Integrated Nutrient Management (INM) in a Sustainable Rice–Wheat Cropping System
Integrated Nutrient Management (INM) in a Sustainable Rice–Wheat Cropping System
Dedicated to my beloved uncle, late Mr. Hira Lal Chadha, who has been a source of constant inspiration and encouragement in my life

Dr. Anil Mahajan
Agriculture is the main occupation in India and about 75% of its population depends directly or indirectly on agriculture for their livelihood. It is the dominant sector that contributes 18% of the gross domestic product. Thus, agriculture is the foundation of the Indian economy. The maximum share of Indian exports is also from the agriculture sector. As the population of the country is increasing tremendously, approximately at the rate of 19 million every year over the existing population of more than 1 billion (approximately 1.18 billion), the food grain production must necessarily be increased. This can be done by increasing crop production to match the population growth rate of 2.2% per annum, which is expected to stabilize at 1.53 billion around 2050.

There is no doubt that the Green Revolution in India during the late 1960s brought self-sufficiency in food grain production, mainly through the increase in rice and wheat crop yields – the two main crops of the country which play an important role from food security point of view. However, the excessive use of fertilizers and pesticides, and the neglect of organic manures for these crops, has resulted in the deterioration of physical, chemical and biological health of the rice- and wheat-growing soils. Owing to the deterioration of the health of these soils, the productivity of the rice–wheat cropping system has now either got reduced or in some places has become constant for the last decade. The solution of this problem is merely through the proper use of both organics and inorganics, i.e. Integrated Nutrient Management (INM) system. This system holds promise in sustaining crop yields and improving soil health. Holistic use of manures (farmyard manures, compost, green manures, vermicompost), crop residues and bio-fertilizers alone or in combination with chemical fertilizers would result in 25–50% economy in fertilizers (N, P and K) applied to the rice–wheat sequence. Their use has proved a potential tool for maintaining soil fertility and crop productivity in the rice–wheat cropping system in the long run. There is limited information with regard to INM system, especially in rice and wheat crops in which the difference between their potential and their actual yield has widened due to the increasing cost of fertilizers and other inputs. Even if one achieves higher yield by paying higher costs, profitability of the farmers decreases progressively. Moreover, there will be no amelioration in the soil health. Due to all these factors affecting these two crops,
INM information is very much required. This necessity encouraged the authors to compile such information on INM system in the form of a book.

The book entitled *Integrated Nutrient Management (INM) in Sustainable Rice–Wheat Cropping System*, by Dr. Anil Mahajan and Dr. R. D. Gupta, is a vast assemblage on Integrated Nutrient Management for rice and wheat cropping pattern in terms of latest technologies developed which can reduce the cost of production without impairing the yield and sustaining soil health/environment.

The book consists of an introduction and chapters on the need and components of INM system and bio-fertilizers – their varieties and requirements in India. In the chapter on bio-fertilizers, the role of asymbiotic and symbiotic nitrogen-fixing bacteria, including blue-green algae and mycorrhizal fungi, in INM system has been mentioned along with the role of phosphate-dissolving organisms, like bacteria and fungi. The potential of organic resources as plant nutrients in India, their characteristics and the use of balanced fertilizers; the efficient use of fertilizers and water management and the role of INM in the sustainable rice–wheat cropping system; soil-related constraints in the rice and wheat production; constraints in the adoption of INM system and future research strategies/priorities are the other crucial topics which have been explained extensively.

In my opinion, this publication, probably the first of its kind, presents a good blending of our economic requirements and soil ecological necessities. The authors have successfully established compatibility between the organics and inorganics. They have thus developed a two-pronged approach of using organic manures – FYM, compost, vermicompost, bio-fertilizers and crop residues, and chemical fertilizers in the rice and wheat cropping system. This is the need of the hour to help the farmers overcome the critical period of disaster through which they are passing and struggling for their survival from the uneconomical farm holdings.

Last but not the least, I extend my appreciation to Dr. Anil Mahajan and Dr. R. D. Gupta for this laudable attempt, and wish them all the success in their novel, noble and praiseworthy task. Undoubtedly, this book will need revisions from time to time, as and when more literature becomes available on this topic. The glossary and the appendices of this book give further valuable information pertaining to agriculture.

Dr. C. L. Acharya
FISSS, FNAAS, F.N.A.Sc., FISWM
Former Director Extension Education (HPAU), Palampur (H.P.)
Former Director Indian Institute of Soil Science (ICAR), Bhopal (MP)
28, Nagarkot Colony, Thakurdwara, P.O. Maranda,
Palampur – 176 102 (H.P.),
India
India accounts for 2.2% of the global land and 16% of the world’s population. Agriculture is the backbone of the Indian economy. It is, in fact, the pivot around which the country’s economy revolves. The country is primarily agrarian, and this sector provides livelihood to a very large majority of the population. To meet the ever-increasing demand for food to feed the population of more than 1 billion, and to exploit the high-yielding varieties’ potential, there is a requirement of higher fertilizer doses, which are a non-renewable source of energy, along with the use of pesticides, especially in areas where the rice (Oryza sativa L.) and wheat (Triticum aestivum L.) cropping system is being followed. The rice and wheat cropping system, which came into prominence only during the post-Green Revolution period, is the most widely adopted cropping system in India, contributing substantially to the National Food Production. Presently about 10.5 million hectare area is under this cropping system, providing approximately 75% of the total food grain production. About 33% of India’s rice and 42% of its wheat is grown by this cropping system. Although this cropping system gave an impressive increase in per capita production, particularly in irrigated areas from the late 1960s to the late 1980s, this increase declined in partial or total factor productivity. This declining trend began during early 2000 and is still going on. Hence the need of the hour is to enhance sustainability of the rice–wheat cropping system. Among the various factors responsible for causing reduction in yield of rice and wheat the use of chemical fertilizers and pesticides is one of them. These inputs, however, have not only deteriorated the soil health in terms of physical properties – destruction of soil aggregation, change in bulk density, etc. – but have also caused deficiency in micronutrients and secondary plant nutrients. It is therefore essential to improve the soil health of the rice and wheat cropping system and thereby maintaining the sustainability of rice and wheat crops. This can be done only by adding both organic and inorganic sources of nutrients in soils growing rice and wheat. Hence, the authors Dr. Anil Mahajan and Dr. R.D. Gupta intended to write this book entitled A Textbook on Integrated Nutrient Management (INM) in Sustainable Rice–Wheat Cropping System. This book, the first of its kind, has been embodied to present the importance and beneficial effects of various organic sources and their utilization in inorganic or chemical fertilizers to supplement plant nutrients in rice and wheat cropping systems.

This book consists of 13 chapters. Chapter 1, Introduction, indicates the crises of the rice–wheat cropping system and their remedies. Chapter 2 provides the
definition and concept of the INM system, its principles, aims and advantages, as well as the definition of organic farming, its concept, Indian and World scenarios, principles of organic farming, its benefits and constraints, and impact points to remember. Chapter 3 is devoted to the need of INM system in modern agriculture, namely the escalating prices of chemical fertilizers, imbalances in NPK fertilizers consumption ratio and their consumption and production ratio, deterioration of soil health, pollution hazards of chemical fertilizers, loss of soil productivity, and additive effects on inorganic and organic fertilizers. Chapter 4 elucidates various components of INM system. These consist of advantages of organic manures and inorganic fertilizers, green manuring, compost, vermicompost, bio-fertilizers and biogas slurry. Chapter 5 lists the major bio-fertilizer groups and their requirement in India, prospects and constraints in the use of bio-fertilizers vis-à-vis their precautions. Chapter 6 describes the potential of organic resources, namely animal dung, crop residues, green manures and legumes, bio-fertilizers, compost and vermicompost, biogas slurry, as plant nutrients in India. Chapter 7 gives the distribution of the rice–wheat cropping system and contribution to food grain security in South Asian countries, its characteristics and nutritional values. Chapter 8 presents the concept, definition and aims of balanced fertilization, and balanced NPK fertilization in the rice–wheat cropping system and their ratio. Chapter 9 speaks about the effective use of fertilizers and water management practices for rice and wheat crops. Chapter 10 describes the role of INM in the sustainable rice–wheat cropping system with respect to chemical fertilizers and organic manures including enriched compost, vermicompost and micronutrients/plant growth regulators, crop residues, green manure, legumes and bio-fertilizers. Chapter 11 elaborates on the soil-related constraints in the rice and wheat production, namely Indian rice and wheat ecosystem, soil-related constraints in rice and wheat production and their management practices for increasing production and suggestion for the future. Chapters 12 and 13 deal with the constraints in the adoption of INM system and the future research strategies/priorities respectively. In each of the chapters, an abstract, impact points to remember, study questions and references have been provided. A Glossary, which is the result of the assimilation of knowledge and work of different authors and publishers, has also been compiled.

The authors fervently hope that this book will invoke an awareness about the wealth of ideas, information and comments presented in it. These ideas and information will be guidelines and will serve as a useful scientific tool for students, researchers, teachers and extension personnel working in state agricultural universities, central research institutes and state departments of agriculture.

The authors would welcome suggestions, if any, for further improvement in the subsequent editions.

Anil Mahajan
Bayer BioScience Pvt. Ltd.
Hyderabad (Andhra Pradesh), India

R.D. Gupta
Sher-e-Kashmir University of Agricultural Sciences and Technology,
Jammu (Jammu & Kashmir), India
Dr. Anil Mahajan completed his B.Sc. Agriculture (with specialization in Plant Protection) in June 1999, M.Sc. Agriculture (Soil Chemistry and Fertility) in December 2001 and Ph.D. Agriculture (Soil Physics) in January 2006 with distinction from Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya (CSK HPKV), Palampur, India. He also holds a Diploma in Computer Applications from Institute of Computer Education and Sciences Training, Palampur. It is pertinent to mention that he has studied minor subjects such as Agricultural Engineering and Agronomy during his Ph.D. Agriculture, and Agronomy during his M.Sc. Agriculture. He has worked as Senior Research Fellow (from 27 July 2005 to 31 August 2007) under the Indian Council of Agricultural Research (ICAR), Government of India, in a Geographic Information System-based research project entitled ‘Developing Mountain Agriculture System Information Files for Planning Niche-based Agriculture Developing in Kangra and Mandi Districts of Himachal Pradesh’ at Centre for Geo-informatics Research and Training, CSK HPKV, Palampur. He has also worked as Research Associate under ICAR-aided research project, ‘Modeling Impact and Adaptation for Major Crops in Himachal Pradesh’ (from 1 September to 2 December 2007) at Centre for Geo-informatics Research and Training, CSK HPKV, Palampur, and as Research Associate at Horticulture Technology Mission Mode Project, ‘Integrated Nutrient Management for Major Fruit Crops of Kandi Region of Jammu’ (from 3 December 2007 to 3 January 2008) in the Division of Soil Science and Agricultural Chemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST), Jammu. Presently, he is working as Territory Manager, Business Development for rice crop (from 4 January 2008 till date) in a German Multinational Company, Bayer BioScience Pvt. Ltd. (wholly owned subsidiary of Bayer CropScience Pvt. Ltd., India).

Dr. Anil Mahajan has done remarkable research work in the rice–wheat cropping system during his doctoral programme, and also in rice, maize and vegetables in master’s research work. He was a recipient of the University Merit Scholarship during his B.Sc. and Ph.D. programmes, and was awarded Honours Certificate in
M.Sc. degree and Best Poster Award at National Workshop on Natural Resource Management for Sustainable Agriculture organized by SKUAST, Jammu, and Soil Conservation Society of India in November 2006. He has 30 publications (research, review and extension papers) to his credit and has attended several national and international training sessions and workshops. It needs to mention that he twice qualified ICAR National Eligibility Test conducted by Agricultural Scientists Recruitment Board, New Delhi, in the following professional subjects: Soil Science – Soil Chemistry/Fertility/Microbiology and Soil Science – Soil Physics, Soil and Water Conservation.

Dr. Rameshwar Dass Gupta is a leading soil scientist and noted environmentalist, having specialized in Soil Microbiology and Pedology. He did his B.Sc. Agriculture in 1965 with specialization in Agricultural Chemistry from Jammu & Kashmir University, India, securing third position; M.Sc. Agriculture (Agricultural Chemistry) in 1968 from Ranchi University, India, achieving second rank at the university among the students of Agricultural Chemistry and Soil Science; and Ph.D. Agriculture (Soil Science and Water Management) in 1980 from Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India. It is worthwhile to mention that Dr. Gupta has studied special subjects such as Plant Biochemistry, Crop Physiology and Soil Microbiology during his M.Sc. Agriculture; and General Bacteriology, Inorganic Nutrition, Chemistry of Soil Organic Matter and Analytical/Physical Chemistry during his Ph.D. Agriculture. He also holds a Postgraduate Diploma in Ecology and Environment from Indian Institute of Ecology and Environment, New Delhi.

Dr. R. D. Gupta started his professional career as an Assistant Extension Specialist (Soil Science) in Punjab Agricultural University, Ludhiana, in 1968 and has served in various capacities as Assistant Scientist, Associate Professor, Deputy Director Extension Education (Training) and Chief Scientist, Krishi Vigyan Kendra, SKUAST, Jammu. He has served as Chief Scientist and Head, Regional Agricultural Research Station, SKUAST, and was the Founding Associate Dean, Faculty of Agriculture, SKUAST, Jammu, and Head, Divisions of Agricultural Chemistry and Soil Sciences and Agroforestry. He has over 150 peer-reviewed publications like research papers, review and research papers as various book chapters and three books to his credit, namely Problems and Management of Soil and Forest Resources of Northwest Himalayas (1991); Environmental Degradation of Jammu & Kashmir Himalayas and Their Control (2005) and Environment Pollution: Hazards and Control (2006). He has also contributed a number of extension papers in Intensive Agriculture, Agriculture Today, Farmers’ Forum, Indian Farmers’ Digest, Farmers and Parliament, Agrobios Newsletter, Gram Vikas Jyoti and daily newspapers.
Dr. Gupta is associated with learned societies like Indian Society of Soil Science, Soil Conservation Society of India, Association of Rice Research Workers, Society of Soil Survey and Land Use Planning, Clay Minerals Society of India, Indian Society of Ecology, Society for Environment and People and Indian Society of Tree Scientists. He has guided a number of M.Sc. Agriculture students in Agricultural Chemistry and Soil Science and remained an advisory committee member of many M.Sc. and Ph.D. Agriculture students in various disciplines at the Faculty of Agriculture.
Acknowledgements

With deep humility, we would like to praise and thank God, the Supreme and the Merciful, who has blessed us with all the favourable circumstances to go through this gigantic task. We are grateful to several scientists, authors and writers whose valuable knowledge and research work related to the subject appeared in different journals of repute and have been utilized in the preparation of this book.

We equally express our sincere thanks to Dr. C. L. Acharya, Former Director, Indian Institute of Soil Science, Bhopal, India, and Director Extension Education, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur (Himachal Pradesh, India), for writing the Foreword for this book after going through the manuscript critically, and imparting important and valuable suggestions. Prior to joining as the Director of Indian Institute of Soil Science, he has served in various capacities in Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya as Associate Professor, Chief Scientist (Water Management) and Head of Department in Soil Science.

We consider it our privilege to express our deep admiration and immense gratitude to Mr. Amit Trikha, National Manager, Bayer Bioscience Pvt. Ltd., Hyderabad (Andhra Pradesh, India), for his sustained support and encouragement for this important publication. Dr. Rohit Sharma is also gratefully acknowledged for his contribution in Chapter 2 related to ‘Organic Farming in Sustainable Agriculture’. He has the research experience of approximately 1 year in an International Research Project based on ‘Organic Farming’ and has also attended an IFOAM Training on the same topic. He obtained his Ph.D. in Agronomy from CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur (Kangra, Himachal Pradesh, India).

Dr. Anil Mahajan, is extremely grateful to his respected and revered advisers Dr. S. K. Sharma, Former Professor (Training) and Krishi Vigyan Kendra In-charge, Sundernagar (Mandi, Himachal Pradesh, India), and Dr. R. M. Bhagat, Head, Production Division and Consultant, Tea Research Association, Tocklai Experimental Station, Jorhat (Assam, India), in MSc and Ph.D. programmes for their constant inspiration during the writing of this book. Dr. Mahajan can never forget the constant inspiration and support given by his guru, Advocate Sarvir Singh Jamwal; his gracious father, Mr. Arvind Mahajan, and affectionate mother, Mrs. Parkash Gupta; his grandmother, Mrs. Puspa Devi; his loving and caring elder brother, Mr. Narinder Mahajan, and sister-in-law, Mrs. Shivani Mahajan;
his brother-in-law, Dr. Mrityunjay Gupta, and sister, Mrs. Archana Gupta; his cousin, Mr. Ashish Kaistha and sister-in-law Mrs. Charu Kaistha; his uncles, Mr. R. L. Kaistha, Dr. B. L. Kaistha, Mr. B. K. Abrol and Mr. M. M. Rai Sharma; and his dearest friends, Mr. Sidharth Chug, Mr. Ankur Saini, Dr. Anil Choudhary, Dr. Rajesh Dogra, Dr. Amit Sharma, Dr. Ruchi Sharma and Dr. Susheel Sharma. Further, Dr. Mahajan is also deeply indebted to his uncle, late Mr. Puspinder Singh Jamwal, for inspiring the documentation of this book.

Dr. R. D. Gupta, is deeply indebted to his brother, Late Mr. Satya Paul Mahajan, and nephew, late Mr. Shambu Nath, for inspiring the documentation of this book. Although both have unfortunately left for their heavenly abode in an ill-fated accident, the encouragement received during their lifetime went a long way in writing this book. Dr. Gupta is also indebted to his mother, late Mrs. Gian Devi, and father, late Mr. Bishan Dass, who always inspired him for higher studies and to engage in authorship.
Contents

Foreword ... vii
Preface .. ix
About the Authors ... xi
Acknowledgements ... xv
List of Figures ... xxv
List of Tables ... xxvii
List of Plates ... xxxi

1 Introduction ... 1
 1.1 Crisis of Rice–Wheat Cropping System ... 2
 1.1.1 Decline of Annual Average Growth Rate 2
 1.1.2 Green Revolution and Environmental Degradation 3
 1.1.3 Green Revolution and Inequality ... 3
 1.1.4 Growing Indebtedness .. 4
 1.2 Dr. Swaminathan’s Views in 1968 on Intensive Agriculture 4
 1.3 Remedies ... 5
 1.3.1 Use of Organic Manures ... 5
 1.3.2 Use of Green Manure ... 6
 1.3.3 Use of Rural Wastes and Crop Residues 6
 1.3.4 Use of Bio-Fertilizers .. 7
 1.3.5 Use of Vermicompost .. 7
 1.3.6 Use of Both Organics and Inorganics 7
 1.4 Integrated Nutrient Management System ... 8
 Impact Points to Remember .. 9
 Study Questions ... 10
 References .. 11

2 Concept of INM System .. 13
 2.1 Concept of IPNS Under Indian Soil Conditions 14
 2.1.1 Integrated Plant Nutrition System (IPNS) 15
2.1.2 Integrated Plant Nutrient Supply System (IPNSS) 15
2.1.3 Integrated Nutrient Management (INM) 15
2.2 What Is INM System? ... 15
2.3 Concept Underlying INM System ... 16
2.4 Definition of INM System ... 17
2.5 Principles Underlying INM System .. 17
2.6 Maintenance of Soil Health Through INM System 17
2.7 Advantages of INM System ... 18
2.8 Organic Farming ... 18
 2.8.1 Concept of Organic Farming ... 19
 2.8.2 Organic Farming – Indian Scenario 20
 2.8.3 Organic Farming – World Scenario 21
 2.8.4 Principle of Organic Farming ... 22
 2.8.5 Benefits of Organic Farming .. 22
 2.8.6 Constraints of Organic Farming ... 25
Impact Points to Remember ... 26
Study Questions ... 28
References ... 29

3 Need of INM System in Modern Agriculture 31
 3.1 Escalating Prices of Chemical Fertilizers 32
 3.2 Imbalances in the Ratio of NPK Consumption 32
 3.3 Imbalances Between Consumption and Domestic Production 33
 3.4 Deterioration of Soil Health ... 34
 3.5 Inorganic Fertilizers Consume Non-renewable Energy Sources .. 35
 3.6 Pollution Hazards of Chemical Fertilizers 35
 3.7 Loss of Soil Productivity .. 35
 3.7.1 Loss of Chemical Fertility .. 36
 3.7.2 Deterioration in Soil Physical Properties 36
 3.7.3 Deterioration in Biological Activity 37
 3.8 Organic and Mineral Fertilizers Show Additive Effects 37
 3.9 Organic Materials as a Source of Secondary Nutrients and Micronutrients ... 37
 3.10 Interaction Benefits for Crops ... 38
 3.11 Reduction in Crop Productivity .. 38
Impact Points to Remember ... 39
Study Questions ... 39
References ... 40

4 Components of INM System ... 43
 4.1 Chemical Fertilizer ... 44
 4.1.1 Advantages of Chemical Fertilizer 45
 4.2 Organic Manures ... 45
 4.2.1 Distinction Between Organic Manures and Fertilizers 47
5 Bio-Fertilizers: Their Kinds and Requirement in India

5.1 Bio-Fertilizer Requirement in India ... 76
5.2 Major Bio-Fertilizer Groups .. 77
 5.2.1 Rhizobium ... 77
 5.2.2 Azotobacter ... 80
 5.2.3 Azospirillum .. 82
 5.2.4 Azolla ... 84
 5.2.5 Blue-Green Algae (BGA) .. 87
 5.2.6 Phosphate-Solubilizing Micro-organisms (PSMs) 89
5.3 Prospects of the Use of Bio-Fertilizers ... 89
5.4 Constraints in the Use of Bio-Fertilizer .. 90
 5.4.1 Biological Constraints ... 91
 5.4.2 Technical Constraints .. 91
 5.4.3 Marketing Constraints ... 91
 5.4.4 Field-Level Constraints ... 92
 5.4.5 Resource Constraints .. 92
 5.4.6 Lack of Publicity .. 92
 5.4.7 Bio-Fertilizer Carrier ... 93
 5.4.8 Adverse Soil Conditions ... 93
 5.4.9 Quality Control Constraints .. 94
 5.4.10 Pricing Policy ... 94
5.5 Guidance and Precautions for the Use of Bio-Fertilizers 94
5.6 Government’s Future Planning for the Promotion of Bio-Fertilizer Production ... 95
5.7 Economics of Bio-Fertilizer .. 96
5.8 How to Get Bio-Fertilizer .. 96
Impact Points to Remember .. 97
Study Questions .. 98
References .. 99
6 Potential of Organic Resources as Plant Nutrients in India 101
 6.1 Animal Dung and Wastes .. 102
 6.2 Crop Residues .. 103
 6.3 Green Manures and Legumes ... 103
 6.4 Bio-Fertilizers ... 104
 6.5 Compost and Vermicompost (Soil Conditioner) 104
 6.6 Biogas Slurry .. 105
Impact Points to Remember ... 105
Study Questions .. 106
References .. 106

7 The Rice-Wheat Cropping System ... 109
 7.1 Distribution of the Rice–Wheat Cropping System
 and Contribution to Food Security in South Asian Countries 110
 7.2 Characteristics of the Rice–Wheat Cropping System 112
 7.3 Package of Practices and Methodologies for
 the Rice–Wheat Cropping System ... 113
 7.4 Nutritional Value of Rice and Wheat 114
Impact Points to Remember ... 114
Study Questions .. 115
References .. 116

8 Balanced Use of Plant Nutrients ... 119
 8.1 Concept of Balanced Fertilization ... 119
 8.2 Definition of Balanced Fertilization ... 120
 8.3 Aim of Balanced Fertilization .. 120
 8.4 NPK Use Ratios ... 121
 8.5 Balanced NPK Fertilization in the Rice–Wheat
 Cropping System .. 121
Impact Points to Remember ... 123
Study Questions .. 124
References .. 125

9 Effective Use of Fertilizers and Water Management for
 Rice–Wheat Cropping System ... 127
 9.1 Efficient Use of Fertilizers ... 127
 9.1.1 Selection of the Right Kind of Fertilizers 128
 9.1.2 Application of Modified Urea Materials 128
 9.1.3 Timely Application of Fertilizers 129
 9.1.4 Balanced Use of Fertilizers ... 129
 9.1.5 Application of Fertilizers on the Basis of Soil Test 130
 9.1.6 Application of Modified Urea Materials 131
 9.1.7 Balanced Use of Fertilizers .. 132
 9.1.8 Application of Fertilizers on the Basis of Soil Test 133
 Study Questions .. 134
References .. 135
9.1.6 Saving Phosphatic and Potassic Fertilizers 130
9.1.7 Application of Secondary and Micronutrients 130
9.1.8 Practice of Green Manuring .. 131
9.1.9 Right Conservation of Farmyard Manure 131
9.1.10 Use of Azolla in Rice Fields................................. 131
9.1.11 Use of Other Bio-Fertilizers .. 132
9.1.12 Timely Control of Weeds... 132
9.1.13 Management of Micronutrients for Rice Soils 132
9.1.14 Water and Fertilizer Interaction 133
9.1.15 Management of Soil Water and Fertilizer Use 134
9.1.16 Optimizing Water and Fertilizer Use 135

9.2 Water Use Efficiency ... 135
9.3 Suggestions and Priorities for the Future 136
Impact Points to Remember ... 137
Study Questions ... 137
References .. 137

10 Role of INM in Sustainable Rice–Wheat Cropping System 139
10.1 Chemical Fertilizers .. 140
10.2 Organic Manures ... 140
10.3 Enriched Compost ... 145
10.4 Vermicompost ... 146
10.5 Micronutrients .. 147
10.6 Plant Growth Regulators ... 149
10.7 Crop Residues .. 149
10.7.1 Effect of Paddy Straw on Wheat 152
10.7.2 Effect of Rice Stubbles on Wheat 152
10.7.3 Effect of Wheat Straw on Rice 153
10.8 Green Manures .. 154
10.9 Leguminous Crops ... 156
10.10 Bio-Fertilizers .. 157
10.10.1 Blue-Green Algae (BGA) 157
10.10.2 Azolla .. 159
10.10.3 Phosphate Solubilizing Micro-organisms (PSMs) 159
Impact Points to Remember ... 160
Study Questions ... 162
References .. 163

11 Soil-Related Constraints in the Rice and Wheat Production 169
11.1 Rice Crop .. 170
11.1.1 Indian Rice Ecosystem .. 170
11.1.2 Soil-Related Constraints in Rice Production 171
11.1.3 Management Practices for Increasing Rice Production... 173
11.1.4 Suggestions for the Future... 175
11.2 Wheat Crop.. 175
11.2.1 Indian Wheat Ecosystem .. 176
11.2.2 Soil-Related Constraints in Wheat Production............... 176
11.2.3 Management Practices for Increasing Wheat
 Production ... 179
11.2.4 Suggestions for the Future... 181
Impact Points to Remember .. 181
Study Questions... 182
References .. 183

12 Constraints in the Adoption of INM System 185
12.1 Chemical Fertilizers ... 186
12.2 Organic Manures ... 187
12.3 Crop Residues ... 187
12.4 Green Manures .. 188
12.5 Compost ... 188
12.6 Vermicompost .. 188
12.7 Bio-Fertilizers .. 189
Impact Points to Remember .. 189
Study Questions... 190
References .. 190

13 Future Research Strategies/Priorities ... 193
13.1 Decomposition of Crop Residues and Their C/N Ratio......... 194
13.2 Advantages of Manures Prepared in Pits 194
13.3 Addition of Nitrogenous and Phosphatic Compounds
 During Preparation of Organic Manures 195
13.4 Use of Chemical Fertilizers to Supplement
 the Organic Matter .. 195
13.5 Balanced Use of Fertilizer and Manure Application.............. 196
13.6 Activation of Biological Activities .. 196
13.7 Creation of Awareness about INM System 196
13.8 Ban on Using Cowdung as Fuel and Crop Residues as Feed 197
13.9 Setting of Agroforestry .. 197
13.10 Growing of Legumes ... 198
 13.10.1 Burial Stage of Dhaincha ... 198
 13.10.2 Other Legumes Suitable for Rice and Wheat Crop ... 198
13.11 Use of Neem Cake and Neem Leaves in Rice Soils 199
13.12 Harnessing of Other Micro-organisms
 for Rice–Wheat Development .. 199
13.13 Micronutrient Management .. 202
13.14 Use of Leaves and Twigs of Various Plants 202
List of Figures

Figure 4.1 Flow chart showing the different components of INM system ... 44
Figure 4.2 Steps involved in the preparation of vermicomposting ... 62
Figure 9.1 Fate of NH$_4^+$ ion after urea hydrolysis ... 128
List of Tables

Table 2.1. Major products produced by organic farming in India 20

Table 3.1. Imports of urea, DAP and MOP from 1999/2000 to 2004/05 32
Table 3.2. Consumption ratio of N/P2O5/K2O from 1991/92 and 1999/2000 to 2004/05 .. 33
Table 3.3. All India consumption, production and surplus/deficit of N, P2O5, and K2O (million tonnes) in 2003/04 and 2004/05 ... 34

Table 4.1. Nutrient content of different organic manures 46
Table 4.2. Average composition of compost ... 52
Table 4.3. Percentage recovery .. 53
Table 4.4. Nutrient content of certain green manure crops 55
Table 4.5. Composition of vermicompost ... 59
Table 4.6. Mycorrhizae in natural habitat and field conditions 68
Table 4.7. Classification of bio-fertilizers .. 69
Table 4.8. Composition of biogas .. 69
Table 4.9. Composition of biogas slurry ... 70
Table 4.10. Comparative annual advantages of utilization of 45 kg of fresh cattle dung per day .. 70

Table 5.1. Bio-fertilizers and their estimated requirement 76
Table 5.2. Capacity and production of bio-fertilizers manufactured by major fertilizer companies (1998/99) ... 77
Table 5.3. Cross inoculation groups and Rhizobium legume association 79

Table 6.1. Some projections on availability of organic resources for agriculture in India during 2000–2025 .. 102
Table 6.2. Organic source required to meet 25% of India’s nutrient needs in 2000 and 2050 .. 105

Table 7.1. Area under major cereal based cropping systems 110
Table 7.2. Dominant cereal based cropping systems in major food grain producer and fertilizer consumer states 111
Table 7.3. Area and production of rice and wheat in India over years 111
Table 7.4. Summary of advantages and disadvantages of puddling in rice–wheat cropping system .. 113

Table 8.1. NPK use ratios in India over years ... 122
Table 8.2. Change in response to NPK over a period of 10–12 years in rice–wheat cropping system at some centers under AICRPCS ... 123

Table 10.1. Effect of organic nutrient management on soil fertility changes after 12 cycles of rice and wheat sequence 142
Table 10.2. Effect of nutrient management on micronutrient cations after 12 cycles of rice and wheat sequence 142
Table 10.3. Effect of INM on bulk density and total soil porosity after harvesting of rice–wheat system .. 143
Table 10.4. Effect of INM on water retention capacity (W/W) of soil after harvesting of rice–wheat system 144
Table 10.5. Effect of organic nutrient management on the grain yield (tha⁻¹) of rice and wheat grown in a sequence (average of 3 consecutive years) .. 144
Table 10.6. Effect of INM on productivity and economics of rice–wheat sequence at Jabalpur (1985/86 and 2000/01) 145
Table 10.7. Effect of enriched rice straw compost on the grain and straw yields of the wheat crop ... 146
Table 10.8. Effect of integrated sources of nitrogen on the grain yield of rice and their effect on succeeding wheat 147
Table 10.9. Effect of Zn and biogas slurry (dry weight) on grain yield of rice–wheat sequence ... 148
Table 10.10. Effect of fertilizer treatments on yield and yield attributes of wheat in rice–wheat sequence (average of 3 years) .. 148
Table 10.11. Effect of crop residue management on soil fertility of a loamy sand soil over 11 years of the rice–wheat cropping system .. 151
Table 10.12. Effect of paddy straw compost on the yield of wheat 152
Table 10.13. Growth and yield attributes and yield of wheat as influenced by rice residue management (pooled data of two 2 years) ... 153
Table 10.14. Nutrient uptake by wheat and soil properties as influenced by rice residue management (pooled data of two 2 years) ... 153
Table 10.15. Direct and residual effect of crop residues applied to rice on yield and economics of rice–wheat cropping system ... 154
Table 10.16 Effect of INM on the productivity of rice–wheat cropping system (average of 10 years) .. 155
Table 10.17. Effect of green manuring and fertilizer application on grain yield (1991/92) and soil fertility (after 3 years of cropping) in rice–wheat system .. 155
Table 10.18. Summer legumes in relation to rice grain yield and nitrogen uptake in rice–wheat cropping system 156
Table 10.19. Some beneficial organisms used as bio-fertilizers in sustainable agriculture .. 157
Table 10.20. Effect of integrated use of BGA, FYM and chemical fertilizers on grain yield of rice–wheat cropping system........ 158
Table 10.21. Effect of INM on per cent macro-aggregates and hydraulic conductivity in rice–wheat cropping system in calcareous soil ... 159
Table 10.22. Effect of bio, organic and chemical fertilizers on grain yield of rice and their residual effect on wheat in rice–wheat system .. 160

Table 11.1. Zonewise rice area (million hectares) of India 171
Table 11.2. Response of N, P and K over years in rice–wheat cropping sequence in alluvial soils at Faizabad (Uttar Pradesh, India) ... 178
Table 11.3. Effect of deep tillage on yield of wheat after rice in Himachal Pradesh ... 180

Table 13.1. Quantity of green matter and nitrogen added in soil by green manure crops ... 199
Table 13.2. Distribution of soil fungi of north-western Himalaya 200
List of Plates

Plates 4.1.	Farmyard manure (FYM)	47
Plates 4.2.	Compost placed in the field	50
Plates 4.3.	Green manures incorporated in the field	54
Plates 4.4.	Vermicompost	58
Plates 5.1.	Rhizobium	78
Plates 5.2.	Azotobacter	81
Plates 5.3.	Azolla	84
Plates 5.4.	Blue-green algae (BGA)	88
Plates 10.1.	Chemical fertilizers supplying NPK nutrients	141
Plates 10.2.	Crop residues of rice placed in the field	150
Plates 10.3.	Wheat residues incorporated in the field	150
Chapter 1
Introduction

Abstract The rice–wheat cropping system of Indian agriculture is the cornerstone of the nation’s food security. This system contributes about 75% of the nation’s total food grain production. It has tremendously helped the socio-economic development of the rural population in India. The Green Revolution in India during the late 1960s has no doubt brought about self-sufficiency in food grain production. However, imbalanced use of inorganic fertilizers and plant protection chemicals for maximizing crop yield has resulted in the deterioration of physical, chemical and biological health of the rice–wheat growing soils. Currently, there is a growing concern about the sustainability of the rice–wheat cropping system as the growth rates of rice and wheat yields have either become stagnant or declined in rice–wheat growing states like Punjab, Haryana, eastern Uttar Pradesh, Madhya Pradesh, Bihar, Himachal Pradesh, Jammu & Kashmir, as well as southern and other states. The crisis of the rice–wheat cropping system in India is mainly due to the decline in the annual average growth rate, the Green Revolution and environmental degradation, the Green Revolution and inequality, and growing indebtedness. The various remedies responsible for breaking down sustainability issues to maintain the rice–wheat cropping system, some of which are very important, are use of organic manures, green manures, rural wastes and crop residues, bio-fertilizers, vermicompost and use of organics and inorganics. The one and only solution for the above-mentioned crisis for the rice–wheat cropping system is the use of both organics and inorganics, i.e. Integrated Nutrient Management (INM) System. Moreover, our former Secretary of the Department of Agricultural Research and Education (DARE) and Director General of Indian Council of Agricultural Research (ICAR), Dr. R.S. Paroda, declared INM system as a mission for the twenty-first century. He stressed upon demonstrating sustained agricultural production through high input of inorganic and organic fertilizers.

Keywords Rice–wheatcroppingsystem • GreenRevolution • sustainability • chemical fertilizer • plant protection chemicals • soil health • environment degradation • organic manures • integrated nutrient management system
The rice–wheat cropping system is the principal cropping system occupying 24 million hectares of cultivated land in the Asian subtropics. The system is prevalent in about 13.5 million hectares in the Indo-Gangetic Plains, of which 10 million hectares lies in India, 2.2 million hectares in Pakistan, 0.8 million hectares in Bangladesh and 0.5 million hectares in Nepal, and about 10.5 million hectares in China. This system covers about 33% of the total rice area and 42% of the total wheat area in these four South Asian countries, and account for one quarter to one third of the total rice and wheat production. China and India produce more than half of the world’s rice, thereby generating the highest employment for the rural Asian population. About half of the irrigated wheat production in South Asia comes from rice–wheat rotation (Pillai, 1994; Mahajan, 2006).

1.1 Crisis of Rice–Wheat Cropping System

The Green Revolution in India during the late 1960s has no doubt brought about self-sufficiency in food grain production. However, indiscriminate use of inorganic fertilizers and plant protection chemicals for maximizing crop yield has resulted in the deterioration of the physical, chemical and biological health of the rice–wheat growing soils due to the imbalanced use of N/P2O5/K2O ratio in fertilizers. A glance at fertilizer ratio data shows that it has never been found to be used in its ideal proportion, which is 4:2:1. Currently, there is a growing concern about the sustainability of the rice–wheat cropping system as the growth rates of rice and wheat yields are either stagnant or have declined in a number of states such as Punjab, Haryana, eastern Uttar Pradesh, Madhya Pradesh, Bihar, Himachal Pradesh and Jammu & Kashmir (Chand and Haque, 1998; Ladha et al., 2000; Mahajan et al., 2002, 2008b; Paroda, 1996). The crisis of the rice–wheat cropping system in India is due to the following reasons.

1.1.1 Decline of Annual Average Growth Rate

These days, Indian agriculture has faced a lot of crisis which can be conjectured by studying the annual average growth rate. During the Eighth Five Year Plan, the annual average growth rate was 4.7%, which reduced to 2.1% during the Ninth Five Year Plan and was as low as 1.7% during the Tenth Five Year Plan. Another troublesome issue is that the share of agriculture in gross domestic product has declined to 18% but the dependence on agriculture is still hovering around 60% (Joshi, 2007). Moreover, there is a widespread unrest among the peasants because of the slowing down or stagnation of their income.

It is to be pointed out here that the Green Revolution, which started mostly with rice and wheat crops during 1967/68, has now reached a plateau and is sustained with diminishing returns and falling dividends. For example, at the national level,
1.1 Crisis of Rice–Wheat Cropping System

Rice yields are hovering between 1.9 t ha\(^{-1}\) in 2000/01 and 2.1 t ha\(^{-1}\) in 2004/05. Yields of wheat have already become static at 2.7 t ha\(^{-1}\) since 1999/2000.

1.1.2 Green Revolution and Environmental Degradation

There is no doubt that the Green Revolution made the country self-sufficient in food production. As a matter of fact, the Green Revolution created buffer stocks at times exceeding 60 million tonnes, which made the nation proud (Dhaliwal, 2005). However, use of high-yielding varieties of rice and wheat, which responded to more doses of fertilizers and pesticides, and requirement of large quantities of water have changed the environmental conditions. Intensive use of fertilizers and pesticides in the rice- and wheat-producing states, especially Punjab, Haryana and western Uttar Pradesh, which reaped the main benefits of the Green Revolution, has deteriorated the environment. While the intensive use of fertilizers has polluted the soil in many parts of Punjab, Haryana and western Uttar Pradesh, the uncontrolled use of irrigation has caused salinity as a consequence of waterlogging. Reckless use of pesticides has not only polluted the soil, but has also given rise to brown hopper insect, a very common pest of paddy crop which was not present before the Green Revolution.

Since rice crop requires plenty of water, its continuous cultivation in Punjab, Haryana, Andhra Pradesh and Maharashtra has led to overexploitation of the groundwater resources. Extraction of groundwater has caused its overexploitation in 73% and 25% blocks, respectively, in Punjab and Haryana alone (Dhaliwal, 2005). Depletion of underground water has resulted in contamination by heavy metals like Cd, Cr, Pb and others. Further, it has been found that in those states where the peasants are following rice–wheat crop rotation for years together there is a lot of soil sickness. The soils have become hungry for both primary (N, P, K)/secondary (Ca, Mg, S) nutrients and micronutrients (Zn, Cu, Mn, Fe, etc.). Deficiency of secondary and micro plant nutrients is mainly attributed to almost neglect of organic manures including green manure by the farmers after chemical fertilizers became available in the market with the arrival of new high-yielding varieties of various crops.

1.1.3 Green Revolution and Inequality

On another level, the Green Revolution has contributed towards inequality in the distribution of income and land-holding pattern. Since only the rich peasantry could afford the costly inputs (chemical fertilizers, pesticides), they also reaped the benefits in a proportional measure. The Green Revolution indeed has bypassed the small farmers as the agriculture sector has become an unviable proposition for them. Moreover, with the agricultural produce market within the rice-like grip of middlemen, small farmers find it very difficult to sell their yield at a remunerative rate.