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Preface

This book is concerned mainly with the physicochemical behavior and supramolec-
ular organization of polymers. The book is split in four chapters dealing with so-
lution properties, viscoelastic behavior, physicochemical aspects at interfaces and
supramolecular structures of polymeric systems. The classical treatment of the
physicochemical behavior of polymers is presented in such a way that the book
will meet the requirements of a beginner in the study of polymeric systems in so-
lution and in some aspects of the solid state, as well as those of the experienced
worker in other type of material. Indeed the book is a contribution to the chemistry
of materials. Taken into account these aspects, Chapter 1 is an introduction to the
classical conformational and thermodynamic analysis of polymeric solutions where
the different theories that describe these behaviors of polymers are analyzed. Owing
to the importance of the basic knowledge of the solution properties of polymers,
the description of the conformational and thermodynamic behavior of polymers is
presented in a classical way. The basic concepts like theta condition, excluded vol-
ume, good and poor solvents, critical phenomena, concentration regime, cosolvent
effect of polymers in binary solvents, preferential adsorption are presented in an in-
telligible way. The thermodynamic theory of association equilibria which is capable
to describe quantitatively the preferential adsorption of polymers by polar binary
solvents is also analyzed. Chapter 2 is a discussion of the viscoelastic properties of
polymeric material where the different concept dealing with the fact that polymers
above glass-transition temperature exhibit high entropic elasticity. Polymers exhibit
both viscous and elastic characteristics what is present in systems when undergoing
deformation. In this Chapter the basic concepts of viscoelasticity are described at
beginner level. The analysis of stress-strain in polymeric materials is of great prac-
tical interest and several examples of some familiar behavior of polymeric materials
are shortly described. The Chapter is splitted in four parts the first dealing with ba-
sic concepts of viscoelasticity. The second with dielectric and dynamic mechanical
behavior of aliphatic, cyclic saturated and aromatic substituted poly(methacrylate)s
with different kind of substituents in the side rings. The discussion in terms of the
theories that can describe the viscoelastic behavior of polymers is well explained.
The analysis of the different relaxations that take place in these systems allow to
understand the molecular origin of the different motions. By this way an interest-
ing approach of the relaxational processes is presented under the experience of the
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authors in these polymeric systems. The third part deals with the dielectric and
dynamic mechanical behavior of poly(itaconate)s with mono and disubstitutions.
The effect of the substituents and the free carboxylic groups in poly(monitaconate)s
and the disubstitution on poly(diitaconate)s is extensively discussed and interesting
conclusion are descrived. The fourth part is the analysis of viscolastic behavior of
poly(thiocarbonate)s where the difference is that this family of polymers correspond
to condensation polymers instead of vinyl polymers like the formers. The effect of
the substitution of the polymers is also analyzed. Chapter 3 is a discussion of the
behavior of polymers at interfaces where the Langmuir monolayers and Langmuir-
Blodget films are studied. Amphiphilic polymers at the air-water interface are stud-
ied via the Langmuir technique. The study and discussion of surface pressure-area
isotherms for different polymers are performed by using a surface film balance and
the results obtained from this technique are analyzed in terms of the shape of the
isotherms. The collapse pressure for different systems are discussed in terms of the
chemical structure of the polymer. The adsorption of polymers by spreading and
from solution is also discussed. Wetting of solids by a liquid described in terms of
the equilibrium contact angle � and the appropriate interfacial tensions. At equi-
librium the forces acting are analyzed using the Young’s equation. Chapter 4 deals
with the analysis of supramolecular structures containing polymers. Specifically in
this chapter the discussion about the effect of polymeric materials with different
chemical structures that form inclusion complexes is extensively studied. The ef-
fect of the inclusion complexes at the air-water interface is discussed in terms on
the nature of the interaction i.e. if the interaction is on entropic or enthalpic na-
ture. The description of these inclusion complexes on different cyclodextrines with
poly(ethylene) oxide, poly(�-caprolactone) and related polymers is an interesting
way to understand some non-covalent interaction in these systems. The discussion
about the generation and effect of supramolecular structures on molecular assembly
and auto-organization processes is also presented in a single form. Finally the use of
block copolymers and dendronized polymers at interfaces is new aspect to be taken
into account from both basic and technological interest. The effect of the chemical
structure on the self-assembled systems is discussed in terms of the different kinds
of interaction that can be detected. This book should be a powerful tool for students
and scientists working both in polymer chemistry and physic and in material science.

Santiago, Chile Ligia Gargallo
Deodato Radić
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Chapter 1
Polymer Solution Behavior: Polymer in Pure
Solvent and in Mixed Solvent

Summary The classical treatment of the physicochemical behavior of polymers is
presented in such a way that the chapter will meet the requirements of a beginner
in the study of polymeric systems in solution. This chapter is an introduction to the
classical conformational and thermodynamic analysis of polymeric solutions where
the different theories that describe these behaviors of polymers are analyzed. Owing
to the importance of the basic knowledge of the solution properties of polymers,
the description of the conformational and thermodynamic behavior of polymers
is presented in a classical way. The basic concepts like theta condition, excluded
volume, good and poor solvents, critical phenomena, concentration regime, cosol-
vent effect of polymers in binary solvents, preferential adsorption are analyzed in
an intelligible way. The thermodynamic theory of association equilibria which is
capable to describe quantitatively the preferential adsorption of polymers by polar
binary solvents is also analyzed.

Keywords Solution properties · Conformational analysis · Theta condition ·
Excluded volume · Good and poor solvent · Thermodynamic theories · Preferential
adsorption · Cosolvent effect

1.1 Introduction: Solution Properties

Polymer solutions represent the most convinient systems for studying the proper-
ties of the macromolecules. In effect, almost the all information that we have now
about the properties of macromolecules comes from the characterization realized in
solution. This is the state in which linear chains are characterized. Osmotic pressure
measurements in polymer solutions revealed for the first time the existence of high
molecular masses and this result confirmed the macromolecular hypothesis. The
development of our knowledge of the polymer solutions reflects to some extention
the development of the Polymer Chemistry itself.

In a limited sense solutions are homogeneous liquid phases consisting of more
than one substance in variable ratios, when for convenience one of the substances,
which is called the solvent and may itself be a mixture, is treated differently from

L. Gargallo, D. Radić, Physicochemical Behavior and Supramolecular Organization
of Polymers, DOI 10.1007/978-1-4020-9372-2 1,
C© Springer Science+Business Media B.V. 2009
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2 1 Polymer Solution Behavior

the other substances, which are called solutes [1]. Normally, the component which
is in excess is called the solvent and the minor component(s) is the solute. When
the sum of the mole fractions of the solutes is small compared to unity, the solution
is called a dilute solution. A solution of solute substances in a solvent is treated
as an ideal dilute solution when the solute activity coefficients γ are close to unity
(� = 1) [1, 2].

The deviations from ideal solution behavior are generally associated with a fi-
nite heat of solution. However, the properties of systems containing high molecular
weight components, have shown extremely large deviations from the behavior to be
expected of ideal solutions, even in cases where the heat of mixing was negligible.

To understand the thermodynamic behavior of a binary system containing a poly-
meric component and a low molecular weight component, it is necessary to consider
that the most polymer molecules may be represented as flexible chains. If such
chains are sufficiently long, the shape or conformation of their backbones may be
likened to the random flight path of a particle undergoing Brownian motion and is
then commonly refered to as a “random coil”. The problem now is to analyze what
happens with the shapes or conformations under different situations. At extreme
dilutions, each one of these chains can assume a large number of conformations.
The probability that any one chain exists at a given time in a given conformation
will be independent of the conformations assumed by all the other chains. In the
pure amorphous polymer the chain molecules are just as flexible as in solution.
At the same time, it is possible to assume that they can be able to exist in a similar
number of conformations. But, now these molecular conformations are not indepen-
dent of each other. The shape of each molecular chain must be correlated with the
shape assumed by its neighbors so as to fill the available space. When a molecular
chain is transferred from the pure polymer phase to a dilute solution, this restraint
is eliminated, and this accounts for the characteristic positive of the entropy mix-
ing �SE

M values of solutions of chain molecules. We can distinguish two ranges of
concentration in systems containing chain molecules. In dilute solution, the poly-
mer coils will only occasionally interpenetrate. At higher concentrations the total
available volume is much less than the sum of the volumes enclosed by the twisting
chain molecules. Then, in this range, the shape of a given chain, due to the presence
of other polymer chains, will depend on the fraction of the volume occupied by
these chains.

A quantitative theory of the change in conformational entropy produced by the
mixing of flexible chain polymers with a solvent of low molecular weight was for-
mulated by Flory [3] and Huggins [4].

In dilute solutions, the polymer chains behave, to a first approximation, as a gas.
Indeed, the expression for the osmotic pressure is similar to the ideal gas law.

The “osmotic pressure of a solute” is the hydrostatic pressure that must be ap-
plied to a solution in order to increase the activity, a. (or fugacity, designated f,
introduced by G. N. Lewis as a measure of thermodynamic “escaping tendency”. It
is an effective gas pressure corrected for deviations from the perfect gas laws) of
the solvent sufficiently to balance its decrease caused by the presence of the solute.
Equilibrium is established through a membrane permeable only to the solvent. This
pressure is, by integrating
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(dG/d�)T = V (1.1)

under the assumption of constant v1 (negligible compressibility) and combining
with (1.2)

G1 − G0
1 = RT ln(f1/f1

0) (1.2)

for the free energy of transfer of a mole of, for example, component 1 from pure
liquid to solution. Whenever gas pressure obeys the ideal gas law with what is con-
sidered desired accuracy, fugacity can be replaced by gas pressure:

� = −RT/V1 ln f1/f1
0 = −RT/V1 ln a1 (1.3)

The osmotic pressure is a convenient variable for experiments, especially for
high – polymer solutions.

There are, however, several intriguing facts that have aroused theoretical interest.

(i) the chain swells in good solvents, but does not in poor solvents (in the vecinity
of a “Boyle” temperature.)

(ii) the chains overlap the total solution volume, while the polymer concentration
is still low.

Thermodynamic predictions based on the liquid lattice theory do not fit osmotic
experimental data [5].

For binary polymer-solvent, the Gibbs mixing function, �GM, can be written,
without approximation, as the sum of a combinatorial term plus an interactional term

�GM/RT = n1 ln �1 + n2 ln �2 + n1 �2 g� (1.4)

Here, ni is amount of substance and �i the volume fraction, this last magnitude being
defined by �i = wi�sp,i/(w1�sp,1 + w2�sp,2), where wi is the weight fraction and vsp,i

the specific volume (i = 1, 2). Index 1 refers to solvent and index 2 to polymer. g
is a phenomenological interaction parameter that takes into account deviations of
�GM from its combinatorial value. Subscript � in g� denotes that g is defined on a
volume fraction basis.

Differentiating equation (1.4) gives the chemical potentials of the components:
�	1 and �	2. For the solvent

�	1/RT = ln �1 + (1 − V1/V2)�2 + υ2
2 �v (1.5)

Where

�v = gv + �1(dgv/d�1) (1.6)

Vi being molar volume and � a phenomenological interaction parameter taking into
account the deviations of �	1 from its purely combinatorial value. Subscript v in
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�v denotes that � is also defined on a volume fraction basis, the same as gv. The
equation (1.6) would be not strictly applicable to the dilute solution limit, but it can
be interpreted as the definition of � for the whole range of concentrations [6].

If instead of volume fractions, segment fractions, �i, are used, then

�GM/RT = n1 ln �1 + n2 ln �2 + n1�2g� (1.7)

With �i = wiv∗
sp,i/

(
w1v∗

sp,1 + w2v∗
sp,2

)
, where v∗

sp,i is the characteristic (hard –

core) specific volume (i = 1, 2).
Differentiating equation (1.7) gives

�u1/RT = ln �1 + (1 − V∗
1/V∗

2)�2 + ���2
2 (1.8)

Where

�� = g� + �1(dg�/d�1) (1.9)

Subscript � on interaction parameters g� and �� means that g� and �� are de-
fined on a segment fraction basis, and v∗

i is the characteristic molar volume. These
v∗,5

i are obtained from the reduced volumes, Vi

Vi = Vi/v∗
i (1.10)

To obtain the reduced volumes, it is usual to use the equation of state due to
Flory [7], from which is derived [7]

Vi = [1 + �iT/3(1 + �iT)]3 (1.11)

�i being the thermal expansion coefficient.
For the polymer component, differentiation of equation (1.4) gives a result simi-

lar to equation (1.5)

�	2/RT = ln �2 + (1 − V2/V1)�1 + (V2/V1)v2
1�′

v

Where

�′
v = gv + �2(dgv/d�2) (1.12)

�′
v being a phenomenological interaction parameter for the noncombinatorial part of

the solute (polymer) chemical potential, defined on a volume fraction basis. Equa-
tions similar to equation (1.9) and (1.12) serve to define �′ on a segment fraction
basis, �′

�.
The relationship between the g parameter and the � or �′ parameters is given by

equations (1.4), (1.7), and (1.11). Integration of these equations up to the concen-
tration �2(= 1 − �1) or �2(= 1 − �1) yields the value of g: gv as function of �2 or
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g� as a function of �2. With the common symbol x to represent either � or �, the
results are

gx = 1/x1

x1∫

0

�dx1 = 1/x2

x2∫

0

�′dx2 (1.13)

(x = � or �). In the limit of zero concentration of polymer (�2 = �2 = 0) and
in the limit of pure polymer (�2 = �2 = 1) we have

g0
x = �x0 =

1∫

0

�dx1 (1.14)

g1
x = �x1 =

1∫

0

�′dx2 (1.15)

where the superscripts 0 and 1 mean respectively �2 = �2 = 0 and �2 = �2 = 1.
Equations (1.13) and (1.14) show that the g interaction parameter is the reduced

residual chemical potential (a) of the polymer, in the limit �2 = 0, and (b) of the
solvent, in the limit �2 = 1 [6].

Theoretical g0: The theoretical expression for the g0 parameter, using the theory
of polymer solutions developed by Flory and by Patterson based on the ideas of
Prigogine and his school, has been given by Horta [8].

To calculate g0, Masegosa et al. [6] have taken from the literature data of � as a
function of concentration. They have calculated g0 for 41 polymer – solvent systems.
The values of g0 calculated are collected in Table 1.1.

In those cases in which Ṽ2/Ṽ1 is known, both gv
0 and g�

0 are given. For the
rest of the systems, only gv

0 is given. Prediction of thermodynamic properties on
ternary systems formed by a polymer and two solvents or two polymers and a sol-
vent requires the knowledge of the parameter g0, characteristic of the interaction of
the corresponding binary pairs [9]. However, due to the variety of sources for the
several systems studied, the data correspond to different polymer molecular weights,
m, and to different temperatures. Since the variation of � with concentration may
depend on M for low M′s, it has selected data only for M > 2 × 109, where no M
dependence is detected.

Using the concept of a regular solution, it is possible to treat the free energy
of mixing as being made up additively from contributions due to configurational
probability and a free energy arising from nearest – neighbor interactions. The latter
are characterized by the “Flory – Huggins interaction parameter”, �, which specifies,
in units of RT, the excess free energy for the transfer of a mole of solvent molecules
from the pure solvent to the pure polymer phase. With the initial state involving a
solvent and a disordered polymer phase, the Flory – Huggins treatment leads to

�GM = RT(n1 ln �1 + n2 ln �2 + n1��2) (1.16)
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Table 1.1 Empirical values of the go interaction parameters at infinite dilution calculated from the
experimental data of � vs. polymer concentration. (From ref. [6])

Systema T, ◦C V̄2/V̄1 gφ
o gv

o

PDMS–benzene 20, 25 0.9509b 0.65 0.63
PDMS–toluene† 20 0.9722 0.61 0.60
PDMS–cyclohexane† 20, 25 0.9517b 0.51 0.49
PDMS–n-pentane 20 0.9099 0.47 0.42
PDMS–n-hexane 20 0.9324 0.42 0.38
PDMS–n-heptane 20 0.9509 0.46 0.43
PDMS–n-octane† 20 0.9619 0.49 0.47
PDMS–n-nonane 20 0.9712 0.45 0.43
PDMS–2-2-4-trimethyl-pentane 20 0.9595 0.44 0.42
PDMS–3-methylpentane 20 0.9996 0.48 0.48
PDMS–p-xylene 20 0.9823 0.55 0.54
PDMS–ethylbenzene 20 0.9828 0.58 0.57
PDMS–hexamethyl-disiloxane 20 0.9303 0.34 0.29
PDMS–octamethyl-trisiloxane 20 0.9487 0.26 0.22
PS–cyclohexane† 20–30 0.8932b 0.84 0.82

25 0.74 0.71c

PS–methyl ethyl ketone† 10, 25, 50 0.8817b 0.70 0.65
PS–ethylbenzene 10, 35 0.9211b 0.56 0.53
PS–diethyl ketone 20 0.8995 0.78 0.75
PS–acetone 25 0.8705 0.82 0.79
PS–n-propyl acetate 25 0.8813 0.71 0.67
PS–n-butyl acetate 20 0.9036 0.71 0.68
PS–benzene 15–45 0.8719d 0.42 0.34

0.46 0.38
PS–toluene 25, 30 0.9221b 0.35 0.29

0.42 0.37
PS–n-propyl ether 20 0.8904 0.82 0.80
PS–carbon tetrachloride 20 0.8891 0.45 0.38
PS–dioxane 20 0.9131 0.56 0.52
PIB–benzene† 25 0.8894 0.73 0.70
PIB–n-pentane† 25 0.8443 0.66 0.60
PIB–n-octane 25 0.8980 0.54 0.49
PIB–cyclohexane† 25 0.8901 0.48 0.42
NR–benzene† 25 0.9075 0.46 0.40
NR–methyl ethyl ketone 25 0.8965 0.83 0.81
NR–ethyl acetate 25 0.8924 0.84 0.82
PPO–carbon tetrachloride† 5.6 0.9391 −0.05 −0.12
PPO–chloroform† 5.6 0.9272 −0.86 −1.01
POCS–benzene 25, 40 0.55
POCS–methyl ethyl ketone 25 0.73
PP–diethyl ketone 25 0.85
PP–diisobutyl ketone 25 0.70
PBD–chloroform† 25 0.15
a Dagger indicates data available on the whole concentration range. b At 25◦C. c Reference [26].
d At 30◦C.
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The concept of “regular solution” was introduced by Hildebrand (1929) [10] and
defined as a solution in which the partial molar entropies of the components are
those to be expected from the ideal solution law. From this definition it follows that
any deviation from ideal solution behavior in a regular solution is entirely accounted
for by the heat of mixing. When Hildebrand first formulated the concept of regular
solutions, he assumed that athermal solutions would necessarily follow the ideal
solution law. Much later, when the physical chemistry of solutions of high molec-
ular weight substances was subjected to detailed investigation, it became obvious
that differences in molecular size of solute and solvent may lead to a very large
deviation from solution ideality even if no heat effect accompanies the formation of
the solution.

The entropy of mixing disoriented polymer and solvent may be obtained:

�SM
∗ = −k(n1 ln �1 + n2 ln �2) (1.17)

An asterisk is appended to the symbol �S∗
M as a reminder that it represents only

the configurational entropy computed by considering the external arrangement of
the molecules and their segments. Contributions to the entropy resulting from spe-
cific interactions between neighbords will be considered later.

If the configurational entropy �SM
∗ is assumed to represent the total entropy

change �SM on mixing, the free energy of mixing is obtained by combining
equations

�GM = �HM − T�SM = �HM − T�SM
∗ (1.18)

= kT[n1 ln �1 + n2 ln �2 + �n1�2]

The chemical potential 	1 of the solvent in the solution relative to its chemical
potential 	0

1 in the pure liquid is obtained by differentiating the free energy of mix-
ing, �GM, with respect to the number n1 of solvent molecules. Differentiation of
equation for �GM with respect to n1 and multiplication of the result by Avogadro’s
number N in order to obtain the chemical potential per mole gives

	1 − μ0
1 = RT[ln(1 − �2) + (1 − 1/r)�2 + ��2

2] (1.19)

r = V2/V1

This equation may be written

	1 − μ0
1 = −TdS∗

1 + RT � �2
2 (1.20)

	1 − μ0
1 = −TdS∗

1 + �H1 (1.21)

Where

dS∗
1 = −R[ln(1 − �2) + (1 − 1/r)�2] (1.22)
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is the relative partial molar configurational entropy of the solvent in the solution. It
may be obtained directly by differentiation of equation (1.17). If x varies inversely
with T, the first two terms in equation (1.22) represent the relative partial molar
entropy.

�Si
M = −R(n1 ln x1 + n2 ln x2) (1.23)

And the ideal partial molar entropy is obtained by differentiation with respect to
n1 or n2

[with x1 = n1/(n1 + n2) and x2 = n2/(n1 + n2)] as

�Si
l = −R ln x1; �Si

2 = −R ln x2 (1.24)

And if the solution is athermal, so that �H1 = �H2 = 0, the ideal free energy of
mixing is

�Gi
M = −T��i

M = RT(n1 ln x1 + n2 ln x2) (1.25)

The solvent activity would then be given by

ln a1 = −�2V1/V2 − 1/2(�2V1/V2)2 − 1/3(�2V1/V2)3 − · · · . + ��2
2 (1.26)

In this case a large value of V2/V1 would make mixing impossible if � had an ap-
preciable positive value. Thus, endothermic mixing of high molecular weight poly-
mers with solvents is possible only because of the conformational entropy gained
by flexible chain molecules in the process of dilution.

Whatever the detailed interpretation of the thermodynamic behavior of polymer
solutions, the term

(1/2 − �)�2
2 (1.27)

in equation (1.28) arises from contributions to �GE
1 /RT due to binary interactions

of the chain segments of the solute. These may have their origins in a change in
the conformational entropy of the polymer, in changes in intermolecular contact
energy in the mixing process, in a change in the randomness of orientation of solvent
molecules when they are displaced from contact with the macromolecular solute,
in volume changes . . . etc. Expressing by asterisks quantities resulting from such
binary interactions, gives the relation:

1/2 − � = −(�H∗
1 − T�S∗

1)/RT �2
2 (1.28)

If we denote by � a temperature at which the coefficient of �2
2 vanishes, then

�H1
∗ = ��S∗

1, and this equation may be rewritten as

1/2 − � = �(1 − �/T) (1.29)
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where � is

� = T�S∗
1/R�2

2 (1.30)

The use of the parameters � and � has supplanted the interaction parameter �, as
suggested by Flory [11] which describes the behavior of a given polymer - solvent
at a single temperature.

The assumption of forces of interaction between solvent and solute led to the
century old principle that “like dissolves like”. In many cases the presence of simi-
lar functional groups in the molecules suffices. This rule of thumb has only limited
validity since there are many examples of solutions of chemically dissimilar com-
pounds. For example, for small molecules methanol and benzene, water and N,N-
dimethylformamide, aniline and diethyl ether, and for macromolecules, polystyrene
and chloroform, are completely miscible at room temperature. On the other hand,
insolubility can occur in spite of similarity of the two partners. Thus, polyvinylal-
cohol does not dissolve in ethanol, acetyl cellulose is insoluble in ethyl acetate, and
polyacrylonitrile in acrylonitrile [12]. Between these two extremes there is a whole
range of possibilities where the two materials dissolve each other to a limited extent.

Rather than the “like dissolves like” rule, it is the intermolecular interaction,
between solvent and solute molecules, which determines the mutual solubility. A
compound A dissolves in a solvent B only when the intermolecular forces of attrac-
tion KAA and KBB for the pure compounds can be overcome by the forces KAB in
solution [13].

The solubility parameter � of Hildebrand [14] as defined in equation (1.31),
can often be used in estimating the solubility of non-electrolytes solutes in organic
solvents.

� = (�Ev/Vm)1/2 = (�Hv − RT/Vm)1/2 (1.31)

In this equation Vm is the molar volume of the solvent, and �Ev and �Hv are
the molar energy and the molar enthalpy (heat) of vaporization for a gas of zero
pressure, respectively. � is a solvent property which measures the work necessary to
separate the solvent molecules (i.e. disruption and reorganization of solvent/solvent
interactions) to create a suitably sized cavity, large enough to accommodate the
solute. Accordingly, highly ordered self-associated solvents exhibit relatively large
�-values. As a rule, it has been found that a good solvent for a certain non-electrolyte
has a � –value close to that of the solute [15].

When a polymer in solid state is in contact with a liquid solvent, we observe first
a swelling phenomenon because the penetration of the small molecules of the sol-
vent inside of the polymer structure. This behavior is different to that of the solutes
non-macromolecules where the molecular identities are separated progressively to
pass to the bulk of the solvent. In the case of the polymers this process is more
complicated.

The mutual solubilities of components whose molecular sizes are drastically dif-
ferent is the case of the binary polymer-solvent systems, the molecules of the solute
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(polymer) are many order of magnitude larger than those of the solvent (monomer).
In the solubility of the components whose molecular sizes are not significative dif-
ferent, the molar volume ratio is perhaps 2 or even 5, but always less than 10 [10].

The thermodynamic properties of polymers solutions have been reviewed by
several authors [11, 17–19], we confine our attention here to the most common
and perhaps also the most useful relation proposed by Flory [3] and Huggins [4]
a generation ago.

The quantitative theory of the change in conformational entropy produced by
the mixing of flexible chain polymers with a solvent of low molecular weight was
formulated by Flory [3] and Huggins [4] who evaluated the number of distinguish-
able ways in which N1 solvent molecules with a molar volume V1 and N2 polymers
chains with a molar volume V2 can be placed on a lattice so they each lattice site
is occupy by either a solvent molecule or one of the V2/V1 segments of a polymer
chain. In the calculation there is an assumption that, in placing a given chain segment
on the lattice, which already contains previously placed chains, the probability of
occupancy of a lattice site may be approximated by the overall fraction of occupied
sites. This approximation is not real in very dilute solutions, where molecular coils,
with a high local concentrations of chain segments, are separated by regions of pure
solvent. The assumption of the Flory – Huggins theory is reasonable in the concen-
tration range in which the chains interpenetrate each other, so that the density of
chain segments is uniform, on the molecular scale, and it is in this range that the
theory has been successful.

The Free energy change, �G, which results when we mix n2 moles of polymer
with n1 moles of solvent at constant temperature and pressure is given by

�G/RT = n1 ln �1 + n2 ln �2 + ��1�2(n1 + V2/V1n2) (1.32)

Where V2/V1 (r) is the ratio of the molar volume of the polymer to that of the
solvent and � is the Flory parameter which depends primarily on the intermolec-
ular forces between solute and solvent. According to the original formulation, this
parameter is zero for athermal mixtures. However, subsequent work has shown that
both the excess entropy and the excess enthalpy contribute to �:

� = �s + �h (1.33)

where �s is the contribution from the excess entropy and �h is that from the excess
enthalpy.

Knowledge of the magnitude of polymer – solvent interactions, and particularly
of the “goodness” of a solvent for a given polymer, is very important for the inves-
tigation of the properties of polymers and the solutions and also for technological
applications [20]. The goodness of solvents has hitherto been determined by either
the Hildebrand solubility parameter � [10] or the Flory – Huggins interaction pa-
rameter � [21–25].

In the first case it is necessary to know solubility parameters of both the solvent,
�1, and the polymer, �2. A general rule for non – polar systems is that the solvent is
better when its �1 values is closer to �2. In polar systems, contributions of dispersive
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forces, dipole moments and hydrogen bonds to the total � value [26–29] should
be taken into account. The solubility parameter can thus be used only for a rough
estimation of the goodness of a solvent, without claiming particular reliability of the
conclusions drawn.

Another possible variable for the characterization of the goodness of solvents is
the interaction parameter � values, expressing the measure of deviations of actual
solutions from ideal ones. This value can be determined by several methods, which
are, mostly experimentally demanding and time-consuming. � is dependent on both
the polymer concentration and molecular weight and information provided about the
specific interactions in the solution is of no particular interest [11, 30, 31]. Solvents,
obviously different in quality, yield quite close values and thus the resolving capabil-
ity is low. Comparison of results obtained by various methods and/or experimenters
is thus fairly difficult [30, 32–34].

Once the second virial coefficient has been obtained for a given polymer – solvent
system one can calculate the corresponding Flory – Huggins interaction parameter,
�, from the equation:

A2 = (1/2 − �)/�2
2V1 (1.34)

Where �2 is the density of the polymer (g cm−3) and V1 is molar volume of the
solvent (cm3mol−1).

We can also summarized a method for calculating the Flory – Huggins interaction
parameter, �, for a given polymer and solvent using the solubility parameters �.

The solubility parameter of the polymer, �2, can be related to � by: [35, 36]

� = V1/RT(�1 − �2)2 (1.35)

where �1 is the solubility parameter of the solvent. (Units of solubility parameter are
(energy/volume)1/2, generally cal1/2 cm−3/2). The last equation can be rewritten as

�2
1/RT − �/V1 = [2�2/RT]�1 = �2

2/RT (1.36)

This is the equation of a straight line. Hence, when the left – hand side is plotted
as a function of �1 one can estimate �2.

Figure 1.1 is an example of a plot obtained from equation (1.34). The �2 value
estimated is 10.2 cal1/2 cm−3/2 [37]. The values of R and T used were 1.99 cal/mol
K and 298 K, respectively.

There are also other quantities that are dependent on the goodness of solvents.
Among them is the Huggins viscosity constant k′, which can be determined quite
easily and, because of its interesting properties, seems to be suitable for direct de-
termination of the goodness of a particular solvent [20].

The dependence of viscosity 
 of dilute polymer solutions on concentration c
can be described by a polynomial in the form [31, 38].


 = 
0(1 + a1c + a2c2 + . . .) (1.37)

where 
0 is the viscosity of the pure solvent. This equation is generally presented in
the form:
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Fig. 1.1 Plot of
equation (1.36) for poly(vinyl
acetate) in benzene (1),
Chloroform (2),
Chlorobenzene (3), methyl
ethyl ketone (4), acetone (5)
and acetonitrile (6). (From
ref. [37])
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[
] = 
0(1 + [
]c + k′[
]2c2 + . . .) (1.38)

where [
] is the intrinsic viscosity and k′ is the dimensionless Huggins viscosity
constant. Neglecting terms with third and higher powers of concentration yields the
well known Huggins equation. Figure 1.2 shows a classical plot to obtain [
] and k′

for several fraction of the poly (monobenzyl itaconate) (PMBzI) [39].
As mentioned in some monographs [31, 38] and confirmed by numerous experi-

mental results [40–43], the Huggins constant is independent of the molecular weight
of the polymer. Its value is influenced only by the goodness of the solvent. However,
it can be expected that the Huggins constant will be molecular – weight – dependent
only in polymers easily associating in solution, either by the effect of specific inter-
actions as strong ionic, or polar interactions or by the effect of hydrogen bonds [20].

One of the most surprising generalities in the world of polymers is that [
] values
for a series of homologous polymers under a fixed solvent condition (solvent and
temperature) follows a simple power law as

[
] = KM� (1.39)

over an extended range of M. Here, K and � are constants for the polymer + solvent
considered. This equation (1.39) is referred to as the Mark – Houwink – Sakurada
(MHS).
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Fig. 1.2 Viscosity data on
some fractions of PMBzI,
plotted according to the
Huggins equation. (From
ref. [39])
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The relation between number molecular weight, Mn and intrinsic viscosity,
[
], for poly(pentachlorophenyl methacrylate) (PPClPh) can be represented by the
Mark – Houwink – Sakurada equation [44].

Figures 1.3 and 1.4 ilustrate these double logarithmic plots in different solvents.
Becerra et al. [44] have found for PPClPh, the following relations:

o-Dichlorobenzene at 25◦C: [
] = 25,4 · 10 − 5 Mn0,67

o-Xilene at 25◦C: [
] = 28,6 · 10 − 5 Mn0,63

Chlorobenzene at 25◦C: [
] = 29,1 · 10 − 5 Mn0,63

Toluene at 25◦C: [
] = 35,2 · 10 − 5 Mn0,58

Benzene at 40◦C: [
] = 53,7 · 10 − 5 Mn0,50

Ethylbenzene at 25◦C: [
] = 61,0 · 10 − 5 Mn0,50

The results obtained on poly(pentachlorophenyl methacrylate) show that [
] is
accurately proportional to Mn0,50 for the ideal or theta (�) solvent.

According to Fugita [45] the main experimental facts that have to be explained
theoretically are as follows:

1. When [
] is plotted against M on a log – log graph paper, it gives a straight line
over a wide range of M;


