
Praise for Practical
Common Lisp

“Finally, a Lisp book for the rest of us. If you want to learn how to write a factorial
function, this is not your book. Seibel writes for the practical programmer,
emphasizing the engineer/artist over the scientist and subtly and gracefully
implying the power of the language while solving understandable real-world
problems.

“In most chapters, the reading of the chapter feels just like the experience of
writing a program, starting with a little understanding and then having that
understanding grow, like building the shoulders upon which you can then
stand. When Seibel introduced macros as an aside while building a test frame-
work, I was shocked at how such a simple example made me really ‘get’ them.
Narrative context is extremely powerful, and the technical books that use it are
a cut above. Congrats!” —Keith Irwin, Lisp programmer

“While learning Lisp, one is often referred to the CL HyperSpec if they do not
know what a particular function does; however, I found that I often did not ‘get it’
just by reading the HyperSpec. When I had a problem of this manner, I turned
to Practical Common Lisp every single time—it is by far the most readable
source on the subject that shows you how to program, not just tells you.”
—Philip Haddad, Lisp programmer

“With the IT world evolving at an ever-increasing pace, professionals need the
most powerful tools available. This is why Common Lisp—the most powerful,
flexible, and stable programming language ever—is seeing such a rise in popu-
larity. Practical Common Lisp is the long-awaited book that will help you
harness the power of Common Lisp to tackle today’s complex real-world prob-
lems.” —Marc Battyani, author of CL-PDF, CL-TYPESETTING, and mod_lisp

“Please don’t assume Common Lisp is useful only for databases, unit test
frameworks, spam filters, ID3 parsers, Web programming, Shoutcast servers,
HTML generation interpreters, and HTML generation compilers just because
these are the only things that happen to be implemented in the book Practical
Common Lisp.” —Tobias C. Rittweiler, Lisp programmer

Seibel_2395Front.fm Page i Thursday, March 3, 2005 2:20 PM

“When I met Peter, who just started writing this book, I asked myself (not him,
of course), ‘Why yet another book on Common Lisp, when there are many nice
introductory books?’ One year later, I found a draft of the new book and recog-
nized I was wrong. This book is not ‘yet another’ one. The author focuses on
practical aspects rather than on technical details of the language. When I first
studied Lisp by reading an introductory book, I felt I understood the language,
but I also had the impression, ‘so what?’—meaning I had no idea about how to
use it. In contrast, this book leaps into a ‘practical’ chapter after the first few
chapters that explains the very basic notions of the language. Then the readers
are expected to learn more about the language while they are following the
‘practical’ projects, which are combined to form a product of significant size.
After reading this book, the readers will feel they are expert programmers on
Common Lisp since they have ‘finished’ a big project already. I think Lisp is the
only language that allows this type of practical introduction. Peter makes use
of this feature of the language in building up a fancy introduction to Common
Lisp.” —Taiichi Yuasa, Professor, Department of Communications and
Computer Engineering, Kyoto University

Seibel_2395Front.fm Page ii Thursday, March 3, 2005 2:20 PM

Practical Common Lisp

PETER SEIBEL

Seibel_2395Front.fm Page iii Thursday, March 3, 2005 2:20 PM

Practical Common Lisp

Copyright © 2005 by Peter Seibel

Lead Editor: Gary Cornell
Technical Reviewers: Mikel Evins, Steven Haflich, Barry Margolin
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Assistant Publisher: Grace Wong
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Production Manager: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Susan Glinert
Proofreaders: Katie Stence, Liz Welch
Indexer: Kevin Broccoli
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

 Library of Congress Cataloging-in-Publication Data

Seibel, Peter.

 Practical COMMON LISP / Peter Seibel.

 p. cm.

 Includes index.

 ISBN 1-59059-239-5 (hc. : alk. paper)

1. COMMON LISP (Computer program language) I. Title.

 QA76.73.L23S45 2005

 005.13'3--dc22

 2005005859

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section
and also at http://www.gigamonkeys.com/book/.

Seibel_2395Front.fm Page iv Wednesday, March 9, 2005 3:42 PM

For Lily, Mom, and Dad

Seibel_2395Front.fm Page v Thursday, March 3, 2005 2:20 PM

vii

Contents at a Glance

About the Author . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Typographical Conventions . xxv

CHAPTER 1 Introduction: Why Lisp? . 1

CHAPTER 2 Lather, Rinse, Repeat: A Tour of the REPL . 9

CHAPTER 3 Practical: A Simple Database . 19

CHAPTER 4 Syntax and Semantics . 37

CHAPTER 5 Functions . 51

CHAPTER 6 Variables . 65

CHAPTER 7 Macros: Standard Control Constructs . 79

CHAPTER 8 Macros: Defining Your Own . 89

CHAPTER 9 Practical: Building a Unit Test Framework . 103

CHAPTER 10 Numbers, Characters, and Strings . 115

CHAPTER 11 Collections . 127

CHAPTER 12 They Called It LISP for a Reason: List Processing 141

CHAPTER 13 Beyond Lists: Other Uses for Cons Cells . 153

CHAPTER 14 Files and File I/O . 163

CHAPTER 15 Practical: A Portable Pathname Library . 179

CHAPTER 16 Object Reorientation: Generic Functions . 189

CHAPTER 17 Object Reorientation: Classes . 203

CHAPTER 18 A Few FORMAT Recipes . 219

CHAPTER 19 Beyond Exception Handling: Conditions and Restarts 233

CHAPTER 20 The Special Operators . 245

CHAPTER 21 Programming in the Large: Packages and Symbols 263

CHAPTER 22 LOOP for Black Belts . 277

Seibel_2395Front.fm Page vii Thursday, March 3, 2005 2:20 PM

viii ■CO N T E N T S AT A G L A N C E

CHAPTER 23 Practical: A Spam Filter . 291

CHAPTER 24 Practical: Parsing Binary Files . 311

CHAPTER 25 Practical: An ID3 Parser . 335

CHAPTER 26 Practical: Web Programming with AllegroServe 363

CHAPTER 27 Practical: An MP3 Database . 385

CHAPTER 28 Practical: A Shoutcast Server . 401

CHAPTER 29 Practical: An MP3 Browser . 411

CHAPTER 30 Practical: An HTML Generation Library, the Interpreter 431

CHAPTER 31 Practical: An HTML Generation Library, the Compiler 449

CHAPTER 32 Conclusion: What’s Next? . 465

INDEX . 481

Seibel_2395Front.fm Page viii Thursday, March 3, 2005 2:20 PM

ix

Contents

About the Author . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Typographical Conventions . xxv

■CHAPTER 1 Introduction: Why Lisp? . 1

Why Lisp? . 2

Where It Began. 4

Who This Book Is For . 7

■CHAPTER 2 Lather, Rinse, Repeat: A Tour of the REPL 9

Choosing a Lisp Implementation . 9

Getting Up and Running with Lisp in a Box. 11

Free Your Mind: Interactive Programming . 12

Experimenting in the REPL . 12

“Hello, World,” Lisp Style . 13

Saving Your Work. 15

■CHAPTER 3 Practical: A Simple Database . 19

CDs and Records . 19

Filing CDs . 21

Looking at the Database Contents . 21

Improving the User Interaction . 23

Saving and Loading the Database . 25

Querying the Database . 27

Updating Existing Records—Another Use for WHERE 31

Removing Duplication and Winning Big . 32

Wrapping Up . 36

Contents

Seibel_2395Front.fm Page ix Thursday, March 3, 2005 2:20 PM

x ■C O N T E N T S

■CHAPTER 4 Syntax and Semantics . 37

What’s with All the Parentheses? . 37

Breaking Open the Black Box . 38

S-expressions. 39

S-expressions As Lisp Forms . 41

Function Calls . 42

Special Operators. 43

Macros . 44

Truth, Falsehood, and Equality . 45

Formatting Lisp Code . 47

■CHAPTER 5 Functions . 51

Defining New Functions . 51

Function Parameter Lists . 53

Optional Parameters . 53

Rest Parameters. 55

Keyword Parameters . 56

Mixing Different Parameter Types . 57

Function Return Values . 58

Functions As Data, a.k.a. Higher-Order Functions 59

Anonymous Functions . 61

■CHAPTER 6 Variables . 65

Variable Basics . 65

Lexical Variables and Closures . 68

Dynamic, a.k.a. Special, Variables. 69

Constants . 74

Assignment . 74

Generalized Assignment . 75

Other Ways to Modify Places . 76

■CHAPTER 7 Macros: Standard Control Constructs . 79

WHEN and UNLESS . 80

COND . 82

AND, OR, and NOT . 82

Seibel_2395Front.fm Page x Thursday, March 3, 2005 2:20 PM

■C O N T E N T S xi

Looping . 83

DOLIST and DOTIMES . 84

DO . 85

The Mighty LOOP . 87

■CHAPTER 8 Macros: Defining Your Own . 89

The Story of Mac: A Just-So Story . 89

Macro Expansion Time vs. Runtime. 90

DEFMACRO . 91

A Sample Macro: do-primes . 92

Macro Parameters . 93

Generating the Expansion . 95

Plugging the Leaks . 96

Macro-Writing Macros. 100

Beyond Simple Macros . 102

■CHAPTER 9 Practical: Building a Unit Test Framework 103

Two First Tries . 103

Refactoring . 105

Fixing the Return Value . 106

Better Result Reporting . 108

An Abstraction Emerges . 109

A Hierarchy of Tests . 110

Wrapping Up . 112

■CHAPTER 10 Numbers, Characters, and Strings . 115

Numbers . 116

Numeric Literals . 117

Basic Math . 119

Numeric Comparisons . 121

Higher Math . 122

Characters . 122

Character Comparisons . 122

Strings . 123

String Comparisons . 124

Seibel_2395Front.fm Page xi Thursday, March 3, 2005 2:20 PM

xii ■C O N T E N T S

■CHAPTER 11 Collections . 127

Vectors . 127

Subtypes of Vector . 129

Vectors As Sequences . 130

Sequence Iterating Functions . 130

Higher-Order Function Variants . 133

Whole Sequence Manipulations . 134

Sorting and Merging . 135

Subsequence Manipulations. 136

Sequence Predicates . 137

Sequence Mapping Functions . 137

Hash Tables . 138

Hash Table Iteration. 140

■CHAPTER 12 They Called It LISP for a Reason: List Processing 141

“There Is No List” . 141

Functional Programming and Lists . 144

“Destructive” Operations . 145

Combining Recycling with Shared Structure . 147

List-Manipulation Functions . 149

Mapping . 151

Other Structures . 152

■CHAPTER 13 Beyond Lists: Other Uses for Cons Cells 153

Trees . 153

Sets . 155

Lookup Tables: Alists and Plists . 157

DESTRUCTURING-BIND . 161

■CHAPTER 14 Files and File I/O . 163

Reading File Data . 163

Reading Binary Data . 165

Bulk Reads . 165

File Output . 165

Closing Files . 167

Seibel_2395Front.fm Page xii Thursday, March 3, 2005 2:20 PM

■C O N T E N T S xiii

Filenames . 168

How Pathnames Represent Filenames . 169

Constructing New Pathnames . 171

Two Representations of Directory Names. 173

Interacting with the File System. 173

Other Kinds of I/O. 175

■CHAPTER 15 Practical: A Portable Pathname Library 179

The API . 179

FEATURES and Read-Time Conditionalization . 180

Listing a Directory . 182

Testing a File’s Existence . 185

Walking a Directory Tree. 187

■CHAPTER 16 Object Reorientation: Generic Functions 189

Generic Functions and Classes . 190

Generic Functions and Methods. 191

DEFGENERIC . 193

DEFMETHOD . 194

Method Combination . 196

The Standard Method Combination . 197

Other Method Combinations . 198

Multimethods . 200

To Be Continued 202

■CHAPTER 17 Object Reorientation: Classes . 203

DEFCLASS. 203

Slot Specifiers . 205

Object Initialization . 206

Accessor Functions . 209

WITH-SLOTS and WITH-ACCESSORS . 212

Class-Allocated Slots . 213

Slots and Inheritance . 214

Multiple Inheritance . 215

Good Object-Oriented Design . 218

Seibel_2395Front.fm Page xiii Thursday, March 3, 2005 2:20 PM

xiv ■C O N T E N T S

■CHAPTER 18 A Few FORMAT Recipes . 219

The FORMAT Function . 220

FORMAT Directives . 221

Basic Formatting . 222

Character and Integer Directives . 223

Floating-Point Directives . 225

English-Language Directives . 226

Conditional Formatting . 227

Iteration . 228

Hop, Skip, Jump. 230

And More 231

■CHAPTER 19 Beyond Exception Handling: Conditions and Restarts . . 233

The Lisp Way . 234

Conditions . 235

Condition Handlers. 235

Restarts . 238

Providing Multiple Restarts . 240

Other Uses for Conditions . 241

■CHAPTER 20 The Special Operators . 245

Controlling Evaluation . 245

Manipulating the Lexical Environment . 246

Local Flow of Control . 248

Unwinding the Stack . 252

Multiple Values . 256

EVAL-WHEN . 258

Other Special Operators . 260

■CHAPTER 21 Programming in the Large: Packages and Symbols 263

How the Reader Uses Packages. 263

A Bit of Package and Symbol Vocabulary . 265

Three Standard Packages . 266

Defining Your Own Packages . 267

Packaging Reusable Libraries . 270

Seibel_2395Front.fm Page xiv Thursday, March 3, 2005 2:20 PM

■C O N T E N T S xv

Importing Individual Names . 271

Packaging Mechanics . 272

Package Gotchas . 273

■CHAPTER 22 LOOP for Black Belts . 277

The Parts of a LOOP. 277

Iteration Control . 278

Counting Loops . 278

Looping Over Collections and Packages . 280

Equals-Then Iteration . 281

Local Variables . 282

Destructuring Variables . 282

Value Accumulation . 283

Unconditional Execution . 285

Conditional Execution . 285

Setting Up and Tearing Down . 287

Termination Tests . 288

Putting It All Together . 290

■CHAPTER 23 Practical: A Spam Filter . 291

The Heart of a Spam Filter . 291

Training the Filter. 295

Per-Word Statistics . 297

Combining Probabilities . 299

Inverse Chi Square. 301

Training the Filter. 302

Testing the Filter . 303

A Couple of Utility Functions . 305

Analyzing the Results . 306

What’s Next . 309

■CHAPTER 24 Practical: Parsing Binary Files . 311

Binary Files . 311

Binary Format Basics. 312

Strings in Binary Files . 314

Composite Structures . 316

Seibel_2395Front.fm Page xv Thursday, March 3, 2005 2:20 PM

xvi ■C O N T E N T S

Designing the Macros . 317

Making the Dream a Reality . 318

Reading Binary Objects . 320

Writing Binary Objects . 322

Adding Inheritance and Tagged Structures. 323

Keeping Track of Inherited Slots . 325

Tagged Structures . 327

Primitive Binary Types. 329

The Current Object Stack . 332

■CHAPTER 25 Practical: An ID3 Parser . 335

Structure of an ID3v2 Tag . 336

Defining a Package . 337

Integer Types . 338

String Types . 339

ID3 Tag Header . 343

ID3 Frames . 344

Detecting Tag Padding . 346

Supporting Multiple Versions of ID3. 348

Versioned Frame Base Classes . 350

Versioned Concrete Frame Classes . 351

What Frames Do You Actually Need? . 352

Text Information Frames . 354

Comment Frames . 356

Extracting Information from an ID3 Tag . 357

■CHAPTER 26 Practical: Web Programming with AllegroServe 363

A 30-Second Intro to Server-Side Web Programming 363

AllegroServe . 365

Generating Dynamic Content with AllegroServe. 368

Generating HTML . 370

HTML Macros . 373

Query Parameters . 374

Cookies . 377

A Small Application Framework . 379

The Implementation. 380

Seibel_2395Front.fm Page xvi Thursday, March 3, 2005 2:20 PM

■C O N T E N T S xvii

■CHAPTER 27 Practical: An MP3 Database . 385

The Database . 385

Defining a Schema . 388

Inserting Values . 390

Querying the Database . 392

Matching Functions . 394

Getting at the Results . 397

Other Database Operations. 398

■CHAPTER 28 Practical: A Shoutcast Server . 401

The Shoutcast Protocol . 401

Song Sources . 402

Implementing Shoutcast . 405

■CHAPTER 29 Practical: An MP3 Browser . 411

Playlists . 411

Playlists As Song Sources . 413

Manipulating the Playlist . 417

Query Parameter Types. 420

Boilerplate HTML . 422

The Browse Page . 423

The Playlist . 426

Finding a Playlist . 429

Running the App. 430

■CHAPTER 30 Practical: An HTML Generation Library,
the Interpreter . 431

Designing a Domain-Specific Language . 431

The FOO Language . 433

Character Escaping . 435

Indenting Printer. 437

HTML Processor Interface. 438

The Pretty Printer Backend . 439

The Basic Evaluation Rule. 443

What’s Next? . 447

Seibel_2395Front.fm Page xvii Thursday, March 3, 2005 2:20 PM

xviii ■C O N T E N T S

■CHAPTER 31 Practical: An HTML Generation Library,
the Compiler . 449

The Compiler . 449

FOO Special Operators . 454

FOO Macros . 459

The Public API . 462

The End of the Line . 463

■CHAPTER 32 Conclusion: What’s Next? . 465

Finding Lisp Libraries . 465

Interfacing with Other Languages . 467

Make It Work, Make It Right, Make It Fast . 467

Delivering Applications . 475

Where to Go Next . 477

■INDEX . 481

Seibel_2395Front.fm Page xviii Thursday, March 3, 2005 2:20 PM

xix

About the Author

■Peter Seibel is either a writer-turned-programmer or a programmer-
turned-writer. After picking up an undergraduate degree in English
and working briefly as a journalist, he was seduced by the Web. In the
early ’90s he hacked Perl for Mother Jones magazine and Organic Online.
He participated in the Java revolution as an early employee at WebLogic
and later taught Java programming at the University of California–
Berkeley Extension. He’s also one of the few second-generation Lisp
programmers on the planet and was a childhood shareholder in
Symbolics. He lives in Oakland with his wife, Lily, and their dog, Mahlanie.

Seibel_2395Front.fm Page xix Thursday, March 3, 2005 2:20 PM

xxi

About the Technical Reviewer

■Barry Margolin taught himself computer programming in high school in the late ’70s, first on
DEC PDP-8 time-sharing systems and then on Radio Shack TRS-80 personal computers, and he
learned operating system design by reverse engineering these systems. He went to M.I.T.,
where he learned Lisp programming from Bernie Greenberg, author of the Multics MacLisp
Compiler and Multics Emacs (the first Emacs clone to be written in Lisp); David Moon (one of
the implementers of ITS Maclisp and a founder of Symbolics); and Alan Bawden (perhaps one
of the best Lisp macrologists). After getting his computer science degree, he went to work for
the Honeywell Multics development group, maintaining Emacs. When Honeywell discontinued
Multics development, he went to Thinking Machines Corporation to maintain their Lisp Machine
development environment. Since then, he has worked for Bolt, Beranek, and Newman—which
became BBN Planet, then GTE Internetworking, and then Genuity, until being acquired by
Level(3)—providing technical support for their Internet services. He’s now working for Symantec
providing level-two customer technical support for its enterprise firewall products.

Seibel_2395Front.fm Page xxi Thursday, March 3, 2005 2:20 PM

xxiii

Acknowledgments

This book wouldn’t have been written, at least not by me, if not for a few happy coincidences. So,
I have to start by thanking Steven Haflich of Franz, who, after we met at a get-together of Bay
Area Lispniks, invited me to lunch with some Franz salespeople where, among other things, we
discussed the need for a new Lisp book. Then I have to thank Steve Sears, one of the sales guys
at that lunch, who put me in touch with Franz’s president, Fritz Kunze, after Fritz mentioned he
was looking for someone to write a Lisp book. And, of course, many thanks to Fritz for convincing
Apress to publish a new Lisp book, for deciding I was the right guy to write it, and for providing
encouragement and assistance along the way. Thanks also to Sheng-Chuang Wu of Franz, the
instrument of much of that assistance.

One of my most indispensable resources while working on the book was the newsgroup
comp.lang.lisp. The comp.lang.lisp regulars answered what must have seemed to them an
endless stream of questions about various aspects of Lisp and its history. I also turned frequently
to the Google archives for the group, a treasure trove of technical expertise. So, thanks to Google for
making them available and to all comp.lang.lisp participants past and present for providing
the content. In particular, I’d like to recognize two long-time comp.lang.lisp contributors—
Barry Margolin, who has been providing tidbits of Lisp history and his own brand of quiet
wisdom for as long as I’ve been reading the group; and Kent Pitman, who, in addition to having
been one of the principal technical editors of the language standard and the author of the
Common Lisp HyperSpec, has written hundreds of thousands, if not millions, of words in
comp.lang.lisp postings elucidating various aspects of the language and how it came to be.

Other indispensable resources while working on the book were the Common Lisp libraries
for PDF generation and typesetting, CL-PDF and CL-TYPESETTING, written by Marc Battyani.
I used CL-TYPESETTING to generate handsome PDFs for my own red-pen editing and CL-PDF
as the basis for the Common Lisp program I used to generate the line art that appears in this book.

I also want to thank the many people who reviewed draft chapters on the Web and sent me
e-mails pointing out typos, asking questions, or simply wishing me well. While there were too
many to mention them all by name, a few deserve special mention for their extensive feedback:
J. P. Massar (a fellow Bay Area Lispnik who also bucked up my spirits several times with well-
timed pizza lunches), Gareth McCaughan, Chris Riesbeck, Bulent Murtezaoglu, Emre Sevinc,
Chris Perkins, and Tayssir John Gabbour. Several of my non-Lisping buddies also got roped
into looking at some chapters: thanks to Marc Hedlund, Jolly Chen, Steve Harris, Sam Pullara,
Sriram Srinivasan, and William Grosso for their feedback. Thanks also to Scott Whitten for
permission to use the photo that appears in Figure 26-1.

My technical reviewers, Steven Haflich, Mikel Evins, and Barry Margolin, and my copy
editor, Kim Wimpsett, improved this book in innumerable ways. Any errors that remain are, of
course, my own. And thanks to everyone else at Apress who participated in getting this book out
the door.

Finally, and most of all, I want to thank my family: Mom and Dad, for everything, and Lily,
for always believing I could do it.

Seibel_2395Front.fm Page xxiii Thursday, March 3, 2005 2:20 PM

xxv

Typographical Conventions

Inline text set like this is code, usually the names of functions, variables, classes, and so on,
that either I’ve just introduced or I’m about to introduce. Names defined by the language stan-
dard are set like this: DEFUN. Larger bits of example code are set like this:

(defun foo (x y z)
 (+ x y z))

Since Common Lisp’s syntax is notable for its regularity and simplicity, I use simple templates
to describe the syntax of various Lisp forms. For instance, the following describes the syntax of
DEFUN, the standard function-defining macro:

(defun name (parameter*)
 [documentation-string]
 body-form*)

Names in italic in those templates are meant to be filled in with specific names or forms
that I’ll describe in the text. An italicized name followed by an asterisk (*) represents zero or
more occurrences of whatever the name represents, and a name enclosed in brackets ([])
represents an optional element. Occasionally, alternatives will be separated by a bar (|). Every-
thing else in the template—usually just some names and parentheses—is literal text that will
appear in the form.

Finally, because much of your interaction with Common Lisp happens at the interactive
read-eval-print loop, or REPL, I’ll frequently show the result of evaluating Lisp forms at the
REPL like this:

CL-USER> (+ 1 2)
3

The CL-USER> is the Lisp prompt and is always followed by the expression to be evaluated,
(+ 1 2), in this case. The result and any other output generated are shown on the following
lines. I’ll also sometimes show the result of evaluating an expression by writing the expression
followed by an , which is followed by the result, like this:

(+ 1 2) 3

Occasionally, I’ll use an equivalence sign () to express that two Lisp forms are equivalent,
like this:

(+ 1 2 3) (+ (+ 1 2) 3)

Seibel_2395Front.fm Page xxv Thursday, March 3, 2005 2:20 PM

1

■ ■ ■

C H A P T E R 1

Introduction: Why Lisp?

If you think the greatest pleasure in programming comes from getting a lot done with code
that simply and clearly expresses your intention, then programming in Common Lisp is likely
to be about the most fun you can have with a computer. You’ll get more done, faster, using it
than you would using pretty much any other language.

That’s a bold claim. Can I justify it? Not in a just a few pages in this chapter—you’re going
to have to learn some Lisp and see for yourself—thus the rest of this book. For now, let me start
with some anecdotal evidence, the story of my own road to Lisp. Then, in the next section, I’ll
explain the payoff I think you’ll get from learning Common Lisp.

I’m one of what must be a fairly small number of second-generation Lisp hackers. My
father got his start in computers writing an operating system in assembly for the machine he
used to gather data for his doctoral dissertation in physics. After running computer systems at
various physics labs, by the 1980s he had left physics altogether and was working at a large
pharmaceutical company. That company had a project under way to develop software to model
production processes in its chemical plants—if you increase the size of this vessel, how does it
affect annual production? The original team, writing in FORTRAN, had burned through half
the money and almost all the time allotted to the project with nothing to show for their efforts.
This being the 1980s and the middle of the artificial intelligence (AI) boom, Lisp was in the air.
So my dad—at that point not a Lisper—went to Carnegie Mellon University (CMU) to talk to
some of the folks working on what was to become Common Lisp about whether Lisp might be
a good language for this project.

The CMU folks showed him some demos of stuff they were working on, and he was convinced.
He in turn convinced his bosses to let his team take over the failing project and do it in Lisp.
A year later, and using only what was left of the original budget, his team delivered a working
application with features that the original team had given up any hope of delivering. My dad
credits his team’s success to their decision to use Lisp.

Now, that’s just one anecdote. And maybe my dad is wrong about why they succeeded. Or
maybe Lisp was better only in comparison to other languages of the day. These days we have
lots of fancy new languages, many of which have incorporated features from Lisp. Am I really
saying Lisp can offer you the same benefits today as it offered my dad in the 1980s? Read on.

Despite my father’s best efforts, I didn’t learn any Lisp in high school. After a college career
that didn’t involve much programming in any language, I was seduced by the Web and back
into computers. I worked first in Perl, learning enough to be dangerous while building an
online discussion forum for Mother Jones magazine’s Web site and then moving to a Web shop,
Organic Online, where I worked on big—for the time—Web sites such as the one Nike put up

Seibel_2395C01.fm Page 1 Wednesday, March 2, 2005 2:48 PM

2 C H A P T E R 1 ■ I N T R O D U C T I O N : W H Y L I S P ?

during the 1996 Olympics. Later I moved onto Java as an early developer at WebLogic, now part
of BEA. After WebLogic, I joined another startup where I was the lead programmer on a team
building a transactional messaging system in Java. Along the way, my general interest in
programming languages led me to explore such mainstream languages as C, C++, and Python,
as well as less well-known ones such as Smalltalk, Eiffel, and Beta.

So I knew two languages inside and out and was familiar with another half dozen. Eventually,
however, I realized my interest in programming languages was really rooted in the idea planted
by my father’s tales of Lisp—that different languages really are different, and that, despite the
formal Turing equivalence of all programming languages, you really can get more done more
quickly in some languages than others and have more fun doing it. Yet, ironically, I had never
spent that much time with Lisp itself. So, I started doing some Lisp hacking in my free time.
And whenever I did, it was exhilarating how quickly I was able to go from idea to working code.

For example, one vacation, having a week or so to hack Lisp, I decided to try writing a
version of a program—a system for breeding genetic algorithms to play the game of Go—that
I had written early in my career as a Java programmer. Even handicapped by my then rudimen-
tary knowledge of Common Lisp and having to look up even basic functions, it still felt more
productive than it would have been to rewrite the same program in Java, even with several
extra years of Java experience acquired since writing the first version.

A similar experiment led to the library I’ll discuss in Chapter 24. Early in my time at WebLogic
I had written a library, in Java, for taking apart Java class files. It worked, but the code was a bit
of a mess and hard to modify or extend. I had tried several times, over the years, to rewrite that
library, thinking that with my ever-improving Java chops I’d find some way to do it that didn’t
bog down in piles of duplicated code. I never found a way. But when I tried to do it in Common
Lisp, it took me only two days, and I ended up not only with a Java class file parser but with a
general-purpose library for taking apart any kind of binary file. You’ll see how that library works
in Chapter 24 and use it in Chapter 25 to write a parser for the ID3 tags embedded in MP3 files.

Why Lisp?
It’s hard, in only a few pages of an introductory chapter, to explain why users of a language like
it, and it’s even harder to make the case for why you should invest your time in learning a certain
language. Personal history only gets us so far. Perhaps I like Lisp because of some quirk in the
way my brain is wired. It could even be genetic, since my dad has it too. So before you dive into
learning Lisp, it’s reasonable to want to know what the payoff is going to be.

For some languages, the payoff is relatively obvious. For instance, if you want to write low-
level code on Unix, you should learn C. Or if you want to write certain kinds of cross-platform
applications, you should learn Java. And any of a number companies still use a lot of C++, so if
you want to get a job at one of them, you should learn C++.

For most languages, however, they payoff isn’t so easily categorized; it has to do with
subjective criteria such as how it feels to use the language. Perl advocates like to say that Perl
“makes easy things easy and hard things possible” and revel in the fact that, as the Perl motto
has it, “There’s more than one way to do it.”1 Python’s fans, on the other hand, think Python is
clean and simple and think Python code is easier to understand because, as their motto says,
“There’s only one way to do it.”

1. Perl is also worth learning as “the duct tape of the Internet.”

Seibel_2395C01.fm Page 2 Wednesday, March 2, 2005 2:48 PM

C H A P T E R 1 ■ I N T R O D U CT I O N : W H Y L I S P ? 3

So, why Common Lisp? There’s no immediately obvious payoff for adopting Common Lisp
the way there is for C, Java, and C++ (unless, of course, you happen to own a Lisp Machine). The
benefits of using Lisp have much more to do with the experience of using it. I’ll spend the rest
of this book showing you the specific features of Common Lisp and how to use them so you can
see for yourself what it’s like. For now I’ll try to give you a sense of Lisp’s philosophy.

The nearest thing Common Lisp has to a motto is the koan-like description, “the program-
mable programming language.” While cryptic, that description gets at the root of the biggest
advantage Common Lisp still has over other languages. More than any other language, Common
Lisp follows the philosophy that what’s good for the language’s designer is good for the language’s
users. Thus, when you’re programming in Common Lisp, you almost never find yourself wishing
the language supported some feature that would make your program easier to write, because,
as you’ll see throughout this book, you can just add the feature yourself.

Consequently, a Common Lisp program tends to provide a much clearer mapping between
your ideas about how the program works and the code you actually write. Your ideas aren’t
obscured by boilerplate code and endlessly repeated idioms. This makes your code easier to
maintain because you don’t have to wade through reams of code every time you need to make
a change. Even systemic changes to a program’s behavior can often be achieved with relatively
small changes to the actual code. This also means you’ll develop code more quickly; there’s
less code to write, and you don’t waste time thrashing around trying to find a clean way to
express yourself within the limitations of the language.2

Common Lisp is also an excellent language for exploratory programming—if you don’t
know exactly how your program is going to work when you first sit down to write it, Common
Lisp provides several features to help you develop your code incrementally and interactively.

For starters, the interactive read-eval-print loop, which I’ll introduce in the next chapter,
lets you continually interact with your program as you develop it. Write a new function. Test it.
Change it. Try a different approach. You never have to stop for a lengthy compilation cycle.3

2. Unfortunately, there’s little actual research on the productivity of different languages. One report
that shows Lisp coming out well compared to C++ and Java in the combination of programmer
and program efficiency is discussed at http://www.norvig.com/java-lisp.html.

3. Psychologists have identified a state of mind called flow in which we’re capable of incredible
concentration and productivity. The importance of flow to programming has been recognized for
nearly two decades since it was discussed in the classic book about human factors in programming
Peopleware: Productive Projects and Teams by Tom DeMarco and Timothy Lister (Dorset House,
1987). The two key facts about flow are that it takes around 15 minutes to get into a state of flow
and that even brief interruptions can break you right out of it, requiring another 15-minute
immersion to reenter. DeMarco and Lister, like most subsequent authors, concerned themselves
mostly with flow-destroying interruptions such as ringing telephones and inopportune visits
from the boss. Less frequently considered but probably just as important to programmers are the
interruptions caused by our tools. Languages that require, for instance, a lengthy compilation
before you can try your latest code can be just as inimical to flow as a noisy phone or a nosy boss.
So, one way to look at Lisp is as a language designed to keep you in a state of flow.

Seibel_2395C01.fm Page 3 Wednesday, March 2, 2005 2:48 PM

4 C H A P T E R 1 ■ I N T R O D U C T I O N : W H Y L I S P ?

Other features that support a flowing, interactive programming style are Lisp’s dynamic
typing and the Common Lisp condition system. Because of the former, you spend less time
convincing the compiler you should be allowed to run your code and more time actually
running it and working on it,4 and the latter lets you develop even your error handling code
interactively.

Another consequence of being “a programmable programming language” is that Common
Lisp, in addition to incorporating small changes that make particular programs easier to write,
can easily adopt big new ideas about how programming languages should work. For instance,
the original implementation of the Common Lisp Object System (CLOS), Common Lisp’s
powerful object system, was as a library written in portable Common Lisp. This allowed Lisp
programmers to gain actual experience with the facilities it provided before it was officially
incorporated into the language.

Whatever new paradigm comes down the pike next, it’s extremely likely that Common
Lisp will be able to absorb it without requiring any changes to the core language. For example,
a Lisper has recently written a library, AspectL, that adds support for aspect-oriented program-
ming (AOP) to Common Lisp.5 If AOP turns out to be the next big thing, Common Lisp will be
able to support it without any changes to the base language and without extra preprocessors
and extra compilers.6

Where It Began
Common Lisp is the modern descendant of the Lisp language first conceived by John McCarthy
in 1956. Lisp circa 1956 was designed for “symbolic data processing”7 and derived its name
from one of the things it was quite good at: LISt Processing. We’ve come a long way since then:
Common Lisp sports as fine an array of modern data types as you can ask for: a condition system

4. This point is bound to be somewhat controversial, at least with some folks. Static versus dynamic
typing is one of the classic religious wars in programming. If you’re coming from C++ and Java (or
from statically typed functional languages such as Haskel and ML) and refuse to consider living
without static type checks, you might as well put this book down now. However, before you do,
you might first want to check out what self-described “statically typed bigot” Robert Martin
(author of Designing Object Oriented C++ Applications Using the Booch Method [Prentice Hall,
1995]) and C++ and Java author Bruce Eckel (author of Thinking in C++ [Prentice Hall, 1995] and
Thinking in Java [Prentice Hall, 1998]) have had to say about dynamic typing on their weblogs
(http://www.artima.com/weblogs/viewpost.jsp?thread=4639 and http://www.mindview.net/
WebLog/log-0025). On the other hand, folks coming from Smalltalk, Python, Perl, or Ruby should
feel right at home with this aspect of Common Lisp.

5. AspectL is an interesting project insofar as AspectJ, its Java-based predecessor, was written by
Gregor Kiczales, one of the designers of Common Lisp’s object and metaobject systems. To many
Lispers, AspectJ seems like Kiczales’s attempt to backport his ideas from Common Lisp into Java.
However, Pascal Costanza, the author of AspectL, thinks there are interesting ideas in AOP that
could be useful in Common Lisp. Of course, the reason he’s able to implement AspectL as a library
is because of the incredible flexibility of the Common Lisp Meta Object Protocol Kiczales designed.
To implement AspectJ, Kiczales had to write what was essentially a separate compiler that compiles
a new language into Java source code. The AspectL project page is at http://common-lisp.net/
project/aspectl/.

6. Or to look at it another, more technically accurate, way, Common Lisp comes with a built-in
facility for integrating compilers for embedded languages.

7. Lisp 1.5 Programmer’s Manual (M.I.T. Press, 1962)

Seibel_2395C01.fm Page 4 Wednesday, March 2, 2005 2:48 PM

C H A P T E R 1 ■ I N T R O D U CT I O N : W H Y L I S P ? 5

that, as you’ll see in Chapter 19, provides a whole level of flexibility missing from the exception
systems of languages such as Java, Python, and C++; powerful facilities for doing object-oriented
programming; and several language facilities that just don’t exist in other programming
languages. How is this possible? What on Earth would provoke the evolution of such a well-
equipped language?

Well, McCarthy was (and still is) an artificial intelligence (AI) researcher, and many of the
features he built into his initial version of the language made it an excellent language for AI
programming. During the AI boom of the 1980s, Lisp remained a favorite tool for programmers
writing software to solve hard problems such as automated theorem proving, planning and
scheduling, and computer vision. These were problems that required a lot of hard-to-write
software; to make a dent in them, AI programmers needed a powerful language, and they grew
Lisp into the language they needed. And the Cold War helped—as the Pentagon poured money
into the Defense Advanced Research Projects Agency (DARPA), a lot of it went to folks working
on problems such as large-scale battlefield simulations, automated planning, and natural
language interfaces. These folks also used Lisp and continued pushing it to do what they needed.

The same forces that drove Lisp’s feature evolution also pushed the envelope along other
dimensions—big AI problems eat up a lot of computing resources however you code them, and
if you run Moore’s law in reverse for 20 years, you can imagine how scarce computing resources
were on circa-80s hardware. The Lisp guys had to find all kinds of ways to squeeze performance
out of their implementations. Modern Common Lisp implementations are the heirs to those
early efforts and often include quite sophisticated, native machine code–generating compilers.
While today, thanks to Moore’s law, it’s possible to get usable performance from a purely inter-
preted language, that’s no longer an issue for Common Lisp. As I’ll show in Chapter 32, with
proper (optional) declarations, a good Lisp compiler can generate machine code quite similar
to what might be generated by a C compiler.

The 1980s were also the era of the Lisp Machines, with several companies, most famously
Symbolics, producing computers that ran Lisp natively from the chips up. Thus, Lisp became a
systems programming language, used for writing the operating system, editors, compilers, and
pretty much everything else that ran on the Lisp Machines.

In fact, by the early 1980s, with various AI labs and the Lisp machine vendors all providing
their own Lisp implementations, there was such a proliferation of Lisp systems and dialects
that the folks at DARPA began to express concern about the Lisp community splintering. To
address this concern, a grassroots group of Lisp hackers got together in 1981 and began the
process of standardizing a new language called Common Lisp that combined the best features
from the existing Lisp dialects. Their work was documented in the book Common Lisp the
Language by Guy Steele (Digital Press, 1984)—CLtL to the Lisp-cognoscenti.

By 1986 the first Common Lisp implementations were available, and the writing was on
the wall for the dialects it was intended to replace. In 1996, the American National Standards
Institute (ANSI) released a standard for Common Lisp that built on and extended the language
specified in CLtL, adding some major new features such as the CLOS and the condition system.
And even that wasn’t the last word: like CLtL before it, the ANSI standard intentionally leaves
room for implementers to experiment with the best way to do things: a full Lisp implementation
provides a rich runtime environment with access to GUI widgets, multiple threads of control,
TCP/IP sockets, and more. These days Common Lisp is evolving much like other open-source
languages—the folks who use it write the libraries they need and often make them available to
others. In the last few years, in particular, there has been a spurt of activity in open-source Lisp
libraries.

Seibel_2395C01.fm Page 5 Wednesday, March 2, 2005 2:48 PM

6 C H A P T E R 1 ■ I N T R O D U C T I O N : W H Y L I S P ?

So, on one hand, Lisp is one of computer science’s “classical” languages, based on ideas
that have stood the test of time.8 On the other, it’s a thoroughly modern, general-purpose
language whose design reflects a deeply pragmatic approach to solving real problems as effi-
ciently and robustly as possible. The only downside of Lisp’s “classical” heritage is that lots of
folks are still walking around with ideas about Lisp based on some particular flavor of Lisp they
were exposed to at some particular time in the nearly half century since McCarthy invented
Lisp. If someone tells you Lisp is only interpreted, that it’s slow, or that you have to use recur-
sion for everything, ask them what dialect of Lisp they’re talking about and whether people
were wearing bell-bottoms when they learned it.9

BUT I LEARNED LISP ONCE, AND IT WASN'T LIKE WHAT YOU'RE DESCRIBING

If you’ve used Lisp in the past, you may have ideas about what “Lisp” is that have little to do with Common
Lisp. While Common Lisp supplanted most of the dialects it’s descended from, it isn’t the only remaining Lisp
dialect, and depending on where and when you were exposed to Lisp, you may very well have learned one of
these other dialects.

Other than Common Lisp, the one general-purpose Lisp dialect that still has an active user community is
Scheme. Common Lisp borrowed a few important features from Scheme but never intended to replace it.

Originally designed at M.I.T., where it was quickly put to use as a teaching language for undergraduate
computer science courses, Scheme has always been aimed at a different language niche than Common Lisp.
In particular, Scheme’s designers have focused on keeping the core language as small and as simple as
possible. This has obvious benefits for a teaching language and also for programming language researchers
who like to be able to formally prove things about languages.

It also has the benefit of making it relatively easy to understand the whole language as specified in the
standard. But, it does so at the cost of omitting many useful features that are standardized in Common Lisp.
Individual Scheme implementations may provide these features in implementation-specific ways, but their
omission from the standard makes it harder to write portable Scheme code than to write portable Common
Lisp code.

Continued

8. Ideas first introduced in Lisp include the if/then/else construct, recursive function calls, dynamic
memory allocation, garbage collection, first-class functions, lexical closures, interactive
programming, incremental compilation, and dynamic typing.

9. One of the most commonly repeated myths about Lisp is that it’s “dead.” While it’s true that Common
Lisp isn’t as widely used as, say, Visual Basic or Java, it seems strange to describe a language that
continues to be used for new development and that continues to attract new users as “dead.”
Some recent Lisp success stories include Paul Graham’s Viaweb, which became Yahoo Store
when Yahoo bought his company; ITA Software’s airfare pricing and shopping system, QPX, used
by the online ticket seller Orbitz and others; Naughty Dog’s game for the PlayStation 2, Jak and
Daxter, which is largely written in a domain-specific Lisp dialect Naughty Dog invented called
GOAL, whose compiler is itself written in Common Lisp; and the Roomba, the autonomous robotic
vacuum cleaner, whose software is written in L, a downwardly compatible subset of Common Lisp.
Perhaps even more telling is the growth of the Common-Lisp.net Web site, which hosts open-
source Common Lisp projects, and the number of local Lisp user groups that have sprung up in
the past couple of years.

Seibel_2395C01.fm Page 6 Wednesday, March 2, 2005 2:48 PM

C H A P T E R 1 ■ I N T R O D U CT I O N : W H Y L I S P ? 7

Scheme also emphasizes a functional programming style and the use of recursion much more than Common
Lisp does. If you studied Lisp in college and came away with the impression that it was only an academic
language with no real-world application, chances are you learned Scheme. This isn’t to say that’s a particularly
fair characterization of Scheme, but it’s even less applicable to Common Lisp, which was expressly designed
to be a real-world engineering language rather than a theoretically “pure” language.

If you’ve learned Scheme, you should also be aware that a number of subtle differences between
Scheme and Common Lisp may trip you up. These differences are also the basis for several perennial religious
wars between the hotheads in the Common Lisp and Scheme communities. I’ll try to point out some of the
more important differences as we go along.

Two other Lisp dialects still in widespread use are Elisp, the extension language for the Emacs editor, and
Autolisp, the extension language for Autodesk’s AutoCAD computer-aided design tool. Although it’s possible
more lines of Elisp and Autolisp have been written than of any other dialect of Lisp, neither can be used outside
their host application, and both are quite old-fashioned Lisps compared to either Scheme or Common Lisp. If
you’ve used one of these dialects, prepare to hop in the Lisp time machine and jump forward several decades.

Who This Book Is For
This book is for you if you’re curious about Common Lisp, regardless of whether you’re already
convinced you want to use it or if you just want to know what all the fuss is about.

If you’ve learned some Lisp already but have had trouble making the leap from academic
exercises to real programs, this book should get you on your way. On the other hand, you don’t
have to be already convinced that you want to use Lisp to get something out of this book.

If you’re a hard-nosed pragmatist who wants to know what advantages Common Lisp has
over languages such as Perl, Python, Java, C, or C#, this book should give you some ideas. Or
maybe you don’t even care about using Lisp—maybe you’re already sure Lisp isn’t really any
better than other languages you know but are annoyed by some Lisper telling you that’s because
you just don’t “get it.” If so, this book will give you a straight-to-the-point introduction to
Common Lisp. If, after reading this book, you still think Common Lisp is no better than your
current favorite languages, you’ll be in an excellent position to explain exactly why.

I cover not only the syntax and semantics of the language but also how you can use it to
write software that does useful stuff. In the first part of the book, I’ll cover the language itself,
mixing in a few “practical” chapters, where I’ll show you how to write real code. Then, after I’ve
covered most of the language, including several parts that other books leave for you to figure
out on your own, the remainder of the book consists of nine more practical chapters where I’ll
help you write several medium-sized programs that actually do things you might find useful:
filter spam, parse binary files, catalog MP3s, stream MP3s over a network, and provide a Web
interface for the MP3 catalog and server.

After you finish this book, you’ll be familiar with all the most important features of the
language and how they fit together, you’ll have used Common Lisp to write several nontrivial
programs, and you’ll be well prepared to continue exploring the language on your own.
While everyone’s road to Lisp is different, I hope this book will help smooth the way for you.
So, let’s begin.

Seibel_2395C01.fm Page 7 Wednesday, March 2, 2005 2:48 PM

9

■ ■ ■

C H A P T E R 2

Lather, Rinse, Repeat:
A Tour of the REPL

In this chapter you’ll set up your programming environment and write your first Common
Lisp programs. We’ll use the easy-to-install Lisp in a Box developed by Matthew Danish and
Mikel Evins, which packages a Common Lisp implementation with Emacs, a powerful Lisp-
aware text editor, and SLIME,1 a Common Lisp development environment built on top of Emacs.

This combo provides a state-of-the-art Common Lisp development environment that
supports the incremental, interactive development style that characterizes Lisp programming.
The SLIME environment has the added advantage of providing a fairly uniform user interface
regardless of the operating system and Common Lisp implementation you choose. I’ll use the
Lisp in a Box environment in order to have a specific development environment to talk about;
folks who want to explore other development environments such as the graphical integrated
development environments (IDEs) provided by some of the commercial Lisp vendors or envi-
ronments based on other editors shouldn’t have too much trouble translating the basics.2

Choosing a Lisp Implementation
The first thing you have to do is to choose a Lisp implementation. This may seem like a strange
thing to have to do for folks used to languages such as Perl, Python, Visual Basic (VB), C#, and
Java. The difference between Common Lisp and these languages is that Common Lisp is defined by
its standard—there is neither a single implementation controlled by a benevolent dictator, as
with Perl and Python, nor a canonical implementation controlled by a single company, as with

1. Superior Lisp Interaction Mode for Emacs

2. If you’ve had a bad experience with Emacs previously, you should treat Lisp in a Box as an IDE
that happens to use an Emacs-like editor as its text editor; there will be no need to become an
Emacs guru to program Lisp. It is, however, orders of magnitude more enjoyable to program Lisp
with an editor that has some basic Lisp awareness. At a minimum, you’ll want an editor that can
automatically match ()s for you and knows how to automatically indent Lisp code. Because
Emacs is itself largely written in a Lisp dialect, Elisp, it has quite a bit of support for editing Lisp
code. Emacs is also deeply embedded into the history of Lisp and the culture of Lisp hackers: the
original Emacs and its immediate predecessors, TECMACS and TMACS, were written by Lispers at
the Massachusetts Institute of Technology (MIT). The editors on the Lisp Machines were versions
of Emacs written entirely in Lisp. The first two Lisp Machine Emacs, following the hacker tradition
of recursive acronyms, were EINE and ZWEI, which stood for EINE Is Not Emacs and ZWEI Was
EINE Initially. Later ones used a descendant of ZWEI, named, more prosaically, ZMACS.

Seibel_2395.book Page 9 Monday, February 28, 2005 4:36 PM

10 C H A P T E R 2 ■ LA T H E R , R I N S E , R E P E A T : A T O U R O F T H E R E P L

VB, C#, and Java. Anyone who wants to read the standard and implement the language is free
to do so. Furthermore, changes to the standard have to be made in accordance with a process
controlled by the standards body American National Standards Institute (ANSI). That process
is designed to keep any one entity, such as a single vendor, from being able to arbitrarily change
the standard.3 Thus, the Common Lisp standard is a contract between any Common Lisp
vendor and Common Lisp programmers. The contract tells you that if you write a program that
uses the features of the language the way they’re described in the standard, you can count on
your program behaving the same in any conforming implementation.

On the other hand, the standard may not cover everything you may want to do in your
programs—some things were intentionally left unspecified in order to allow continuing exper-
imentation by implementers in areas where there wasn’t consensus about the best way for the
language to support certain features. So every implementation offers some features above and
beyond what’s specified in the standard. Depending on what kind of programming you’re going
to be doing, it may make sense to just pick one implementation that has the extra features you
need and use that. On the other hand, if we’re delivering Lisp source to be used by others, such
as libraries, you’ll want—as far as possible—to write portable Common Lisp. For writing code
that should be mostly portable but that needs facilities not defined by the standard, Common
Lisp provides a flexible way to write code “conditionalized” on the features available in a
particular implementation. You’ll see an example of this kind of code in Chapter 15 when we
develop a simple library that smoothes over some differences between how different Lisp
implementations deal with filenames.

For the moment, however, the most important characteristic of an implementation is
whether it runs on our favorite operating system. The folks at Franz, makers of Allegro Common
Lisp, are making available a trial version of their product for use with this book that runs on
Linux, Windows, and OS X. Folks looking for an open-source implementation have several
options. SBCL4 is a high-quality open-source implementation that compiles to native code and
runs on a wide variety of Unixes, including Linux and OS X. SBCL is derived from CMUCL,5

which is a Common Lisp developed at Carnegie Mellon University, and, like CMUCL, is largely
in the public domain, except a few sections licensed under Berkeley Software Distribution
(BSD) style licenses. CMUCL itself is another fine choice, though SBCL tends to be easier to
install and now supports 21-bit Unicode.6 For OS X users, OpenMCL is an excellent choice—
it compiles to machine code, supports threads, and has quite good integration with OS X’s

3. Practically speaking, there’s very little likelihood of the language standard itself being revised—
while there are a small handful of warts that folks might like to clean up, the ANSI process isn’t
amenable to opening an existing standard for minor tweaks, and none of the warts that might be
cleaned up actually cause anyone any serious difficulty. The future of Common Lisp standardization
is likely to proceed via de facto standards, much like the “standardization” of Perl and Python—as
different implementers experiment with application programming interfaces (APIs) and libraries
for doing things not specified in the language standard, other implementers may adopt them or
people will develop portability libraries to smooth over the differences between implementations for
features not specified in the language standard.

4. Steel Bank Common Lisp

5. CMU Common Lisp

6. SBCL forked from CMUCL in order to focus on cleaning up the internals and making it easier to
maintain. But the fork has been amiable; bug fixes tend to propagate between the two projects,
and there’s talk that someday they will merge back together.

Seibel_2395.book Page 10 Monday, February 28, 2005 4:36 PM

