Latitude Surveys During 1956–1959 in Connection with the International Geophysical Year 198
 4.2.1 Latitude Surveys and the Problem of CR Cutoff Rigidities .. 198
 4.2.2 CR Equator Along the Longitude 14°W 200
 4.2.3 Dependencies of CR Intensity from the Cutoff Rigidity ... 201

4.3 CR Latitude Surveys by Canadian Expeditions in 1965–1966 .. 201
 4.3.1 Three Canadian CR Latitude Surveys, Routes, and using Apparatus .. 201
 4.3.2 Main Results for the Expedition in Summer 1965 .. 203
 4.3.3 CR Latitude Survey in Canada in November–December 1965 ... 203
 4.3.4 CR Latitude Survey in Western USA and Hawaii in Summer 1966 ... 204
 4.3.5 Calibrated and Extended Measurements of CR Intensity on the Aircraft at Different Altitudes and at Different Cutoff Rigidities .. 206
4.3.6 Geographically Smoothed Geomagnetic Cutoffs Rigidities 207
4.3.7 Final Analysis of Three Canadian CR Latitude Survey Data 208
4.3.8 CR Latitude Effects at Different Altitudes .. 210
4.3.9 Comparison of Latitude Curves for Neutron Intensity in Two Minima of Solar Activity in 1954/55 and 1965/66 ... 211

4.4 NM Surveys in the Southern Ocean to Antarctica by USA, Australia, and South Africa .. 212
4.4.1 Main Results of the Latitude Survey 1994/95; Discovery of the Sea State CR Effect .. 212
4.4.2 CR Spectra Deduced from Neutron Monitor Surveys 214
4.4.3 Apparent Geomagnetic Cutoffs and the CR Anomaly in the Cape Town Region .. 216
4.4.4 Using He-3 Neutron Counters for Neutron-Component Measurements; CR Latitude Survey in 1998/99 217
4.4.5 Latitude Survey Observations of Neutron Multiplicities 220
4.4.6 Continuing Each-Year NM Latitude Surveys: Main Results from 1994–2001 .. 223

4.5 Latitude Surveys of Environmental Radiation and Soft Secondary CR Components by Italian Expeditions to Antarctica 225
4.5.1 Environmental Radiation and Soft Secondary CR Monitoring Along the Course of the Expeditions from Italy to Antarctica and Back ... 225
4.5.2 The Environmental Radiation and Soft Secondary CR Detectors .. 227
4.5.3 Measured Spectra of Environmental Radiation .. 228
4.5.4 Latitude Dependencies of Environmental Radiation in the 50–3,500 keV Energy Band ... 228
4.5.5 Observations of Transition Sea-to-Land Effects and “Radonic Storms” in the Environment Radiation During Latitude Surveys .. 230
4.5.6 Latitude Effects of the Soft Secondary CR Components in the Energy Ranges 2.8–5.0 and 5–20 MeV .. 231
4.5.7 The Main Results Obtained During Latitude Surveys of Environment Radiation and Soft Secondary CR Components 232

4.6 Daily CR Latitude Curves Derived from the NM Worldwide Network Data ... 232
4.6.1 The Main Idea of the Method Developed by Italian Scientists .. 232
4.6.2 The Daily Sea-Level CR Latitude Curves Obtained from the NM Worldwide Network and CR Latitude Surveys .. 233
4.6.3 Using CR Latitude Survey Data for NM Calibration . . . 234
4.6.4 Using Daily Sea-Level CR Latitude Curves for Studying
Spectral Structure of Large Forbush Decreases 236
4.6.5 Using Daily Sea-Level CR Latitude Curves for Studying
the Long-Term CR Spectral Variations 241
4.6.6 Comparison of CR Latitude Curves for Long-Term
and Forbush Decreases in CR Spectral Variations 244
4.6.7 Using Daily Sea-Level CR Latitude Curves for Studying
the Influence of the Primary CR Modulation
on the Attenuation Coefficient of the Nucleonic
Component at Different Latitudes and Altitudes 247
4.6.8 Using Daily CR Latitude Curves for Studying
the Influence of the Primary CR Modulation
on the Coupling Functions of the Nucleonic Component
at Sea Level and at Altitudes ~1,900 m above
Sea Level ... 248
4.6.9 Latitude and Altitude Dependencies of Primary
Modulation Effects in Neutron Multiplicity Distribution
in the NM-IQSY ... 250
4.7 CR Latitude Surveys over the Territory of the Former USSR 254
4.7.1 CR Intensity Distribution over the Territory
of the Former USSR 254
4.7.2 Latitude Curves of Neutron Intensity and Cutoff
Rigidity .. 255
4.7.3 Coupling Functions for Neutron Component
at Sea Level ... 256
4.7.4 Coupling Functions for the Neutron Component
at Mountain Level 257
4.7.5 Calculation of the Integral Multiplicity for the Neutron
Component ... 258
4.7.6 The Measurements of Geomagnetic Effects by CR
Telescope; the Methods for Treating the Experimental
Data .. 258
4.7.7 Cutoff Rigidities for CR Telescope: Vertical
and Inclined Directions 260
4.7.8 Latitude Curves for the CR Telescope 261
4.7.9 Amplitudes of Latitude Effects of Various Components
Measured by CR Telescope 262
4.7.10 The East–West CR Asymmetry 262
4.7.11 Coupling Functions and Integral Multiplicities
for Total Ionizing and Hard CR Components Derived
from Latitude Curves 264
4.7.12 Latitude Surveys and Coupling Functions for Neutron
Monitor Without Lead 265
4.7.13 The Airplane CR Latitude Surveys over the Former USSR at Altitudes with Pressures of 260–400 mb 269
4.7.14 The Balloon CR Latitude Surveys over the Former USSR ... 270
4.7.15 The Balloon Measurements over the Former USSR of East–West CR Asymmetry: Estimation of the Upper Limit for Antiproton/Proton Ratio .. 271

4.8 Soviet CR Survey Expeditions over the World on the Ship Kislovodsk ... 275
4.8.1 CR Latitude Survey During December 1967–March 1968 ... 275
4.8.2 Determining the Coupling Functions ... 276
4.8.3 Determining the CR Equator at 28°W ... 277

4.9 Soviet CR Survey Expeditions over the World on the r/v Academician Kurchatov .. 278
4.9.1 Regular CR Latitude Measurements on the r/v Academician Kurchatov .. 278
4.9.2 Determining of Coupling Functions on the Basis of Latitude Surveys ... 279
4.9.3 The Normalizing of the Worldwide Network of CR Stations on the Basis of CR Latitude Surveys by r/v Academician Kurchatov ... 280
4.9.4 Determining Integral Multiplicities ... 281
4.9.5 Determining the Primary Spectrum of Long-Term CR Variation ... 283
4.9.6 Comparison of Coupling Functions Derived from CR Latitude Services with Theoretical Expected 284
4.9.7 Using CR Latitude Surveys by r/v Academician Kurchatov for Checking the Cutoff Rigidities Models 284
4.9.8 Estimation of Coupling Functions for Total Neutron Component and Different Multiplicities 286
4.9.9 Main Results of r/v Academician Kurchatov Expeditions in 1971/72 and 1975: Checking Cutoff Rigidities and Determining Coupling Functions .. 286
4.9.10 Main Results of the r/v Academician Kurchatov Expedition in 1982: Determining Coupling Functions for Without-Lead NM and for NM-IQSY Total Intensity and Different Multiplicities; Distribution Function of Multiplicities Depending on Cutoff Rigidity 290

4.10 CR Latitude-Altitude Surveys and Secondary CR Dependencies from Cutoff Rigidity and Atmospheric Depth ... 296
4.10.1 Latitudinal and Altitudinal Coupling Coefficients: Nominations and Interconnections 296
4.10.2 Latitude Dependence of Secondary CR Variations ... 298
4.10.3 Altitude Dependencies of Secondary Variations ... 299
4.10.4 Determination of the Spectrum of the Primary
CR Variations .. 299

4.11 The Latitude Knee of Secondary CR 301
4.11.1 The Latitude Knee of Secondary CR and its Origin 301
4.11.2 The Calculation Model of the Secondary CR
Knee Position ... 301
4.11.3 The Latitude Knee of the Nucleonic Component
at Sea Level .. 302
4.11.4 The Latitude Knee of the Muon Component
at Sea Level .. 304
4.11.5 The Altitude Dependence of the Knee for Nucleonic
and Muon Components 304

4.12 Comparison with Observations on the CR Latitude Knee 306
4.12.1 Comparison for Neutron Component 306
4.12.2 Comparison for Muon Component at Sea Level 306
4.12.3 Comparison with Experimental Data on the CR Muon
Latitude Knee at an Atmospheric Depth of 310 g/cm² 308

4.13 South African Latitude Surveys at Different Altitudes
by Airplanes ... 311
4.13.1 South African Expeditions, Response Functions
and 22-Year Modulation 311
4.13.2 Latitude Distributions of CR Components at Sea
Level and at Airplane Altitudes in the South African
Magnetic Anomaly 314
4.13.3 Cutoff Rigidities and Latitude Dependence of Muons
at 307 g/cm² in Inclined Directions 318

4.14 Latitude CR Surveys on Balloons 322
4.14.1 Survey of CR Intensity in 86° N to 73° S Geomagnetic
Latitude on Balloons 322
4.14.2 Latitude Surveys by Balloon Measurements of CR
Vertical Intensity and East–West Asymmetry;
Determining Energy Spectrum and Charge Sign
of Primary CR .. 329

5 Main Results of Cosmic Ray Survey to Antarctica on the Ship
Italica in 1996/97 ... 341
5.1 Description of Apparatus, Trajectory Calculations of Cutoff
Rigidities in the Real Geomagnetic Field Along the Ship’s
Voyage .. 341
5.1.1 Importance of Obtaining Exact Data in CR
Latitude Surveys ... 341
5.1.2 Principles of the Data Corrections Method 342
5.1.3 Description of the Experiment 343
5.1.4 The Recorded Data and Acquisition System 343
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.5</td>
<td>Quality Assurance Procedures: Presurvey and Postsurvey Measurements</td>
<td>344</td>
</tr>
<tr>
<td>5.1.6</td>
<td>The Latitude Survey: Route and Main Results</td>
<td>346</td>
</tr>
<tr>
<td>5.1.7</td>
<td>The Quality Assurance Procedures and Internal Tests</td>
<td>348</td>
</tr>
<tr>
<td>5.2</td>
<td>Correction for Primary CR Variations and Summary of All Corrections</td>
<td>349</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Primary Isotropic Time Variations</td>
<td>349</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Corrections for Primary North–South Asymmetry of CR Distribution in the Interplanetary Space</td>
<td>350</td>
</tr>
<tr>
<td>5.2.3</td>
<td>The Summing of all Corrections Including Meteorological Effects</td>
<td>352</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Quality Assurance Procedure: Internal Comparison of Corrected Data</td>
<td>352</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Critical Consideration of Results in Sections 5.1 and 5.2.1–5.2.4</td>
<td>354</td>
</tr>
<tr>
<td>5.3</td>
<td>Computation of Cutoff Rigidities of Vertically Incident CR Particles for Latitude Survey</td>
<td>355</td>
</tr>
<tr>
<td>5.4</td>
<td>Dependencies of Corrected CR Intensities upon Cutoff Rigidity</td>
<td>357</td>
</tr>
<tr>
<td>5.5</td>
<td>Forward–Backward Effect: CR East–West Asymmetry and Asymmetric Distribution of Neutron Absorption and Generation Around the Monitor</td>
<td>359</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Forward–Backward Effect During CR Latitude Survey: Asymmetry in Cutoff Rigidities</td>
<td>359</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Contribution of Nonvertical Incidence Particles to the 3NM-IQSY Counting Rate</td>
<td>360</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Forward–Backward Effect During CR Latitude Survey: Expected Asymmetry in Neutron Intensities</td>
<td>362</td>
</tr>
<tr>
<td>5.6</td>
<td>CR Intensity Versus Cutoff Rigidity, Analytical Approximation, and Coupling Functions for the 3NM-IQSY and 2BC Detectors</td>
<td>364</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Analytical Description of the Dependence of the 3NM-IQSY and 2BC Intensities on the Vertical Cutoff Rigidity</td>
<td>364</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Analytical Description of Coupling Functions for the 3NM-IQSY and 2BC Detectors</td>
<td>365</td>
</tr>
<tr>
<td>5.7</td>
<td>Effective Cutoff Rigidities for Different Zenith and Azimuth Angles of CR Arriving at Points Along the Ship Route</td>
<td>365</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Calculation of Effective Cutoff Rigidities for Different Zenith and Azimuth Angles of CR Arriving at Points Along the Ship Route from Italy to Antarctica</td>
<td>366</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Effective Cutoff Rigidities for Different Zenith and Azimuth Angles for the Ship Route from Antarctica to Italy</td>
<td>369</td>
</tr>
</tbody>
</table>
5.8 Apparent Cutoff Rigidities Along the Ship’s Route and Related Coupling Functions for the 3NM-IQSY and 2BC Detectors
5.8.1 Calculation of Apparent Cutoff Rigidities R_{cp}^{ap} along the Ship’s Route: Dipole Approximation for Inclined Directions
5.8.2 Calculation of Apparent Cutoff Rigidities in the Real Geomagnetic Field for the Ship Route Italy–Antarctica Taking into Account Results of Trajectory Calculations for Inclined Directions
5.8.3 Calculation of Apparent Cutoff Rigidities in the Real Geomagnetic Field for the Ship Route Antarctica–Italy Taking into Account Results of Trajectory Calculations for Inclined Directions
5.8.4 Comparison of Latitude Dependencies and Coupling Functions for Effective R_{cp} and Apparent R_{cp}^{ap} Cutoff Rigidities
5.9 Summary of Results of the CR Latitude Survey on the Ship Italica in 1996/97, and Discussion on Coupling Functions
5.9.1 Main Results Obtained in CR Latitude Survey in 1996/97 on Board the Ship Italica
5.9.2 Comparison and Discussion on Coupling Functions

6 Geomagnetic Variations of Cosmic Rays
6.1 Two Main Sources of CR Geomagnetic Variations
6.2 CR Variations Expected for Large Long-Term Changes of the Geomagnetic Field
6.2.1 Expected CR Variations Caused by Changing of the Earth’s Dipole Magnetic Moment
6.2.2 Variations of Geomagnetic Origin During the Last 2,000 Years
6.2.3 Secular Variations of the Cutoff Rigidities
6.3 Trajectory Calculations of Long-Term Variation of Planetary Distribution of Cutoff Rigidities
6.3.1 Results for 1600–2000 by Steps of 50 Years
6.3.2 An Example of Cutoff Variability on CR Station LARC During 1955–1995 in Connection with Geomagnetic “Jerk”
6.3.3 Long-Term Variations of the Planetary Distribution of Geomagnetic Rigidity Cutoffs During the Last 2,000 Years
6.3.4 On the Variation of the Earth’s Magnetic Dipole Moment During 1600–2005
6.3.5 Long-Term Variation of the Planetary Distribution of the Geomagnetic Rigidity Cutoffs Between 1950 and 2000
6.4 Long-Term Change of Cutoff Rigidities and the Expected Change of CR Intensity Owed to Geomagnetic Field Variation 404
6.5 The Global Cutoff Rigidities and their Change During the Last 2,000 Years ... 405
6.6 Effects of Axially Symmetric Currents in the Magnetosphere: The Provisional Assessment of the Causes of Variations in Cutoff Rigidities During Magnetic Storms 406
 6.6.1 Development of Models of the Axially Symmetric Current’s Influence on CR Cutoff Rigidities 406
 6.6.2 The CR Vertical Cutoff Rigidities in the Presence of a Thin Equatorial Ring Current 409
 6.6.3 The CR Cutoff Rigidities for Obliquely Incident Particles in the Presence of a Thin Equatorial Ring Current .. 410
6.7 Influence of Current Sheets Surfaces on the CR Geomagnetic Cutoff Rigidities .. 416
 6.7.1 Current Sheet in the Form of a Spherical Surface 416
 6.7.2 Current Sheet Formed by Rotating the Line of Force of the Magnetic Dipole 417
6.8 The Effect of Volume Currents in the Radiation Belts (Akasofu and Chapman Model) on the CR Cutoff Rigidity 422
6.9 The Influence of Ring Currents on the Position of CR Impact Zones and Asymptotic Directions 423
6.10 Effect of Compression of the Magnetosphere (Current System in Eastern Direction) on CR Cutoff Rigidities 424
6.11 Effect of Compression of the Magnetosphere and Western Current Systems on CR Asymptotic Directions and the Acceptance Cones 426
6.12 Asymmetric Variations of the Magnetosphere and Diurnal CR Variations of Geomagnetic Origin 427
6.13 Oscillation of the Asymptotic Acceptance Cones 427
6.14 The First Observations of CR Variations Due to Changes in the Geomagnetic Field 432
 6.14.1 Unusual Increases During Magnetic Storms 432
 6.14.2 Application of the Method of Coupling Functions 436
 6.14.3 The Latitude–Longitude Distribution of the CR Increase Effect of September 13, 1957 439
 6.14.4 The Latitude–Longitude Distribution of the CR Increase Effect on February 11, 1958 441
 6.14.5 Main Properties of the CR Intensity Increase During the Main Phase of a Magnetic Storm 444
 6.14.6 Statistical Properties of the CR Increase Effect During the Main Phase of the Geomagnetic Storm 445
 6.14.7 Possible Influence of Small Magnetic Perturbations on Cosmic Rays 447
6.14.9 Earlier Direct Observations of the Cutoff Variations by Means of Measurements on Balloons and Satellites and from Polar Cap Absorptions 448

6.15 Variations of the Geomagnetic Field and Local CR Anisotropy 449
6.15.1 The Asymmetry in the Variation of the CR Cutoff Rigidity for East–West Directions in Ahmedabad and North–South Directions in Moscow 449
6.15.2 The Analysis of CR Cutoff Rigidity Asymmetry on the Basis of Directional Data in Capetown and Yakutsk, and NM Worldwide Network 451
6.15.3 The Main Results and Discussion on CR Cutoff Rigidity Asymmetry During Magnetic Storms 455
6.15.4 The Anomalous CR Diurnal Variation During the Main Phase of the Magnetic Storm of February 11, 1958 455
6.15.5 On the Nature of CR Anisotropy Asymmetry: Local and Non-local Sources 456

6.16.1 The Discovery of Lunar-Daily CR Variation and Discussion on Its Possible Origin 458
6.16.4 Checking on the Properties of 27-Day Modulation of CR Solar-Daily Variation 460
6.16.5 On the Possible Reality of the CR Lunar-Daily Variation 461
6.16.6 The Dependence of the CR Lunar-Daily Variation on the Relative Positions of the Sun, Moon, and Earth . . 462
6.16.7 Dependence of the CR Lunar-Daily Variation on Cutoff Rigidity 463
6.16.8 Main Conclusions and Discussion on the CR Lunar-Daily Variation in Connection with Possible Tidal Effects in the Earth’s Atmosphere and Magnetosphere.. 464

6.17 The Influence of the Tail of the Earth’s Magnetosphere on the CR Cutoff Rigidities 467
6.17.1 Main Properties of the Tail of the Magnetosphere 467
6.17.2 Probable Mechanism by Which the Earth’s Magnetic Tail Influences the CR Cutoff Rigidities 468
6.17.3 Approximate Position of the Curves of Constant Threshold at High Latitudes 468
Contents

6.17.4 The Influence of the Earth’s Magnetic Tail on the Trajectories of Protons with Energy 1.2 MeV . . . 469
6.17.5 Channeling of Low-Energy Cosmic Rays in the Tail of the Earth’s Magnetosphere 470
6.18 Discriminating CR Magnetospheric Variations from Observed CR Data by the Spectrographical Method .. 473
 6.18.1 The Matter of Problem .. 473
 6.18.2 Determining Cutoff Rigidity Change by the Spectrographic Method on the Basis of Single CR Observatory Data 476
 6.18.3 Determining the Cutoff Rigidity Changes by the Spectrographic Method on the Basis of Data from Two CR Observatories (Case One and Three Components) .. 477
 6.18.4 Determining the Cutoff Rigidity Changes in the Case of Two Components in the Each of the Two CR Observatories .. 478
 6.18.5 Determining Planetary Cutoff Rigidity Changes Distribution on the Basis of Many CR Observatories’ Data by the Spectrographic Method 479
 6.18.6 An Example of Using the Spectrographic Method for Determining CR Geomagnetic Variations; Application to Ring Current (Events in May and June 1972) 482

6.19 Cutoff Rigidity Variations of European Mid-latitude Stations During the September 1974 Forbush Decrease 485
 6.19.1 The Matter of Problem .. 485
 6.19.2 Used Data and Main Characteristics of the Event 485
 6.19.3 Results of Data Analysis 486
 6.19.4 Main Results and Discussion 488

6.20 The Extraterrestrial and Geomagnetic Variations in CR During the Forbush Decreases of March 26, 1976 489
 6.20.1 Observation Data ... 489
 6.20.2 Comparison Between the $\Delta R_c(t)$ and D_{st}-Variations .. 489
 6.20.3 Variations of ΔR_c on Different CR Stations and Dependence of ΔR_c on R_{co} 491
 6.20.4 Estimation of Ring Current’s Properties 492

6.21 Estimates of the Parameters of the Magnetospheric Ring Current During Magnetic Storms on the Basis of CR Data 493
 6.21.1 The Matter of Problem and Observational Data 493
 6.21.2 Analysis of Data in the Frame of Two Used Models of Ring Current .. 493
 6.21.3 Main Results and Discussion 496

6.22 Interrelation Between Variations of the CR Cutoff Rigidity and the Geomagnetic D_{st}-Variation During Magnetic Storms . . . 497
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.22.1</td>
<td>The Matter of Problem</td>
<td>497</td>
</tr>
<tr>
<td>6.22.2</td>
<td>Observational Data and Variations of R_c During Three Events</td>
<td>498</td>
</tr>
<tr>
<td>6.22.3</td>
<td>Discussion and Main Results</td>
<td>499</td>
</tr>
<tr>
<td>6.23</td>
<td>The CR Decreases at High Latitudes and Increases at Middle Latitudes During Magnetic Storms</td>
<td>500</td>
</tr>
<tr>
<td>6.23.1</td>
<td>The Cases When During Magnetic Storms at High Latitudes Observed CR Decreases but at Middle Latitudes CR Increases</td>
<td>500</td>
</tr>
<tr>
<td>6.23.2</td>
<td>Main Equations for the Extended Spectrographic Method</td>
<td>501</td>
</tr>
<tr>
<td>6.23.3</td>
<td>CR and Magnetic Parameters for Eight Selected Magnetic Storms</td>
<td>502</td>
</tr>
<tr>
<td>6.23.4</td>
<td>Estimation of the Current Ring Radius</td>
<td>502</td>
</tr>
<tr>
<td>6.24.1</td>
<td>The Matter of Problem and the Simplest Version of the Global Spectrographic Method</td>
<td>505</td>
</tr>
<tr>
<td>6.24.2</td>
<td>Magnetospheric Effects on CR During Forbush Decreases in August 1972</td>
<td>506</td>
</tr>
<tr>
<td>6.24.5</td>
<td>On the Correction of CR Data on Geomagnetic Variations</td>
<td>518</td>
</tr>
<tr>
<td>6.25</td>
<td>Magnetospheric Currents and Variations of Cutoff Rigidities on October 20, 1989</td>
<td>518</td>
</tr>
<tr>
<td>6.25.1</td>
<td>The Matter of Problem</td>
<td>518</td>
</tr>
<tr>
<td>6.25.2</td>
<td>Procedure of CR Cutoff Rigidity Calculations</td>
<td>519</td>
</tr>
<tr>
<td>6.25.3</td>
<td>Applying to NM Data of Moscow, Kiev, and Rome</td>
<td>520</td>
</tr>
<tr>
<td>6.25.4</td>
<td>Estimation of Magnetospheric Currents</td>
<td>520</td>
</tr>
<tr>
<td>6.25.5</td>
<td>Recalculations of Cutoff Rigidity Changes</td>
<td>522</td>
</tr>
<tr>
<td>6.25.6</td>
<td>Checking Using Balloon and Satellite Measurements</td>
<td>524</td>
</tr>
<tr>
<td>6.25.7</td>
<td>Summary and Discussion</td>
<td>524</td>
</tr>
</tbody>
</table>

7 Magnetospheric Models and their Checking by Cosmic Rays |

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>The Earth’s Magnetic Field with a Warped Tail Current Sheet (Tsyganenko-89 Model)</td>
<td>525</td>
</tr>
<tr>
<td>7.1.1</td>
<td>The Matter of Problem</td>
<td>525</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Axisymmetric Current Sheet Model and its Modification</td>
<td>527</td>
</tr>
</tbody>
</table>
7.1.3 Application to the Earth’s Magnetosphere: The Ring Current and the Tail Current Systems 530
7.1.4 Contribution from the Magnetospheric Boundary Sources ... 533
7.1.5 Analysis of the Model’s Parameters Depending on K_p .. 534
7.1.6 Model of Magnetic Field Distribution and Field-Line Configurations 537
7.1.7 Local Time-Dependence of the Average Inclination Angles .. 540
7.1.8 Distribution of Electric Current Density .. 540
7.1.9 The Model Field-Line Configurations for Several K_p Intervals .. 542
7.1.10 Summary of Main Results and Model Developing ... 545

7.2 Magnetospheric Configurations from a High-Resolution Data-Based Magnetic Field Model 546
7.2.1 The Matter of Problem .. 546
7.2.2 Modeling Equatorial Current System: Main Approach ... 547
7.2.3 Derivation of Vector Potentials .. 549
7.2.4 Magnetic Field Components .. 552
7.2.5 Spatial Variation of the Current Sheet Thickness ... 554
7.2.6 Approximations for the Shielding Field ... 554
7.2.7 Contribution from Field-Aligned Currents .. 555
7.2.8 Data Used for Magnetosphere Modeling .. 558
7.2.9 Regularization of Matrix Inversion Procedures ... 560
7.2.10 Data Weighting ... 561
7.2.11 Binning by K_p Index ... 563
7.2.12 Binning by the IMF B_z .. 564
7.2.13 Main and Recovery Storm Phases ... 565
7.2.14 Field-Aligned and Equatorial Currents .. 566
7.2.15 “Penetrating” Field Effect ... 568
7.2.16 Effects of the Dipole Tilt and IMF B_y on the Model Tail Current .. 569
7.2.17 Summary of Main Results ... 570

7.3 Storm-Time Configuration of the Inner Magnetosphere: Lyon–Fedder–Mobarry MHD Code, Tsyganenko Model, and GOES Observations ... 571

7.4 Magnetospheric Transmissivity of CR Accounting Variability of the Geomagnetic Field with Changing K_p and with Local Time (Within the Frame of the Tsyganenko-89 Model) 576
7.4.1 The Matter of Problem .. 576
7.4.2 The Calculation Method .. 577
7.4.3 Calculations of Transmissivity Functions .. 578
7.4.4 Asymptotic Directions for a High-Latitude Station ... 579
7.4.5 The Transmission Function at Middle Latitudes: Varying with IOPT 584
Contents

7.4.6 The Weighted Transmissivity Function 584
7.4.7 The Changing of the Transmissivity Function During Very Strong Geomagnetic Disturbance 584
7.4.8 Asymptotic Directions for a Middle-Latitude Station 587
7.4.9 Asymptotic Directions and Transmissivity Function for Low-Altitude Satellite Observations 589
7.4.10 Main Results and Discussion 590

7.5 Geomagnetic Cutoff Variations Observed by Tibet NM During the Maximum of Solar Activity: Checking Within the Frame of the Tsyganenko-89 Model .. 591
7.5.1 Tibet NM and Observation Data for Magnetic Storm Events ... 591
7.5.2 Analysis of Data and Comparison with the Tsyganenko-89 Model ... 593

7.6 Magnetospheric Effects in CR During the Magnetic Storm in November 2003 ... 594
7.6.1 The Matter of Problem .. 594
7.6.2 Solar and Interplanetary Activity in November 2003 597
7.6.3 Data and Method of Analysis 597
7.6.4 Uncorrected and Corrected for the Magnetospheric Effect CR Variations ... 599
7.6.5 Cutoff Rigidity Variations During the Magnetic Storm 600
7.6.6 Correlation of the Obtained ΔR_{cf} with D_{st} Index 600
7.6.7 Latitudinal Dependences of Cutoff Rigidity Variations ... 603
7.6.8 Comparison of Cutoff Rigidity Variations Determined by CR Data and Derived from Magnetosphere Models by Trajectory Calculations ... 604
7.6.9 On the Consistency of the “Storm” Models with the Current Distribution Derived from Spacecraft Data 605
7.6.10 On the Specific Feature of the November 2003 Event and on the Radius of the Ring Current 607
7.6.11 On Possible Errors in Obtained Results 607
7.6.12 On the Sensitivity of NM to CR Magnetospheric Variation .. 608
7.6.13 Summary of Main Results 609

7.7 On Checking the Magnetosphere Models by Galactic CRs: The Great Magnetic Storm in November 2003 609
7.7.1 The Matter of Problem ... 609
7.7.2 Comparison ΔR_{sgs} Derived from CR Data and ΔR_{cf} Obtained by Trajectory Tracing Within in the Frame of the Ts03 Tsyganenko Model 611
7.7.3 Comparison of Absolute and Relative Maximum Decreases of CR Cutoff Rigidities 613