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Foreword

Common genetically infl uenced neuropsychiatric 
disorders such as schizophrenia spectrum disor-
ders, major depression, bipolar and anxiety disor-
ders, epilepsy, neurodegenerative and demyelinating 
disorders, Parkinson and Alzheimer’s diseases, 
alcoholism, substance abuse, and drug dependence 
are the most debilitating illnesses worldwide.  
They are characterized by their complexity of 
causes and by their lack of pathognomonic labora-
tory diagnostic tests. During the past decade many 
researchers around the world have explored the 
neuropsychiatric biomarkers and endophenotypes 

implicated, not only in order to understand the genetic basis of these disorders but 
also from diagnostic, prognostic, and  pharmacological perspectives. These fi elds 
have therefore, witnessed enormous expansion in new fi ndings obtained by neurop-
sychological, neurophysiological, neuroimaging, neuroanatomical, neurochemical, 
molecular genetic, genomic and proteomic analyses, which have generated a neces-
sity for syntheses across the main neuropsychiatric disorders.  The challenge now 
is to translate these fi ndings into meaningful etiologic, diagnostic and therapeutic 
advances.

This four volume collection of Handbooks offers a broad synthesis of current 
knowledge about biomarker and endophenotype approaches in neuropsychiatry. 
Since many of the contributors are internationally known experts, they not only pro-
vide up-to-date state of the art overviews, but also clarify some of the ongoing con-
troversies, future challenges and proposing new insights for future researches. The 
contents of the volumes have been carefully planned, organized, and edited in close 
collaboration with the chapter authors. Of course, despite all the assistance provided 
by contributors and others, I alone remain responsible for the content of these 
Handbooks including any errors or omissions, which may remain. 

The Handbook is organized into four interconnected volumes covering fi ve major 
sections. 

Volume 1 “Neuropsychological Endophenotypes and Biomarkers” contains 17 
chapters composed of two parts emphasizing schizophrenia as a prototype. The fi rst 
section serves as an introduction and overview of methodological issues of the bio-
marker and endophenotype approaches in neuropsychiatry and some technological 
advances. Chapters review defi nitions, perspectives, and issues that provide a concep-
tual base for the rest of the collection. The second section comprises chapters in 



which the authors present and discuss the neuropsychological, neurocognitive and 
neurophysiological candidate biomarkers and endophenotypes.   

Volume 2 “Neuroanatomical and Neuroimaging Endophenotypes and 
Biomarkers”, focuses on neuroanatomical and neuroimaging fi ndings obtained for 
wide spectra of neuropsychiatric disorders. 

Volume 3 “Metabolic and Peripheral Biomarkers”, explores several specifi c 
metabolic and peripheral biomarkers, such as neuroactive steroid biomarkers,  cortisol 
to DHEA molar ratio, mitochondrial complex, biomarkers of excitotoxicity,  melatonin, 
retinoic acid, abnormalities of inositol metabolism in lymphocytes, and others.  

Volume 4 “Molecular Genetic and Genomic Markers” contains chapters devoted 
to searching for novel molecular genetic and genomic markers in less explored areas. 
This volume includes an Afterword written by Professor Robert H. Belmaker.

Similarly to other publications contributed to by diverse scholars from diverse 
orientations and academic backgrounds, differences in approaches and opinions, as 
well as some overlap, are unavoidable. I believe that this collection is probably the 
fi rst of its kind to go beyond the neuropsychiatric disorders and delve into the neuro-
biological basis for diagnosis, treatment, and prevention. The take-home message is 
that principles of the biomarker-endophenotype approach may be applied no matter 
what kind of neuropsychiatric disorder affl icts our patients.

The Handbook is designed for use by a broad spectrum of readers including neu-
roscientists, psychiatrists, neurologists, endocrinologists, pharmacologists, 
 psychologists, general practitioners, geriatricians, graduate students, health care 
 providers in the fi elds of neurology and mental health, and others interested in trends 
that have crystallized in the last decade, and trends that can be expected to evolve in 
the coming years. It is hoped that this collection will also be a useful resource for the 
teaching of psychiatry, neurology, psychology and mental health. 

With much gratitude, I would like to acknowledge the contributors from 16 
 countries for their excellent cooperation. In particular, I am most grateful to Professor 
Irving Gottesman for his support of this project. His unending drive and dedication to 
the fi eld of psychiatric genetics never ceases to amaze me. I wish to acknowledge 
Professor Robert H. Belmaker, distinguished biological psychiatrist, who was very 
willing to write the afterword for these volumes. I also wish to take this opportunity 
to thank my close co-workers and colleagues Drs. Anatoly Gibel, Yael Ratner, Ehud 
Susser, Stella Lulinski, Rachel Mayan, Professor Vladimir Lerner and Professor 
Abraham Weizman for their support and cooperation. Finally, I am forever indebted 
to my wife Galina Ritsner, sons Edward and Yisrael for their understanding, endless 
patience and encouragement when it was most required.

I sincerely hope that these four interconnected volumes of the Handbook will 
further knowledge in the complex fi eld of neuropsychiatric disorders.

February, 2009 Michael S. Ritsner 
Editor
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Abstract With the recent advances in treatment of 
Alzheimer’s disease (AD) in the last decade, focus has 
shifted increasingly to accurate detection of earliest 
phase of the illness. This includes early Alzheimer’s 
disease (AD) as well as the intermediate state between 
normal aging and established AD, is commonly known 
as mild cognitive impairment (MCI).

Clinical criteria alone are insuffi cient to accurately 
identify this at risk group of subjects and hence, bio-
markers have been an area of intense research to see if 
they can supplement the clinical approaches. In recent 
years, neuroimaging has emerged as a useful biomarker 
in the diagnostic armamentarium of AD that serves the 
triple roles of early diagnosis, prediction of progres-
sion, and monitoring of disease progression.

In this chapter, we review the body of evidence on 
the use of neuroimaging biomarkers, alone and in 
combination, from the standpoints of diagnosis of early 
AD, predicting MCI conversion to AD and monitoring 
subsequent disease progression. We conclude with a 
discussion on the implications of these fi ndings to the 
application of neuroimaging biomarkers in clinical and 
therapeutic trials.

Keywords Alzheimer’s disease • early diagnosis • bio-
logical markers • magnetic resonance imaging • positron-
emission tomography

Abbreviations AD: Alzheimer’s disease; ADC: App-
arent diffusion coeffi cient; APOE ε4: Apolipoprotein 
ε4; ASL-MRI: Arterial spin labeling; BOLD: Blood-
oxygen-level-dependent; CDR: Clinical dementia rating; 

CBF: Cerebral blood fl ow; 11C-PIB: 11C-Pittsburg com-
pound B; DBM: Deformation-based morphometry; DTI: 
Diffusion tensor imaging; DWI: Diffusion-weighted 
imaging; ERC: Entorhinal cortex; fMRI: Functional MRI; 
18F-FDDNP: 2-(1-{6-[(2-[18F]fl uroethyl)(methyl)amino]-
2-napthyl}ethylidene)malononitrile; HC: Hippocampal; 
MCI: Mild cognitive impairment; MRI: Magnetic reso-
nance imaging; MRS: Magnetic resonance spectroscopy; 
MTL: Medial temporal lobe; PET: 2-[18F]fl uoro-2-deoxy-
D-glucose (FDG)-Positron Emission Tomograhy; SPECT: 
Single-photon emission computerized tomography; VBM: 
Voxel-based morphometry

Introduction

Given the rapid ageing of the population worldwide, 
global estimates of AD – generally considered to be the 
commonest subtype of dementia – are expected to 
increase from the current estimated 25–63 million in 
2030, and by 2050, a staggering 114 million.1 Over the 
last 2 decades in particular, signifi cant but modest 
breakthroughs in pharmacological treatment of this 
devastating condition have occurred and presently, 
there is increasing conviction that intervention 
(especially disease modifying therapy) will have to be 
instituted at the earliest possible stage of the illness to 
confer the greatest benefi t.

Currently, the diagnosis of prodromal AD is made 
using criteria which support a probabilistic diagnosis 
within a clinical context without added information 
from diagnostic biomarkers. Two commonly quoted 
approaches that have been validated and employed 
in interventional studies are the CDR2 and MCI3 
(Fig. 18.1). MCI subjects have subjective features and 
objective evidence of cognitive impairment but of 

Chapter 18
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M.S. Chong and W.S. Lim

M.S. Chong and W.S. Lim
Department of Geriatric Medicine, Tan Tock Seng Hospital, 
Singapore

M.S. Ritsner (ed.), The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes, 3
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insuffi cient degree to constitute dementia; they are at 
increased risk of progression to dementia, with 
conversion rates to clinical AD of approximately 12% 
annually and up to 80% at 6 years of follow-up.4 
However, this is an unstable construct where some MCI 
subjects will convert to clinical AD (MCI-converters) 
while others will not (MCI non-converters).5

Prevailing clinical criteria for MCI have low to mod-
erate diagnostic accuracy in identifying MCI and in pre-
dicting progression to dementia.6 The observation from 
neuropathological studies that the accumulation of AD 
pathology (β.-amyloid plaques and neurofi brillary tan-
gles) precedes the onset of clinical disease by as long as 
20–30 years,7 suggests that functional and structural brain 
changes may occur prior to apparent clinical manifesta-
tions of cognitive impairment. This provides the impetus 
for the development of reliable biomarkers such as neu-
roimaging to complement clinical approaches in early 
diagnosis and predicting progression.

Whereas previously the primary purpose of neu-
roimaging was to rule out potentially reversible causes 
of cognitive impairment (such as space-occupying 
lesion or hydrocephalus), recent advances in the fi eld of 
structural and functional neuroimaging have rendered 
neuroimaging as an important part of the diagnostic 
armamentarium of biomarkers for AD. This is refl ected 
in the revised NINCDS-ADRDA criteria for diagnosis 
of AD,8 which stipulates the need for at least one abnormal 
biomarker (which may include structural imaging with 
MRI or molecular imaging with PET) in the diagnosis 
of AD and its prodromal stages.

In our review, we will review evidence regarding the 
utility of neuroimaging biomarkers from the standpoints 
of diagnosis of early AD, predicting MCI conversion to 
AD and monitoring subsequent disease progression.

Structural Neuroimaging

Structural MRI

Medial Temporal Lobe Volumetry

MRI studies have documented that cortical atrophy occurs 
in a defi ned sequence with disease progression, in line 
with the predictable spatial pattern of neurofi brillary 
tangle accumulation seen at autopsy.9 Atrophy of medial 
temporal structures, namely entorhinal cortex and 
hippocampus has been reported in mild AD patients10,11 
with subsequent volume reductions in other cortical 
regions with AD disease progression. Likewise, in MCI 
subjects, MTL atrophy has been consistently observed 
(Table 18.1).12

Longitudinal studies have shown decreased ERC13–15 
and HC volumes16,17 at baseline to be predictive of 
MCI-converters. It has been argued that ERC atrophy 
might be a better predictor of AD progression than 
HC volume loss14,17 while other studies have shown 
less clear-cut results. In a more qualitative manner, 
assessing MTL atrophy using a standardized visual 
rating scale18–20 has also been shown to be predictive 

Fig. 18.1 Stages of cognitive 
impairment and neuroimaging 
methods (present and future)

           -------------- Current neuroimaging techniques  ---------    

            --------------------  Future neuroimaging techniques  ?                          

MCI = Mild cognitive impairment 
AD   = Alzheimer’s disease 
CDR = Clinical Dementia Rating 

 Normal aging      |     Preclinical AD   |  Prodromal AD | Mild AD | Moderate AD | Severe AD 
(MCI)

CDR 0                            |   CDR 0.5               |   CDR 1      |     CDR 2   |   CDR 3

 Histopathological AD changes  (amyloid plaques & neurofibrillary tangles) ||
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of MCI-converters. From the standpoint of MRI brain 
atrophy rates, those of HC, ERC and whole brain were 
found to be greater among MCI-converters (3–7% 
change per year from baseline values compared to 
0.4–3.7% change per year in non-converters).21–23 
Differences in longitudinal studies of brain atrophy 
rates between MCI-converters and normal aging over 
a period of up to 5 years have been demonstrated 
(Table 18.2).21,22

Automated Data-Driven Methods

With advances in technology, the focus has shifted in 
recent years from manual volumetric methods of regions 
of interest to automated data-driven methods, such as 
automated measurement of whole-brain volume over 
time,24,25 as well as novel techniques such as voxel-
based volumetry, deformation-based morphometry 
and analysis of cortical thickness.

Table 18.1 Neuroimaging biomarkers in predicting AD conversion in MCI patients

Sensitivity/ Specifi city Accuracy

STRUCTURAL NEUROIMAGING
Structural MRI

• MRI volumetry13–17 (ERC and HC atrophy) Sn 50%, Sp 90%, Ac81–85%14,16,17

• Visual rating scale (medial temporal lobe atrophy)18–20 Sn 70–78%, Sp 68–90%19

• Brain atrophy rates (HC, ERC and Ventricular volume, whole brain)21–23,102 Ac 60.4%102

Voxel-based morphometry
• Voxel-based morphometry30–33

Deformation-based morphometry 35

• Multivariate deformation-based brain analysis Ac 80%(CSF maps)

FUNCTIONAL NEUROIMAGING
SPECT
•  SPECT43–45 (↓ blood fl ow at cingulate, left frontal, inferior parietal, 

angular gyrus and precuneus regions)
Sn,Sp approx 80%44 Ac 84.4%43

FDG-PET
• PET 49–51 (↓ glucose metabolism at 84%49,51,99 temporoparietal region) Sn 96.8%, Sp 58.8%, PPV48.1%, 

NPV 95.2% 51

Ac 75 –

1H MRS
•  Brain magnetic resonance spectroscopy (occipital cortex 

N-acetylaspartate/creatine ratio)
Sn 100%, Sp 75%, PPV 83%, 

NPV 100%,
Ac 88.7%57

fMRI
•  fMRI (↑recruitment of larger extent of right parahippocampal 

gyrus during encoding)66

DWI
• DWI (Apparent diffusion coeffi cient)71

DTI
• Elevated mean diffusivity in MCI-converters81

MOLECULAR ADVANCES

Amyloid imaging
• Signifi cantly higher 11C-PIB retention92

COMBINATION BIOMARKERS
• SPECT and MRI volumetry99

• Neuropsychological testing and PET Ac 90–92.3%49–51

• APO-E and PET Sn 100%, Sp 90% Ac 94%99–100

• Neuropsychological testing and MRI volumetry Ac 78.8%101

• CSF-tau and PET102

Sn = Sensitivity; Sp = Specifi city; Ac = Accuracy; ERC = entorhinal cortex; HC = hippocampal; DWI = diffusion-weighted imaging; 
SPECT = Single photon emission tomography; PET = Positron emission tomography; fMRI = functional Magnetic Resonance 
Imaging; DTI = Diffusion tensor imaging; APOE = apoliprotein E-4
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(i) VBM

VBM is based on a low-dimensional spatial transformation 
of brain scans into a common reference space to get rid 
of global differences in brain size and shape; the 
remaining gray matter volume differences are parameters 
then driven into a voxel-based univariate statistic.

In both AD and MCI subjects, VBM consistently shows 
atrophy in the cortical grey matter in the MTL and lateral 

temporal and parietal association areas.26–29 VBM has also 
been shown to have good predictive ability for MCI-
converters with reduced gray matter density in the medial 
temporal, hippocampal, posterior cingulate and precuneus 
regions compared to non-converters.30–32 A recent longitu-
dinal study in mild AD subjects showed that VBM-derived 
medial occipitoparietal atrophy at baseline better antici-
pated the rate of progression over 3 years, compared with 
clinical and neuropsychological assessment.33

Table 18.2 Longitudinal neuroimaging studies

Neuroimaging method Years of follow-up Results

MRI volumetry
- Whole brain volume 24 1.8 years Normal control = −0.45% change/year

Mild DAT = −0.98%/year
- Serial brain registered brain MRI 25 1 year Normal control = −0.47%/year
  (Brain atrophy rate)
- Hippocampal volume 11 1–5 years Normal control = −1.4%/year

Normal converter = −3.3%/year
MCI-stable = −1.8%/year
MCI-converters = −3.3%/year
AD-fast progressor = −3.0%/year
AD-slow progressor = −3.6%/year

Entorhinal cortex colume 11 1–5 years Normal control = −2.9%/year
Normal converter = −5.1%/year
MCI-stable = −3.7%/year
MCI-converters = −6.8%/year
AD-fast progressor = −8.0%/year
AD-slow progressor = −8.4%/year

Whole brain volume 11 1–5 years Normal control = −0.4%/year
Normal converter = −0.8%/year
MCI-stable = −0.4%/year
MCI-converters = −6.8%/year
AD-fast progressor = −0.6%/year
AD-slow progressor = −1.4%/year

Ventricular volume 11 1–5 years Normal control = 1.7%/year
Normal converter = 3.4%/year
MCI-stable = 2.6%/year
MCI-converters = 3.4%/year
AD-fast progressor = 4.3%/year
AD-slow progressor = 6.4%/year

Voxel-based morphometry
- Medial occipitoparietal area 33 3 years

Positron Emission Tomography (PET)
-  Regional cerebral glucose metabolism (parietal, temporal, 

occipital, frontal, Posterior cingulate region) 53

1 year Differences comparing healthy controls 
with mild-moderate AD patients

z-score = 3.82 – 6.61

Amyloid imaging (11C-PIB)
- PIB retention 94 2 years Relatively stable PIB retention in mild 

AD subjects

DAT = Dementia of Alzheimer type; MCI = Mild cognitive impairment; AD = Alzheimer’s disease
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(ii) DBM

DBM transforms brain volumes at high resolution 
to a standard template to completely eliminate the 
anatomical differences between brains; the deformation 
fi elds then offer a multivariate vector fi eld of 
localization information from which regional volume 
effects can then be extrapolated. Based on the pattern 
of spatial distribution involving HC, bilateral temporal, 
(L) fusiform gyri and posterior cingulate regions, 
Davatzikos et al.34 reported good accuracy in 
differentiating MCI individuals from controls. Another 
study by Teipel et al.35 also demonstrated good 
discrimination between MCI-converters and non-
converters using multivariate deformation-based CSF 
and brain maps.

(iii) Other methods

By determining the thickness of the entire cortical man-
tle36 automated measurements of cortical thickness 
have shown a high accuracy (>90%) in differentiating 
AD from controls. However, no data is available with 
regards to the use of cortical thickness in predicting AD 
progression in MCI subjects.

Hippocampal radial atrophy mapping technique by 
Thompson et al.37 showed differences between AD and 
normal controls. Smaller HC and specifi cally CA1 and 
subicular involvement was associated with increased 
risk of AD progression in MCI subjects.38

Summary

MRI volumetry and brain atrophy rates have fairly 
good diagnostic and predictive value in MCI subjects. 
Longitudinal data on brain atrophy rates with disease 
progression are available and hence, can be used for 
monitoring disease progression in clinical trials. The 
limitations of structural neuroimaging as a biomarker 
include problems with the accurate delineation of 
regions of interest and lack of standardization of imag-
ing and measurement techniques, making it diffi cult to 
compare data across the different institutions. The 
advent of automated data-driven innovations for struc-
tural imaging holds promise, although longitudinal 
data are still required.

Functional Neuroimaging

Functional Imaging

SPECT

Reduced CBF in the parietal, posterior cingulate and 
precuneus have been observed in early AD39,40 and 
MCI subjects.41,42 Using a combination of regional 
CBF at the cingulate, hippocampal-amygdaloid complex 
and the thalamus on SPECT, 84.8% of MCI-converters 
were identifi ed.43 Other studies showed decreased 
rCBF in the left frontal region,44 left posterior cingu-
late gyrus,42 inferior parietal lobe, angular gyrus and 
precuneus45 to be similarly predictive.

FDG-PET

An AD-like pattern of cerebral glucose hypometabo-
lism has been observed in MCI subjects,46,47 and this 
is associated with elevated cerebrospinal fl uid p-tau.48 
FDG-PET studies also reveal regional cerebral hypo-
metabolism in the left temporo-parietal region,49 
right superior temporal region,50 inferior parietal, 
posterior cingulate and medial temporal cortices51 
to be predictive of MCI-converters. Longitudinal 
FDG-PET studies show serial decline in glucose 
metabolism in the temporal, parietal, frontal and 
posterior cingulate regions. Using left frontal 
regions,52,53 it is estimated that only 36 subjects per 
group would be required to show a 33% treatment 
effect in an adequately powered (80%) 1 year placebo-
controlled trial.53

Proton MRS

MRS is a diagnostic technique measuring neuroaxonal 
injury by quantifi cation of N-acetylaspartate/ creatine 
(NAA/Cr) ratio. There is evidence of differences in 
neuronal damage between AD, MCI and controls in a 
decremental manner in the whole brain, posterior cin-
gulate and hippocampus.54–56 The NAA/Cr ratio in the 
occipital cortex has been shown to reasonably predict 
MCI-conversion.57 Currently there are no longitudinal 
data for MRS.
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fMRI

Functional MRI studies that have been conducted in 
early cognitive impairment subjects (namely early AD 
and MCI subjects) show altered resting state net-
works58,59 as well as decreased or delayed activations 
during task performances using BOLD response. 
However, the pattern is inconsistent and range from 
a decremental response from AD through MCI to 
normal controls,60–62 to a compensatory increased 
activation in hippocampus63–65 in MCI subjects. A 
study using fMRI showed that the MCI-converters 
recruited a larger extent of the right parahippocampal 
gyrus upon the encoding phase of memory testing,66 
refl ecting a compensatory response to accumulating 
AD pathology. Currently, there are no longitudinal 
fMRI data available

ASL-MRI

Perfusion MRI using ASL-MRI uses magnetically 
labeled water protons as an endogenous tracer to 
denote an absolute temporal change in CBF. Its utility 
lies in the fact that it is able to obtain CBF maps 
repeatedly in short succession, thus enabling dynamic 
measurements of CBF. Resting ASL-MRI has shown 
decreased CBF in AD patients in the temporal, lateral 
and medial aspects of the frontal and parietal cortex 
compared to controls.67 A study reported attenuated 
CBF in posterior cingulate, precuneus, bilateral 
inferior parietal gyri in AD compared to MCI 
subjects.68 A recent ASL-MRI study of amnestic 
MCI subjects performing memory-encoding tasks 
reported signifi cant regional cerebral hypoperfusion 
in the right precuneus and cuneus and an inability to 
modulate CBF in response to the functional task at 
hand.69 There is currently no evidence with regards 
to prediction of AD progression in MCI subjects and 
longitudinal data.

DWI

Using DWI, HC ADC has been shown to be higher 
in AD and MCI subjects compared to controls.70 The 
measurement of HC ADC improved the ability of HC 
measurements to predict MCI-converters.71 There are 

currently no longitudinal data on serial progression 
for DWI.

DTI

DTI is an extended form of diffusion-weighted imaging 
of brain matter. Diffusion gradients are applied in several 
spatial directions to determine a multidimensional 
diffusion tensor. From these diffusion tensor measures 
of movement, directionality can then be derived. 
Fractional anisotropy measuring directionality of fi bre 
tracts and mean diffusivity determining overall diffu-
sivity are frequently employed parameters. The obser-
vation of widely distributed disintegration of white 
matter with a different pattern of degeneration from 
grey matter suggests that it might be an independent 
factor in AD progression.72

Comparing AD with normal subjects, DTI demon-
strated white matter changes in the anterior temporal 
lobe,73 uncinate fasciculus,74 corpus callosum75 as well 
as corticothalamic and thalamocortical radiations.76 
White matter changes are also seen in MCI subjects77–79; 
a study by Mueller et al,77 reported superior accuracy 
compared to volumetric measurements in differentiat-
ing MCI subjects from normals. However, further 
studies are needed to determine the utility of white 
matter changes detected using DTI.80 Fellgiebel et al.81 
demonstrated elevated left HC mean diffusivity 
at baselines in MCI-converters compared to MCI 
non-converters despite no differences hippocampal 
volumes and clinical performance. No data are currently 
available with regards to longitudinal progression.

Summary

FDG-PET appears to be the leading candidate among 
the functional neuroimaging modalities, with available 
evidence for MCI diagnosis, prediction of MCI-
converters and longitudinal data in monitoring serial 
progression.

Among the newer MRI-based techniques, DTI 
appears to hold great promise as theoretically, micro-
structural alterations of the cerebral fi bre system would 
predate volumetric changes. However, more data 
(especially on longitudinal progression) are needed 
before defi nitive recommendations can be made.
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Molecular Advances

Amyloid Imaging

Advances in molecular imaging techniques have made 
it possible to visualize ß-amyloid in-vivo in Alzheimer 
patients by the use of small molecular ligands that bind 
with nanomolar affi nity to amyloid and that enter the 
brain in amounts suffi cient for imaging with PET.82 
Taking the cerebellum as the reference region, quanti-
tative measures are used to analyze the generated PET 
images using either region-of-interest or voxel-based 
analysis to derive region-specifi c and global values 
of distribution volume ratio or binding potential.83–85 
Because positive scans can be seen in other forms of 
cerebral Aβ (e.g. cerebral amyloid angiopathy), con-
comitant AD pathology (e.g. dementia of Lewy body 
with amyloid pathology), and preclinical AD pathology 
(i.e. asymptomatic healthy control with cortical amyloid 
deposition), it is best not to equate amyloid deposition 
to clinical diagnosis from the outset but to think of PET 
amyloid tracer scans more fundamentally as a method 
to detect and quantify cerebral β-amyloidosis.86

PET amyloid ligands can be broadly divided into 
two groups: 11C-based and 18F- based. Table 18.3 sum-
marizes the characteristics of two of the more widely 
studied compounds.11C-PIB binds specifi cally to fi brillar 
Aβ with no demonstrable binding to neurofi brillary 

tangles, unlike 18F-FDDNP which binds to both amyloid 
and tangles.82 11C-PIB shows a greater magnitude of 
cortical binding, which allows PIB images to be visually 
read without quantifi cation (κ = 0.90) and acquired 
with a shorter scanning time.87 However, the short 
radioactive decay half-life of 11C limits the use of 11C-PIB 
to centers with an on-site cyclotron and 11C radiochem-
istry expertise.88 Rowe et al.89 recently reported the 
results of a novel PET tracer, 18F-BAY94–9172, which 
combines the characteristics of 11C-PIB with the advan-
tages of 18F- based compounds.

Amyloid imaging studies in AD revealed increased 
cortical retention in the frontal, parietal and lateral 
temporal cortices, striatum and posterior cingulate, in 
accordance with the distribution of amyloid pathology 
previously documented in postmortem studies.83,84,86 
Recent studies in MCI subjects showed intermediate 
cortical binding compared with AD patients and con-
trols.90–91 Small et al.91 reported that 18F-FDDNP had 
better discriminatory ability for MCI compared with 
controls with FDG-PET metabolism and MRI medial 
temporal lobe atrophy (AUC: 0.95 vs 0.77 vs 0.64 
respectively). MCI-converters had higher PIB reten-
tion in brain at baseline compared to MCI non-con-
verters92 and one study showing elevated PIB values in 
AD subjects compared to nondemented controls.93 
Intriguingly, there are consistent reports of positive 
scans in up to 23% of healthy elderly controls, with 
some of these subjects demonstrating cortical binding 

Table 18.3 Differential properties of amyloid imaging modalities
18F-FDDNP 11C-PIB

Properties
Binding affi nity Aβ 40, NFT Aβ 40, Aβ 42 (fi brillar)
Radioactive decay T

1/2
110 min 20 min

Scanning time 120 min 60–90 min
40 min if visual analysis

Increase in cortical Aβ binding 
(AD vs controls)

9% 40–80%

Available Evidence
Diagnosis
AD Yes Yes
MCI Yes Yes
Prediction of AD conversion in MCI No Yes
Longitudinal course Limited 2-year data in MCI/healthy 

controls
Unchanged PIB retention after 2 years 

in mild AD

Aβ: β-amyloid; AD: Alzheimer’s disease; 11C-PIB: 11C-Pittsburg compound B; 18F-FDDNP: 2-(1-{6-[(2-[18F]fl uroethyl)(methyl)
amino]-2-napthyl}ethylidene)malononitrile; MCI: Mild cognitive impairment; NFT: Neurofi brillary tangles
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that was indistinguishable from AD.84,90,91 Longitudinal 
follow-up is required to determine whether these 
asymptomatic controls with positive scans truly turn 
out to be preclinical AD cases.

In a 2-year longitudinal study using 11C-PIB, there 
was no signifi cant change in PIB retention compared to 
baseline despite a decline in cerebral glucose metabolism 
and cognition.94 Stable PIB retention suggests that 
amyloid levels in the brain may reach a plateau early in 
the course of disease that precedes a decline in cerebral 
glucose metabolism and cognition.82 Although there was 
an increase in 18F-FDDNP binding at 2 years in three 
subjects who progressed, it is plausible that this may 
refl ect binding to non-amyloid elements such as tau.82,94

Summary

To date, 11C-PIB is the most extensively studied PET 
amyloid tracer. There is emerging evidence for amyloid 
imaging in the diagnosis of prodromal AD as well as 
predicting AD progression in MCI subjects. From the 
standpoint of clinical trials of anti-amyloid therapy, 
in-vivo amyloid imaging pre-treatment allows selection 
of patients with demonstrable cerebral Aβ loads; 
repeated imaging during ongoing treatment allows 
detection of decrease in insoluble Aβ load in response 
to amyloid-clearing drugs such as immunotherapy. 
However, the lack of serial change of 11C-PIB with 
disease progression implies a limited role in monitoring 
the response to disease modifying drugs that act by 
halting amyloid deposition. Amyloid imaging needs to 
be more practically accessible and affordable before it 
can be transferable to the clinical diagnostic routine.

Combination Biomarkers

Recent studies have combined biomarkers to ascertain 
whether there is any added advantage in diagnostic and 
predictive performance compared with a single modality. 
We review the evidence for combination biomarker 
studies that involved neuroimaging.

Combination Neuroimaging Biomarkers

The addition of DTI fractional anisotropy and MRI HC 
volumetry improved the accuracy of diagnosing MCI 

and AD from normal controls compared to HC volume-
try alone (63–74% and 78–91% for MCI and AD com-
pared to controls respectively).95 Kawachi et al.96 reported 
that the accuracy of FDG-PET diagnosis of very mild 
AD was 89% and that of VBM-MRI was 83%, but in 
combination, the accuracy improved to 94%. A recent 
study noted the improved diagnostic classifi cation using 
both 11C-PiB and structural MRI (statistical parametric 
mapping and VBM) compared to either imaging meth-
ods in isolation.97 For the identifi cation of MCI-
converters, a combination of both SPECT and MRI 
volumetry showed better discriminative performance 
than either used alone in predicting AD conversion.98

Combination of Neuroimaging 
with Other Biomarkers

In a study of MCI subjects, it was observed that the 
combination of impaired delayed recall and FDG-PET 
cerebral hypometabolism improved classifi cation accu-
racy of MCI converters to 92.3% and MCI non-converters 
to 92.8%.51 Various longitudinal studies involving MCI 
subjects also reported improved predictive accuracy with 
the combination of neuroimaging and other biomarkers: 
APOE ε4 genotype and FDG-PET99,100; episodic memory 
testing and MRI measures of ventricular and HC vol-
umes101; cerebrospinal fl uid tau and posterior cingulate 
hypoperfusion on SPECT.102

Conclusions and Future Directions

Recent unprecedented advances in the area of neu-
roimaging biomarkers in prodromal AD are in tandem 
with the growing emphasis on early diagnosis of the 
condition where disease-modifying therapeutic strategies 
are very likely to have a greater impact. Of particular 
relevance to the area of clinical trials of disease modi-
fying therapy would be the availability of neuroimaging 
biomarkers with the discriminatory capacity to accurately 
diagnose MCI subjects and identify those at greatest 
risk of advancing to clinical disease; the ability to 
clearly indicate disease progression would enable the 
monitoring of treatment response.

In order for a diagnostic biomarker to be useful, 
certain criteria need to be met (see chapter 1 of 
this book, Ritsner, Gottesman). There is evidence 
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to support the use of MRI volumetry and FDG-PET 
biomarkers in the diagnosis of early cognitive 
impairment (MCI and early AD) with good sensitiv-
ity and specifi city in differentiating pathological 
states (MCI and early AD) from normals as well as 
in predicting AD progression in at-risk MCI indi-
viduals. With regards to monitoring disease progres-
sion, the availability of reasonably good longitudinal 
normative data in age-matched controls supports the 
use of MRI volumetry and FDG-PET imaging. 
Using various techniques, brain atrophy rates and 
PET hypometabolism with disease progression 
exhibit a clinical effect of suffi cient magnitude that 
can permit the use of fewer subjects in clinical trials 
of disease modifi cation compared to using only 
anticipated changes on cognitive test scores. Recent 
advances in the various automated data-driven meth-
ods in structural neuroimaging can hopefully help to 
further improve the inter-rater reliability of volu-
metric data in multi-centre studies.

The most exciting development among the novel 
techniques is arguably the emergence of amyloid-
specifi c imaging, which opens up new avenues for 
the evaluation of anti-amyloid therapy. Pre-treatment 
identifi cation of scan-positive MCI subjects with 
demonstrable Ab loads would permit the recruitment 
of smaller number of subjects and shorter observa-
tional periods. Comparison of pre-post treatment 
scans could provide an important surrogate outcome 
of the effectiveness of amyloid-clearing therapy. 
Mattis et al.86 suggested that a twofold decrease in 
the test-retest variability, corresponding to 10–20% 
reduction in PIB retention post-treatment, should be 
suffi cient to detect a reduced Ab load. The diagnos-
tic utility can potentially be extended to the pres-
ymptomatic histopathological AD group and allow 
the initiation of disease modifying therapy before 
extensive irreversible neuronal damage occurs (Fig. 
18.1). However, practical issues relating to scan 
time, radioactive decay half-day, false positivity (e.g. 
cerebral amyloid angiopathy) and lack of longitudi-
nal change (in the case of PIB imaging), need to be 
addressed.

Neuroimaging biomarkers should be used in com-
bination with other biomarkers to produce the highest 
diagnostic and prognostic power necessary for accu-
rate characterization of AD at its earliest stages. 
In addition, we strongly recommend the use of neu-
roimaging and other biomarkers to be supplemented 
by comprehensive clinical and neuropsychological 

assessment. The unexpected fi nding of greater brain 
volume loss despite better cognitive function among 
antibody responders in the phase II Aβ immunization 
trial103 is a reminder that any treatment-related changes 
in biomarker levels should always be anchored to a 
comprehensive clinical evaluation that additionally 
incorporates cognitive, behavioral and functional 
measures.

A new multicenter AD research project called the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
was launched in 2004 to identify neuroimaging mea-
sures and biomarkers associated with cognitive and 
functional changes in healthy elderly, MCI and AD 
subjects, encompassing clinical sites in United States 
and Canada.104,105 This would hopefully address the 
issue of measurement variability via the development 
of optimized and standardized measurement proto-
cols. It would also enable adequately powered trials 
to be conducted using the newer neuroimaging 
modalities which hold much promise such as func-
tional imaging techniques (e.g. BOLD fMRI/ ASL-
MRI), diffusion tensor imaging and amyloid imaging. 
With the newer neuroimaging techniques, it is fore-
seeable that the frontiers of diagnostic ability would 
move from established AD towards prodromal AD, 
and eventually even to preclinical AD (Fig. 18.1) 
where disease-modifying therapeutics would be able 
to target the disease at its earliest stage.
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